metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[bis­­(1H-pyrazol-1-yl)methane-κ2N2,N2′](formato-κ2O,O′)copper(II) perchlorate

aSchool of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: sxsdzrf@yahoo.com.cn

(Received 29 August 2011; accepted 27 September 2011; online 5 October 2011)

In the crystal structure of the title compound, [Cu(HCO2)(C7H8N4)2]ClO4, the CuII ion is octa­hedrally coordinated by one bidentate formate ion and two bidentate bis­(1H-pyrazol-1-yl)methane ligands. There are C—H⋯O hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.487  (3) Å] in the crystal structure. The perchlorate anion is disordered over two positions with an occupancy ratio of 0.628 (9):0.372 (9).

Related literature

For applications of coordination polymers, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Robson (2000[Robson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735-3744.]). For synthesis of the bis­(pyrazol-1-yl)methane ligand, see: Elguero et al. (1982[Elguero, J., Ochoa, C., Julia, S., Sala, P., Mazo, J. & Sancho, M. (1982). J. Heterocycl. Chem. 19, 1141-1145.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CHO2)(C7H8N4)2]ClO4

  • Mr = 504.36

  • Monoclinic, P 21 /n

  • a = 11.0458 (19) Å

  • b = 14.816 (3) Å

  • c = 12.273 (2) Å

  • β = 99.031 (3)°

  • V = 1983.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 294 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 1.000

  • 9920 measured reflections

  • 3439 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.165

  • S = 1.02

  • 3439 reflections

  • 318 parameters

  • 122 restraints

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.66 3.424 (7) 140
C4—H4B⋯O4ii 0.97 2.37 3.343 (14) 176
C4—H4B⋯O4′ii 0.97 2.66 3.580 (12) 159
C11—H11B⋯O5iii 0.97 2.60 3.525 (17) 161
C11—H11B⋯O5′iii 0.97 2.32 3.286 (9) 176
C12—H12⋯O3iii 0.93 2.49 3.220 (14) 136
C12—H12⋯O3′iii 0.93 2.30 3.195 (10) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: SMART-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1998[Bruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers have received significant attention in recent years, primarily due to their potential applications in many areas such as catalysis, molecular adsorption, magnetism properties and non-linear optics (Kitagawa et al., 2004; Robson, 2000). We report herein the structure of the title compound, namely [Cu(L1)2(HCO2)]ClO4 (L1 = bis(pyrazol-1-yl)methane). The title compound crystallizes in monoclinic space group P21/n. The asymmetrical unit of the unit cell contains one CuII ion, one formic acid and two ligand L1 (as shown in Fig. 1). The Cu ion is octahedrally coordinated to two oxygen atoms from one formate ion and four nitrogen atoms from two L1 ligands. In the crystal structure, intermolecular C—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2), and π-π interactions between two pyrazole rings (centroid-centroid distance is 3.487 Å) consolidate the crystal packing.

Related literature top

For applications of coordination polymers, see: Kitagawa et al. (2004); Robson (2000). For synthesis of the bis(pyrazol-1-yl)methane ligand, see: Elguero et al. (1982).

Experimental top

The ligand L1 was synthesized according to literature (Elguero et al., 1982). The title compound was prepared by adding 5 ml methanol solution of copper(II) perchlorate (0.3 mmol) to 10 ml aqueous solution of L1 (0.5 mmol) and formic acid (0.3 mmol). The mixture was stirred for half an hour and filtered. The filtrate was slowly evaporated at room temperature to yield blue cubic crystals suitable for X-ray analysis. Analysis calculated for C15H17ClCuN8: C 35.69, H 3.37, N 22.21%; found: C 33.21, H 3.09, N 24.03%.

Refinement top

Hydrogen atoms were included in calculated positions and refined with fixed thermal parameters riding on their parent atoms with C—H distances in the range of 0.93–0.97 Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. (Hydrogen atoms and the perchlorate ion are omitted for clarity.)
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Bis[bis(1H-pyrazol-1-yl)methane-κ2N2,N2'](formato- κ2O,O')copper(II) perchlorate top
Crystal data top
[Cu(CHO2)(C7H8N4)2]ClO4F(000) = 1028
Mr = 504.36Dx = 1.689 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0458 (19) ÅCell parameters from 3002 reflections
b = 14.816 (3) Åθ = 2.2–25.4°
c = 12.273 (2) ŵ = 1.29 mm1
β = 99.031 (3)°T = 294 K
V = 1983.6 (6) Å3Cubic, blue
Z = 40.22 × 0.20 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3439 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 813
Tmin = 0.768, Tmax = 1.000k = 1716
9920 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.099P)2 + 1.4485P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3439 reflectionsΔρmax = 1.07 e Å3
318 parametersΔρmin = 0.62 e Å3
122 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (12)
Crystal data top
[Cu(CHO2)(C7H8N4)2]ClO4V = 1983.6 (6) Å3
Mr = 504.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0458 (19) ŵ = 1.29 mm1
b = 14.816 (3) ÅT = 294 K
c = 12.273 (2) Å0.22 × 0.20 × 0.16 mm
β = 99.031 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2334 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 1.000Rint = 0.037
9920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052122 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.02Δρmax = 1.07 e Å3
3439 reflectionsΔρmin = 0.62 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.51417 (5)0.18886 (4)0.24183 (4)0.0406 (3)
O10.4358 (5)0.0590 (4)0.1916 (4)0.0968 (16)
O20.5977 (5)0.0465 (4)0.2919 (4)0.0984 (16)
N10.6033 (4)0.1867 (3)0.1089 (3)0.0448 (9)
N20.5865 (3)0.2511 (3)0.0313 (3)0.0431 (9)
N30.4141 (3)0.3339 (2)0.0709 (3)0.0410 (9)
N40.3848 (3)0.2847 (3)0.1554 (3)0.0451 (10)
N50.6403 (3)0.2826 (3)0.3261 (3)0.0427 (9)
N60.6134 (3)0.3316 (2)0.4117 (3)0.0388 (9)
N70.4428 (3)0.2470 (2)0.4540 (3)0.0405 (9)
N80.4262 (4)0.1837 (2)0.3739 (3)0.0457 (9)
C10.6507 (5)0.1161 (3)0.0628 (4)0.0550 (13)
H10.67160.06130.09780.066*
C20.6644 (5)0.1366 (4)0.0450 (4)0.0559 (13)
H20.69590.09930.09460.067*
C30.6224 (4)0.2217 (4)0.0628 (4)0.0504 (12)
H30.61880.25430.12810.060*
C40.5405 (4)0.3388 (3)0.0552 (4)0.0435 (11)
H4A0.58960.36280.12130.052*
H4B0.54780.37960.00530.052*
C50.3162 (5)0.3769 (3)0.0150 (4)0.0504 (12)
H50.31560.41420.04600.061*
C60.2190 (5)0.3555 (4)0.0647 (5)0.0593 (14)
H60.13850.37500.04510.071*
C70.2642 (4)0.2986 (4)0.1508 (4)0.0532 (13)
H70.21700.27320.19930.064*
C80.7606 (5)0.2959 (3)0.3287 (4)0.0518 (13)
H80.80650.27020.27930.062*
C90.8077 (5)0.3525 (4)0.4143 (5)0.0570 (13)
H90.88840.37180.43260.068*
C100.7118 (4)0.3739 (3)0.4658 (4)0.0496 (12)
H100.71400.41090.52720.059*
C110.4874 (4)0.3361 (3)0.4292 (4)0.0417 (10)
H11A0.43710.35980.36350.050*
H11B0.48080.37670.48990.050*
C120.4066 (4)0.2174 (4)0.5466 (4)0.0522 (13)
H120.40910.24980.61180.063*
C130.3656 (5)0.1318 (4)0.5284 (4)0.0574 (14)
H130.33500.09400.57810.069*
C140.3787 (5)0.1122 (3)0.4204 (4)0.0513 (12)
H140.35770.05760.38510.062*
C150.5126 (7)0.0079 (4)0.2389 (5)0.0663 (18)
H150.50630.05470.23450.080*
Cl10.48695 (14)0.56011 (9)0.25933 (10)0.0592 (4)
O30.4395 (14)0.6517 (6)0.2731 (10)0.094 (5)0.372 (9)
O40.4250 (15)0.5272 (9)0.1570 (8)0.110 (6)0.372 (9)
O50.4583 (17)0.5091 (9)0.3505 (10)0.145 (7)0.372 (9)
O60.6157 (8)0.5647 (14)0.2589 (18)0.267 (14)0.372 (9)
O3'0.5275 (10)0.6523 (5)0.2451 (7)0.125 (4)0.628 (9)
O4'0.5199 (12)0.5081 (7)0.1726 (8)0.147 (4)0.628 (9)
O5'0.5488 (9)0.5305 (5)0.3645 (5)0.094 (3)0.628 (9)
O6'0.3574 (7)0.5562 (10)0.2584 (13)0.259 (9)0.628 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0503 (4)0.0379 (4)0.0332 (4)0.0003 (2)0.0051 (2)0.0002 (2)
O10.109 (4)0.118 (4)0.067 (3)0.004 (3)0.023 (3)0.008 (3)
O20.108 (4)0.127 (5)0.063 (3)0.003 (3)0.021 (3)0.007 (3)
N10.053 (2)0.044 (2)0.037 (2)0.0068 (18)0.0069 (18)0.0010 (18)
N20.044 (2)0.048 (2)0.038 (2)0.0015 (17)0.0081 (17)0.0010 (18)
N30.042 (2)0.039 (2)0.040 (2)0.0013 (16)0.0004 (17)0.0036 (17)
N40.044 (2)0.055 (2)0.036 (2)0.0080 (18)0.0048 (18)0.0002 (18)
N50.044 (2)0.046 (2)0.038 (2)0.0073 (17)0.0067 (17)0.0045 (17)
N60.041 (2)0.039 (2)0.0358 (19)0.0028 (16)0.0023 (17)0.0004 (16)
N70.041 (2)0.042 (2)0.040 (2)0.0030 (16)0.0080 (17)0.0003 (17)
N80.052 (2)0.041 (2)0.044 (2)0.0103 (18)0.0100 (18)0.0011 (18)
C10.057 (3)0.050 (3)0.060 (3)0.008 (2)0.014 (3)0.005 (2)
C20.052 (3)0.066 (4)0.052 (3)0.004 (3)0.016 (2)0.016 (3)
C30.051 (3)0.064 (3)0.038 (2)0.002 (2)0.011 (2)0.002 (2)
C40.047 (3)0.040 (3)0.043 (2)0.001 (2)0.004 (2)0.005 (2)
C50.056 (3)0.042 (3)0.049 (3)0.006 (2)0.006 (2)0.003 (2)
C60.040 (3)0.057 (3)0.075 (4)0.011 (2)0.008 (3)0.016 (3)
C70.041 (3)0.064 (3)0.056 (3)0.003 (2)0.009 (2)0.015 (3)
C80.048 (3)0.055 (3)0.055 (3)0.005 (2)0.014 (2)0.016 (2)
C90.043 (3)0.057 (3)0.068 (3)0.009 (2)0.003 (3)0.018 (3)
C100.051 (3)0.039 (3)0.055 (3)0.008 (2)0.005 (2)0.003 (2)
C110.042 (2)0.040 (3)0.043 (2)0.0008 (19)0.007 (2)0.004 (2)
C120.045 (3)0.074 (4)0.039 (3)0.001 (2)0.012 (2)0.004 (2)
C130.054 (3)0.070 (4)0.052 (3)0.002 (3)0.017 (3)0.018 (3)
C140.056 (3)0.043 (3)0.057 (3)0.007 (2)0.015 (2)0.002 (2)
C150.111 (6)0.027 (3)0.067 (4)0.004 (3)0.032 (4)0.001 (3)
Cl10.0867 (10)0.0433 (8)0.0434 (7)0.0043 (6)0.0028 (7)0.0003 (5)
O30.114 (9)0.069 (7)0.095 (8)0.029 (6)0.004 (7)0.013 (6)
O40.136 (10)0.099 (8)0.087 (8)0.010 (7)0.006 (7)0.005 (7)
O50.145 (7)0.145 (7)0.144 (7)0.0001 (11)0.0230 (16)0.0005 (11)
O60.267 (14)0.267 (14)0.267 (14)0.0001 (11)0.042 (2)0.0000 (11)
O3'0.156 (8)0.089 (6)0.121 (7)0.025 (5)0.004 (6)0.010 (5)
O4'0.167 (8)0.148 (8)0.137 (7)0.020 (6)0.057 (6)0.036 (6)
O5'0.130 (6)0.074 (5)0.070 (4)0.004 (4)0.011 (4)0.026 (4)
O6'0.216 (11)0.289 (13)0.272 (13)0.000 (9)0.038 (9)0.026 (9)
Geometric parameters (Å, º) top
Cu1—N82.018 (4)C4—H4A0.9700
Cu1—N12.034 (4)C4—H4B0.9700
Cu1—N52.119 (4)C5—C61.353 (7)
Cu1—O12.160 (5)C5—H50.9300
Cu1—N42.169 (4)C6—C71.383 (8)
Cu1—O22.345 (6)C6—H60.9300
O1—C151.215 (7)C7—H70.9300
O2—C151.201 (7)C8—C91.380 (8)
N1—C11.334 (6)C8—H80.9300
N1—N21.340 (5)C9—C101.354 (8)
N2—C31.350 (6)C9—H90.9300
N2—C41.443 (6)C10—H100.9300
N3—C51.346 (6)C11—H11A0.9700
N3—N41.347 (5)C11—H11B0.9700
N3—C41.441 (6)C12—C131.353 (8)
N4—C71.340 (6)C12—H120.9300
N5—C81.339 (6)C13—C141.388 (7)
N5—N61.347 (5)C13—H130.9300
N6—C101.338 (6)C14—H140.9300
N6—C111.442 (6)C15—H150.9300
N7—C121.338 (6)Cl1—O4'1.408 (6)
N7—N81.350 (5)Cl1—O41.419 (7)
N7—C111.458 (6)Cl1—O61.425 (8)
N8—C141.347 (6)Cl1—O51.427 (8)
C1—C21.388 (7)Cl1—O6'1.431 (7)
C1—H10.9300Cl1—O5'1.432 (5)
C2—C31.351 (7)Cl1—O3'1.456 (6)
C2—H20.9300Cl1—O31.473 (7)
C3—H30.9300
N8—Cu1—N1176.90 (16)C5—C6—H6127.2
N8—Cu1—N589.75 (15)C7—C6—H6127.2
N1—Cu1—N592.19 (15)N4—C7—C6111.3 (5)
N8—Cu1—O188.46 (16)N4—C7—H7124.4
N1—Cu1—O188.83 (17)C6—C7—H7124.4
N5—Cu1—O1157.97 (19)N5—C8—C9111.2 (5)
N8—Cu1—N493.12 (15)N5—C8—H8124.4
N1—Cu1—N489.00 (15)C9—C8—H8124.4
N5—Cu1—N498.13 (16)C10—C9—C8105.6 (4)
O1—Cu1—N4103.89 (19)C10—C9—H9127.2
N8—Cu1—O288.52 (16)C8—C9—H9127.2
N1—Cu1—O288.64 (16)N6—C10—C9107.0 (5)
N5—Cu1—O2105.09 (18)N6—C10—H10126.5
O1—Cu1—O252.9 (2)C9—C10—H10126.5
N4—Cu1—O2156.73 (18)N6—C11—N7110.8 (3)
C15—O1—Cu1101.5 (4)N6—C11—H11A109.5
C15—O2—Cu192.5 (4)N7—C11—H11A109.5
C1—N1—N2106.0 (4)N6—C11—H11B109.5
C1—N1—Cu1128.6 (3)N7—C11—H11B109.5
N2—N1—Cu1121.9 (3)H11A—C11—H11B108.1
N1—N2—C3110.7 (4)N7—C12—C13107.7 (4)
N1—N2—C4120.7 (4)N7—C12—H12126.2
C3—N2—C4128.6 (4)C13—C12—H12126.2
C5—N3—N4112.2 (4)C12—C13—C14105.7 (4)
C5—N3—C4128.7 (4)C12—C13—H13127.1
N4—N3—C4119.0 (4)C14—C13—H13127.1
C7—N4—N3104.0 (4)N8—C14—C13110.3 (5)
C7—N4—Cu1134.0 (3)N8—C14—H14124.9
N3—N4—Cu1120.7 (3)C13—C14—H14124.9
C8—N5—N6104.0 (4)O2—C15—O1113.0 (6)
C8—N5—Cu1133.0 (3)O2—C15—H15123.5
N6—N5—Cu1121.7 (3)O1—C15—H15123.5
C10—N6—N5112.2 (4)O4'—Cl1—O444.7 (6)
C10—N6—C11129.2 (4)O4'—Cl1—O669.3 (8)
N5—N6—C11118.5 (4)O4—Cl1—O6110.9 (7)
C12—N7—N8111.5 (4)O4'—Cl1—O5114.8 (9)
C12—N7—C11129.0 (4)O4—Cl1—O5112.1 (7)
N8—N7—C11119.3 (3)O6—Cl1—O5111.9 (7)
C14—N8—N7104.8 (4)O4'—Cl1—O6'110.4 (6)
C14—N8—Cu1129.7 (3)O4—Cl1—O6'68.7 (7)
N7—N8—Cu1122.0 (3)O6—Cl1—O6'179.2 (9)
N1—C1—C2109.9 (5)O5—Cl1—O6'68.9 (8)
N1—C1—H1125.0O4'—Cl1—O5'111.8 (6)
C2—C1—H1125.0O4—Cl1—O5'142.0 (7)
C3—C2—C1105.8 (4)O6—Cl1—O5'71.5 (8)
C3—C2—H2127.1O5—Cl1—O5'42.6 (7)
C1—C2—H2127.1O6'—Cl1—O5'109.3 (6)
N2—C3—C2107.5 (4)O4'—Cl1—O3'107.6 (5)
N2—C3—H3126.2O4—Cl1—O3'109.3 (7)
C2—C3—H3126.2O6—Cl1—O3'68.2 (9)
N3—C4—N2111.2 (4)O5—Cl1—O3'134.5 (8)
N3—C4—H4A109.4O6'—Cl1—O3'111.3 (6)
N2—C4—H4A109.4O5'—Cl1—O3'106.4 (4)
N3—C4—H4B109.4O4'—Cl1—O3136.9 (7)
N2—C4—H4B109.4O4—Cl1—O3106.7 (6)
H4A—C4—H4B108.0O6—Cl1—O3109.2 (7)
N3—C5—C6106.9 (5)O5—Cl1—O3105.7 (6)
N3—C5—H5126.6O6'—Cl1—O370.4 (8)
C6—C5—H5126.6O5'—Cl1—O3107.8 (6)
C5—C6—C7105.7 (4)O3'—Cl1—O343.3 (7)
N8—Cu1—O1—C1589.2 (4)C8—N5—N6—C11176.7 (4)
N1—Cu1—O1—C1589.3 (4)Cu1—N5—N6—C1114.9 (5)
N5—Cu1—O1—C153.7 (7)C12—N7—N8—C140.6 (5)
N4—Cu1—O1—C15178.0 (4)C11—N7—N8—C14176.6 (4)
O2—Cu1—O1—C150.1 (3)C12—N7—N8—Cu1161.4 (3)
N8—Cu1—O2—C1589.1 (4)C11—N7—N8—Cu122.6 (5)
N1—Cu1—O2—C1589.7 (4)N1—Cu1—N8—C1410 (3)
N5—Cu1—O2—C15178.4 (3)N5—Cu1—N8—C14139.0 (5)
O1—Cu1—O2—C150.1 (3)O1—Cu1—N8—C1419.0 (5)
N4—Cu1—O2—C155.4 (6)N4—Cu1—N8—C14122.8 (4)
N8—Cu1—N1—C16 (3)O2—Cu1—N8—C1433.9 (5)
N5—Cu1—N1—C1123.0 (4)N1—Cu1—N8—N7145 (3)
O1—Cu1—N1—C135.0 (5)N5—Cu1—N8—N716.5 (4)
N4—Cu1—N1—C1138.9 (4)O1—Cu1—N8—N7174.6 (4)
O2—Cu1—N1—C117.9 (5)N4—Cu1—N8—N781.6 (4)
N8—Cu1—N1—N2150 (3)O2—Cu1—N8—N7121.6 (4)
N5—Cu1—N1—N281.0 (3)N2—N1—C1—C20.2 (6)
O1—Cu1—N1—N2121.0 (4)Cu1—N1—C1—C2159.2 (4)
N4—Cu1—N1—N217.1 (3)N1—C1—C2—C30.6 (6)
O2—Cu1—N1—N2174.0 (4)N1—N2—C3—C20.6 (5)
C1—N1—N2—C30.2 (5)C4—N2—C3—C2176.9 (4)
Cu1—N1—N2—C3160.5 (3)C1—C2—C3—N20.7 (6)
C1—N1—N2—C4177.5 (4)C5—N3—C4—N2121.3 (5)
Cu1—N1—N2—C421.8 (5)N4—N3—C4—N262.9 (5)
C5—N3—N4—C70.1 (5)N1—N2—C4—N369.0 (5)
C4—N3—N4—C7176.3 (4)C3—N2—C4—N3113.8 (5)
C5—N3—N4—Cu1168.7 (3)N4—N3—C5—C60.2 (5)
C4—N3—N4—Cu114.9 (5)C4—N3—C5—C6175.9 (4)
N8—Cu1—N4—C733.5 (4)N3—C5—C6—C70.1 (6)
N1—Cu1—N4—C7144.3 (4)N3—N4—C7—C60.0 (5)
N5—Cu1—N4—C7123.7 (4)Cu1—N4—C7—C6166.6 (4)
O1—Cu1—N4—C755.7 (5)C5—C6—C7—N40.1 (6)
O2—Cu1—N4—C760.1 (6)N6—N5—C8—C90.3 (5)
N8—Cu1—N4—N3161.7 (3)Cu1—N5—C8—C9166.8 (3)
N1—Cu1—N4—N320.6 (3)N5—C8—C9—C100.4 (6)
N5—Cu1—N4—N371.5 (3)N5—N6—C10—C90.1 (5)
O1—Cu1—N4—N3109.1 (3)C11—N6—C10—C9176.0 (4)
O2—Cu1—N4—N3104.8 (4)C8—C9—C10—N60.3 (5)
N8—Cu1—N5—C8143.9 (4)C10—N6—C11—N7120.8 (5)
N1—Cu1—N5—C833.7 (4)N5—N6—C11—N763.2 (5)
O1—Cu1—N5—C858.6 (6)C12—N7—C11—N6115.5 (5)
N4—Cu1—N5—C8123.0 (4)N8—N7—C11—N669.2 (5)
O2—Cu1—N5—C855.5 (4)N8—N7—C12—C130.5 (6)
N8—Cu1—N5—N620.7 (3)C11—N7—C12—C13176.1 (4)
N1—Cu1—N5—N6161.7 (3)N7—C12—C13—C140.3 (6)
O1—Cu1—N5—N6106.0 (5)N7—N8—C14—C130.4 (6)
N4—Cu1—N5—N672.4 (3)Cu1—N8—C14—C13159.1 (4)
O2—Cu1—N5—N6109.1 (3)C12—C13—C14—N80.0 (6)
C8—N5—N6—C100.1 (5)Cu1—O2—C15—O10.2 (5)
Cu1—N5—N6—C10168.5 (3)Cu1—O1—C15—O20.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.663.424 (7)140
C4—H4B···O4ii0.972.373.343 (14)176
C4—H4B···O4ii0.972.663.580 (12)159
C11—H11B···O5iii0.972.603.525 (17)161
C11—H11B···O5iii0.972.323.286 (9)176
C12—H12···O3iii0.932.493.220 (14)136
C12—H12···O3iii0.932.303.195 (10)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(CHO2)(C7H8N4)2]ClO4
Mr504.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)11.0458 (19), 14.816 (3), 12.273 (2)
β (°) 99.031 (3)
V3)1983.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9920, 3439, 2334
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.165, 1.02
No. of reflections3439
No. of parameters318
No. of restraints122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.62

Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.932.663.424 (7)140.3
C4—H4B···O4ii0.972.373.343 (14)176.2
C4—H4B···O4'ii0.972.663.580 (12)159.1
C11—H11B···O5iii0.972.603.525 (17)160.5
C11—H11B···O5'iii0.972.323.286 (9)175.9
C12—H12···O3iii0.932.493.220 (14)135.9
C12—H12···O3'iii0.932.303.195 (10)161.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Shanxi Normal University (ZR1012) and the Research Fund for the Doctoral Program of Shanxi Normal University (No. 833114).

References

First citationBruker, (1998). SMART-NT and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElguero, J., Ochoa, C., Julia, S., Sala, P., Mazo, J. & Sancho, M. (1982). J. Heterocycl. Chem. 19, 1141–1145.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationRobson, R. (2000). J. Chem. Soc. Dalton Trans. pp. 3735–3744.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds