metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4,4′,6,6′-Tetra-tert-butyl-2,2′-{[2-(di­methyl­amino)­ethyl]­nitrilo­bis­­(methyl­ene)}diphenolato)dioxidomolyb­denum(VI) chloro­form monosolvate

aDepartment of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
*Correspondence e-mail: xlei@lamar.edu

(Received 12 August 2011; accepted 4 October 2011; online 12 October 2011)

In the title compound, [Mo(C34H54N2O2)O2]·CHCl3, the molybdenum(VI) ion exhibits a cis-dioxide distorted octa­hedral geometry. Two anionic phenolate O-atom donors and two neutral N-atom donors of the ligand are trans and cis, respectively. The Mo=O bond lengths and the O=Mo=O bond angle are typical for six-coordinated dioxomolyb­denum(VI) complexes. The Mo—N bond lengths are longer than 2.30 Å, as expected for a trans O=Mo—N structure.

Related literature

For molybdenum coordination complexes as catalysts, see: Wong et al. (2010[Wong, Y. L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602-4611.]); Rappe & Goddard (1982[Rappe, A. K. & Goddard, W. A. (1982). J. Am. Chem. Soc. 104, 448-456.]). For the synthesis of the ligand, see: Tshuva et al. (2001[Tshuva, E., Goldberg, I. & Kol, M. (2001). Organometallics, 20, 3017-3028.]). For incorporation of the molybdenum center into redox enzymes, see: Tucci et al. (1998[Tucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602-1608.]); Schultz et al. (1993[Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714-2722.]). For spectroscopic and NMR data, see: Lehtonen et al. (2006[Lehtonen, A., Wasberg, M. & Sillanpää, R. (2006). Polyhedron, 25, 767-775.]). For related structures, see: Hinshaw et al. (1989[Hinshaw, C. J., Peng, G., Singh, R., Spence, J. T., Enemark, J. H., Bruck, M., Kristofzski, J., Merbs, S. L., Ortega, R. B. & Wexler, P. A. (1989). Inorg. Chem. 28, 4483-4491.]); Lehtonen & Sillanpää (2005[Lehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257-265.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C34H54N2O2)O2]·CHCl3

  • Mr = 770.10

  • Orthorhombic, P n a 21

  • a = 24.3475 (10) Å

  • b = 13.9748 (6) Å

  • c = 11.0267 (4) Å

  • V = 3751.9 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.12 mm−1

  • T = 110 K

  • 0.50 × 0.20 × 0.02 mm

Data collection
  • Bruker MWPC area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.184, Tmax = 0.904

  • 79926 measured reflections

  • 5548 independent reflections

  • 5061 reflections with I > 2σ(I)

  • Rint = 0.081

  • θmax = 60.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.00

  • 5548 reflections

  • 421 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.51 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2649 Friedel pairs

  • Flack parameter: 0.000 (9)

Data collection: FRAMBO (Bruker, 1999[Bruker (1999). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: FRAMBO; data reduction: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Molybdenum coordination complexes have attracted considerable attention because they can catalyze a variety of chemical reactions such as olefin epoxidation (Wong et al. 2010) and olefin metathesis (Rappe & Goddard, 1982) reactions. In addition, molybdenum is also a necessary element in diverse biological systems whereby the molybdenum center is incorporated into various redox enzymes such as DMSO reductase (Tucci et al. 1998) and xanthine oxidase (Schultz et al. 1993). A number of related dioxomolybdenum(VI) complexes with tetradentate ligands have been reported (Hinshaw et al. 1989; Lehtonen & Sillanpää, 2005).

While the X-ray structure of the title compound is described here, its synthesis, IR, and 1H & 13C NMR data have been reported (Lehtonen et al. 2006). The title complex contains one crystallographically unique molybdenum ion in a cis-dioxo distorted octahedral geometry. The aminobis(phenolate) moiety is coordinated to the MoO22+ unit as a tripodal tetradentate ligand though two anionic phenolate oxygen donors (trans to each other) and two neutral nitrogen donors (cis to each other). The Mo=O bond lengths (1.702 (2) and 1.702 (3) Å for Mo=O3 and Mo=O4, respectively) and the O=Mo=O bond angle (108.33 (13)°) are typical for six-coordinated dioxomolybdenum(VI) complexes. The bond lengths of Mo—N1 and Mo—N2 are 2.392 (3) and 2.422 (3) Å, respectively, both of which are > 2.30 Å as expected for the trans O=Mo—N structure as well as a distorted octahedral geometry.

Related literature top

For molybdenum coordination complexes as catalysts, see: Wong et al. (2010); Rappe & Goddard (1982). For the synthesis of the ligand, see: Tshuva et al. (2001). For incorporation of the molybdenum center into redox enzymes, see: Tucci et al. (1998); Schultz et al. (1993); For spectroscopic and NMR data, see: Lehtonen et al. (2006). For related structures, see: Hinshaw et al. (1989); Lehtonen & Sillanpää (2005).

Experimental top

To a solution of 0.52 g (1.00 mmol) of 6,6'-(2-(dimethylamino)ethylazanediyl)bis(methylene)bis(2,4-di-tert-butylphenol) (Tshuva et al. 2001) in 10 ml of CH2Cl2 and 10 ml of CH3OH was added 0.33 g (1.06 mmol) of MoO2(acac)2. The resulting orange solution was stirred overnight at room temperature. The yellow solid (0.61 g) was collected by filtration and washed with cold methanol. Single crystals suitable for X-ray diffraction were obtained by recrystallization from CHCl3/hexanes.

Refinement top

All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms bound to carbon atoms were placed in idealized positions and constrained to ride on their parent atoms, with d(C—H) = 0.95–1.00 Å, Uiso(H) = 1.2Ueq(C). The number of Friedel pairs used for absolute structure refinement is 2649.

Computing details top

Data collection: FRAMBO (Bruker, 1999); cell refinement: FRAMBO (Bruker, 1999); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.
(4,4',6,6'-Tetra-tert-butyl-2,2'-{[2- (dimethylamino)ethyl]nitrilobis(methylene)}diphenolato)dioxidomolybdenum(VI) chloroform monosolvate top
Crystal data top
[Mo(C34H54N2O2)O2]·CHCl3F(000) = 1616
Mr = 770.10Dx = 1.363 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 9879 reflections
a = 24.3475 (10) Åθ = 3.6–62.7°
b = 13.9748 (6) ŵ = 5.12 mm1
c = 11.0267 (4) ÅT = 110 K
V = 3751.9 (3) Å3Plate, yellow
Z = 40.50 × 0.20 × 0.02 mm
Data collection top
Bruker MWPC area-detector
diffractometer
5548 independent reflections
Radiation source: fine-focus sealed tube5061 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ϕ and ω scansθmax = 60.0°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2727
Tmin = 0.184, Tmax = 0.904k = 1515
79926 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
5548 reflectionsΔρmax = 0.81 e Å3
421 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), 2649 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.000 (9)
Crystal data top
[Mo(C34H54N2O2)O2]·CHCl3V = 3751.9 (3) Å3
Mr = 770.10Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 24.3475 (10) ŵ = 5.12 mm1
b = 13.9748 (6) ÅT = 110 K
c = 11.0267 (4) Å0.50 × 0.20 × 0.02 mm
Data collection top
Bruker MWPC area-detector
diffractometer
5548 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5061 reflections with I > 2σ(I)
Tmin = 0.184, Tmax = 0.904Rint = 0.081
79926 measured reflectionsθmax = 60.0°
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.81 e Å3
S = 1.00Δρmin = 0.51 e Å3
5548 reflectionsAbsolute structure: Flack (1983), 2649 Friedel pairs
421 parametersAbsolute structure parameter: 0.000 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.426810 (10)0.838846 (17)0.50398 (3)0.01403 (9)
Cl10.59086 (5)0.19093 (10)0.37928 (12)0.0456 (3)
Cl20.62313 (6)0.38887 (9)0.37779 (18)0.0700 (5)
Cl30.70222 (5)0.24265 (8)0.43262 (11)0.0380 (3)
O10.37192 (9)0.93850 (17)0.4855 (3)0.0161 (6)
O20.48994 (10)0.76272 (18)0.4523 (3)0.0198 (6)
O30.38528 (10)0.74922 (18)0.5542 (2)0.0195 (6)
O40.45879 (11)0.8885 (2)0.6260 (2)0.0223 (6)
N10.47151 (12)0.9508 (2)0.3729 (3)0.0135 (7)
N20.39503 (13)0.8003 (2)0.3016 (3)0.0171 (7)
C10.42256 (14)1.0851 (3)0.4926 (5)0.0205 (9)
C20.37556 (14)1.0319 (2)0.5192 (4)0.0176 (9)
C30.33115 (15)1.0736 (3)0.5830 (3)0.0159 (9)
C40.33686 (16)1.1685 (3)0.6165 (4)0.0188 (9)
H40.30751.19730.66000.023*
C50.38261 (16)1.2249 (3)0.5909 (4)0.0198 (9)
C60.42495 (15)1.1812 (3)0.5263 (4)0.0202 (11)
H60.45631.21790.50470.024*
C70.47454 (16)1.0452 (3)0.4337 (4)0.0199 (9)
H7A0.50321.04110.49720.024*
H7B0.48731.09240.37310.024*
C80.27985 (16)1.0155 (3)0.6168 (4)0.0184 (9)
C90.23863 (16)1.0749 (3)0.6897 (4)0.0230 (9)
H9A0.20641.03560.70850.035*
H9B0.25581.09640.76530.035*
H9BC0.22731.13060.64190.035*
C100.24975 (14)0.9810 (3)0.5024 (5)0.0239 (8)
H10A0.21810.94190.52600.036*
H10B0.23711.03640.45570.036*
H10C0.27480.94260.45280.036*
C110.29541 (17)0.9285 (3)0.6952 (4)0.0213 (9)
H11A0.26190.89720.72450.032*
H11B0.31680.88310.64650.032*
H11C0.31740.94980.76450.032*
C120.38648 (18)1.3300 (3)0.6294 (4)0.0252 (10)
C130.3754 (2)1.3935 (3)0.5203 (5)0.0456 (14)
H13A0.38051.46060.54320.068*
H13B0.40101.37710.45490.068*
H13C0.33761.38360.49240.068*
C140.3457 (2)1.3543 (3)0.7301 (5)0.0437 (14)
H14A0.35021.42150.75370.066*
H14B0.30821.34390.70080.066*
H14C0.35261.31310.80040.066*
C150.4439 (2)1.3524 (3)0.6790 (5)0.0355 (12)
H15A0.44571.41980.70310.053*
H15B0.45131.31180.74960.053*
H15C0.47141.33990.61610.053*
C160.52969 (15)0.9236 (3)0.3376 (4)0.0192 (9)
H16A0.54950.98220.31250.023*
H16B0.52810.88040.26650.023*
C170.56204 (14)0.8750 (3)0.4370 (4)0.0170 (9)
C180.54237 (14)0.7891 (3)0.4836 (4)0.0178 (9)
C190.57446 (15)0.7309 (3)0.5608 (4)0.0190 (9)
C200.62607 (15)0.7660 (3)0.5902 (4)0.0176 (9)
H200.64890.72790.64070.021*
C210.64651 (16)0.8541 (3)0.5501 (4)0.0174 (9)
C220.61418 (15)0.9075 (3)0.4715 (3)0.0182 (10)
H220.62750.96660.44090.022*
C230.55331 (17)0.6345 (3)0.6097 (4)0.0217 (9)
C240.5097 (2)0.6521 (3)0.7063 (5)0.0348 (12)
H24A0.49750.59080.73990.052*
H24B0.52520.69160.77130.052*
H24C0.47830.68530.66990.052*
C250.52917 (19)0.5717 (3)0.5084 (6)0.0384 (10)
H25A0.52270.50700.53950.058*
H25B0.49440.59920.48060.058*
H25C0.55500.56880.44040.058*
C260.59983 (19)0.5767 (3)0.6685 (5)0.0329 (12)
H26A0.58600.51360.69230.049*
H26B0.63000.56900.61040.049*
H26C0.61320.61060.74050.049*
C270.70438 (16)0.8849 (3)0.5894 (4)0.0208 (9)
C280.70892 (19)0.8820 (4)0.7288 (4)0.0339 (11)
H28A0.74680.89620.75300.051*
H28B0.68410.92970.76410.051*
H28C0.69870.81810.75790.051*
C290.71837 (17)0.9870 (3)0.5474 (4)0.0252 (10)
H29A0.75451.00520.57880.038*
H29B0.71890.98920.45860.038*
H29C0.69061.03160.57810.038*
C300.74679 (15)0.8160 (3)0.5365 (4)0.0239 (11)
H30A0.78370.83610.56100.036*
H30B0.73970.75120.56670.036*
H30C0.74420.81640.44780.036*
C310.43785 (16)0.9580 (3)0.2602 (4)0.0197 (9)
H31A0.40320.99230.27830.024*
H31B0.45820.99520.19850.024*
C320.42489 (17)0.8604 (3)0.2109 (4)0.0196 (9)
H32A0.45950.82810.18760.024*
H32B0.40200.86710.13710.024*
C330.33508 (16)0.8180 (3)0.2903 (4)0.0207 (9)
H33A0.32180.79150.21330.031*
H33B0.31580.78720.35780.031*
H33C0.32810.88710.29220.031*
C340.40419 (19)0.6974 (3)0.2756 (4)0.0273 (10)
H34A0.39120.68270.19360.041*
H34B0.44350.68300.28160.041*
H34C0.38390.65850.33450.041*
C350.64330 (19)0.2714 (3)0.3474 (4)0.0322 (11)
H350.65260.26630.25940.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01303 (14)0.01394 (14)0.01511 (14)0.00271 (11)0.00087 (19)0.00026 (19)
Cl10.0472 (7)0.0482 (7)0.0413 (8)0.0196 (6)0.0070 (6)0.0063 (6)
Cl20.0577 (9)0.0264 (7)0.1258 (15)0.0056 (6)0.0374 (10)0.0150 (8)
Cl30.0442 (7)0.0329 (6)0.0368 (6)0.0014 (5)0.0031 (6)0.0034 (6)
O10.0132 (12)0.0155 (12)0.0196 (17)0.0015 (9)0.0039 (12)0.0029 (13)
O20.0140 (13)0.0168 (14)0.0287 (15)0.0036 (11)0.0027 (12)0.0061 (12)
O30.0168 (13)0.0163 (14)0.0253 (14)0.0043 (11)0.0024 (12)0.0040 (12)
O40.0237 (16)0.0274 (16)0.0160 (14)0.0045 (13)0.0041 (13)0.0004 (13)
N10.0130 (16)0.0124 (16)0.0151 (16)0.0018 (13)0.0032 (15)0.0010 (14)
N20.0199 (18)0.0163 (17)0.0150 (17)0.0020 (14)0.0007 (15)0.0021 (15)
C10.0195 (18)0.0191 (18)0.023 (2)0.0011 (15)0.000 (2)0.004 (2)
C20.0219 (18)0.0100 (17)0.021 (3)0.0029 (13)0.002 (2)0.005 (2)
C30.012 (2)0.019 (2)0.017 (2)0.0016 (16)0.0024 (17)0.0024 (18)
C40.017 (2)0.023 (2)0.016 (2)0.0072 (17)0.0020 (18)0.0049 (18)
C50.026 (2)0.015 (2)0.019 (2)0.0030 (17)0.0015 (19)0.0021 (18)
C60.0181 (18)0.0177 (19)0.025 (3)0.0039 (15)0.0005 (19)0.0019 (19)
C70.020 (2)0.015 (2)0.024 (2)0.0032 (16)0.002 (2)0.0037 (18)
C80.020 (2)0.019 (2)0.016 (2)0.0001 (17)0.0019 (18)0.0014 (18)
C90.017 (2)0.026 (2)0.027 (2)0.0010 (18)0.0070 (19)0.001 (2)
C100.0185 (18)0.0254 (19)0.0278 (19)0.0013 (15)0.004 (3)0.004 (3)
C110.019 (2)0.024 (2)0.021 (2)0.0018 (18)0.0032 (18)0.0062 (19)
C120.028 (2)0.013 (2)0.034 (2)0.0008 (17)0.000 (2)0.0013 (19)
C130.078 (4)0.018 (2)0.041 (3)0.012 (2)0.005 (3)0.001 (3)
C140.054 (3)0.025 (3)0.052 (3)0.006 (2)0.015 (3)0.018 (2)
C150.036 (3)0.024 (3)0.047 (3)0.002 (2)0.003 (2)0.010 (2)
C160.016 (2)0.019 (2)0.022 (2)0.0004 (16)0.0020 (18)0.0059 (18)
C170.0076 (19)0.020 (2)0.023 (2)0.0022 (16)0.0013 (17)0.0043 (19)
C180.0163 (19)0.0179 (19)0.019 (3)0.0002 (15)0.0003 (18)0.0011 (18)
C190.016 (2)0.022 (2)0.0189 (19)0.0057 (17)0.0060 (18)0.0044 (18)
C200.016 (2)0.020 (2)0.016 (2)0.0086 (17)0.0001 (17)0.0037 (18)
C210.014 (2)0.021 (2)0.0174 (19)0.0063 (17)0.0048 (16)0.0043 (16)
C220.0174 (19)0.0164 (19)0.021 (3)0.0004 (16)0.0033 (16)0.0059 (16)
C230.022 (2)0.017 (2)0.026 (2)0.0048 (17)0.008 (2)0.0032 (19)
C240.034 (3)0.033 (3)0.037 (3)0.013 (2)0.016 (2)0.019 (2)
C250.053 (3)0.019 (2)0.043 (3)0.0036 (18)0.003 (4)0.012 (3)
C260.032 (3)0.020 (2)0.047 (3)0.007 (2)0.010 (2)0.017 (2)
C270.014 (2)0.028 (2)0.020 (2)0.0030 (17)0.0020 (18)0.0025 (19)
C280.026 (2)0.052 (3)0.024 (3)0.001 (2)0.007 (2)0.004 (2)
C290.018 (2)0.026 (2)0.031 (2)0.0006 (17)0.0062 (18)0.0032 (19)
C300.0125 (19)0.028 (2)0.031 (3)0.0056 (16)0.0024 (18)0.0025 (19)
C310.017 (2)0.021 (2)0.021 (2)0.0024 (17)0.0019 (18)0.0041 (18)
C320.019 (2)0.025 (2)0.014 (2)0.0050 (18)0.0008 (17)0.0066 (18)
C330.015 (2)0.025 (2)0.022 (2)0.0053 (17)0.0033 (18)0.0001 (19)
C340.037 (3)0.017 (2)0.028 (2)0.001 (2)0.003 (2)0.009 (2)
C350.050 (3)0.021 (2)0.026 (2)0.005 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
Mo1—O31.702 (2)C15—H15B0.9800
Mo1—O41.702 (3)C15—H15C0.9800
Mo1—O11.941 (2)C16—C171.512 (5)
Mo1—O21.954 (3)C16—H16A0.9900
Mo1—N12.392 (3)C16—H16B0.9900
Mo1—N22.422 (3)C17—C181.391 (5)
Cl1—C351.737 (4)C17—C221.401 (5)
Cl2—C351.746 (4)C18—C191.413 (6)
Cl3—C351.761 (5)C19—C201.387 (5)
O1—C21.360 (4)C19—C231.540 (6)
O2—C181.373 (4)C20—C211.400 (5)
N1—C71.482 (5)C20—H200.9500
N1—C311.492 (5)C21—C221.388 (5)
N1—C161.517 (5)C21—C271.536 (5)
N2—C341.483 (5)C22—H220.9500
N2—C331.486 (5)C23—C241.525 (6)
N2—C321.495 (5)C23—C261.535 (6)
C1—C61.395 (5)C23—C251.538 (7)
C1—C21.396 (5)C24—H24A0.9800
C1—C71.528 (6)C24—H24B0.9800
C2—C31.416 (5)C24—H24C0.9800
C3—C41.384 (5)C25—H25A0.9800
C3—C81.536 (5)C25—H25B0.9800
C4—C51.393 (6)C25—H25C0.9800
C4—H40.9500C26—H26A0.9800
C5—C61.394 (6)C26—H26B0.9800
C5—C121.531 (5)C26—H26C0.9800
C6—H60.9500C27—C301.528 (5)
C7—H7A0.9900C27—C291.537 (6)
C7—H7B0.9900C27—C281.541 (6)
C8—C91.531 (5)C28—H28A0.9800
C8—C101.536 (6)C28—H28B0.9800
C8—C111.539 (5)C28—H28C0.9800
C9—H9A0.9800C29—H29A0.9800
C9—H9B0.9800C29—H29B0.9800
C9—H9BC0.9800C29—H29C0.9800
C10—H10A0.9800C30—H30A0.9800
C10—H10B0.9800C30—H30B0.9800
C10—H10C0.9800C30—H30C0.9800
C11—H11A0.9800C31—C321.501 (6)
C11—H11B0.9800C31—H31A0.9900
C11—H11C0.9800C31—H31B0.9900
C12—C131.519 (7)C32—H32A0.9900
C12—C141.528 (7)C32—H32B0.9900
C12—C151.534 (7)C33—H33A0.9800
C13—H13A0.9800C33—H33B0.9800
C13—H13B0.9800C33—H33C0.9800
C13—H13C0.9800C34—H34A0.9800
C14—H14A0.9800C34—H34B0.9800
C14—H14B0.9800C34—H34C0.9800
C14—H14C0.9800C35—H351.0000
C15—H15A0.9800
O3—Mo1—O4108.33 (13)C17—C16—H16A108.7
O3—Mo1—O198.81 (11)N1—C16—H16A108.7
O4—Mo1—O196.06 (12)C17—C16—H16B108.7
O3—Mo1—O299.29 (11)N1—C16—H16B108.7
O4—Mo1—O295.31 (12)H16A—C16—H16B107.6
O1—Mo1—O2154.36 (12)C18—C17—C22119.4 (3)
O3—Mo1—N1161.44 (12)C18—C17—C16118.4 (3)
O4—Mo1—N190.18 (12)C22—C17—C16121.6 (3)
O1—Mo1—N177.33 (10)O2—C18—C17117.3 (3)
O2—Mo1—N179.73 (10)O2—C18—C19120.7 (3)
O3—Mo1—N286.91 (12)C17—C18—C19121.9 (3)
O4—Mo1—N2164.76 (12)C20—C19—C18116.0 (4)
O1—Mo1—N280.96 (11)C20—C19—C23122.0 (3)
O2—Mo1—N282.04 (11)C18—C19—C23122.0 (3)
N1—Mo1—N274.57 (10)C19—C20—C21124.0 (4)
C2—O1—Mo1128.0 (2)C19—C20—H20118.0
C18—O2—Mo1120.8 (2)C21—C20—H20118.0
C7—N1—C31110.1 (3)C22—C21—C20117.9 (4)
C7—N1—C16107.0 (3)C22—C21—C27123.1 (4)
C31—N1—C16108.4 (3)C20—C21—C27118.9 (3)
C7—N1—Mo1109.3 (2)C21—C22—C17120.6 (4)
C31—N1—Mo1107.3 (2)C21—C22—H22119.7
C16—N1—Mo1114.6 (2)C17—C22—H22119.7
C34—N2—C33107.0 (3)C24—C23—C26107.7 (4)
C34—N2—C32110.0 (3)C24—C23—C25109.5 (4)
C33—N2—C32109.1 (3)C26—C23—C25106.8 (3)
C34—N2—Mo1110.2 (2)C24—C23—C19109.7 (3)
C33—N2—Mo1110.8 (2)C26—C23—C19111.2 (3)
C32—N2—Mo1109.6 (2)C25—C23—C19111.9 (4)
C6—C1—C2119.4 (4)C23—C24—H24A109.5
C6—C1—C7115.5 (3)C23—C24—H24B109.5
C2—C1—C7125.0 (3)H24A—C24—H24B109.5
O1—C2—C1120.5 (3)C23—C24—H24C109.5
O1—C2—C3118.8 (3)H24A—C24—H24C109.5
C1—C2—C3120.7 (3)H24B—C24—H24C109.5
C4—C3—C2116.8 (3)C23—C25—H25A109.5
C4—C3—C8121.6 (3)C23—C25—H25B109.5
C2—C3—C8121.6 (3)H25A—C25—H25B109.5
C3—C4—C5124.6 (4)C23—C25—H25C109.5
C3—C4—H4117.7H25A—C25—H25C109.5
C5—C4—H4117.7H25B—C25—H25C109.5
C4—C5—C6116.5 (4)C23—C26—H26A109.5
C4—C5—C12122.4 (4)C23—C26—H26B109.5
C6—C5—C12121.1 (4)H26A—C26—H26B109.5
C5—C6—C1121.9 (4)C23—C26—H26C109.5
C5—C6—H6119.1H26A—C26—H26C109.5
C1—C6—H6119.1H26B—C26—H26C109.5
N1—C7—C1118.5 (3)C30—C27—C21109.6 (3)
N1—C7—H7A107.7C30—C27—C29108.7 (3)
C1—C7—H7A107.7C21—C27—C29112.2 (3)
N1—C7—H7B107.7C30—C27—C28108.4 (3)
C1—C7—H7B107.7C21—C27—C28109.9 (3)
H7A—C7—H7B107.1C29—C27—C28108.0 (4)
C9—C8—C10106.8 (3)C27—C28—H28A109.5
C9—C8—C3111.9 (3)C27—C28—H28B109.5
C10—C8—C3110.8 (3)H28A—C28—H28B109.5
C9—C8—C11107.1 (3)C27—C28—H28C109.5
C10—C8—C11109.3 (3)H28A—C28—H28C109.5
C3—C8—C11110.7 (3)H28B—C28—H28C109.5
C8—C9—H9A109.5C27—C29—H29A109.5
C8—C9—H9B109.5C27—C29—H29B109.5
H9A—C9—H9B109.5H29A—C29—H29B109.5
C8—C9—H9BC109.5C27—C29—H29C109.5
H9A—C9—H9BC109.5H29A—C29—H29C109.5
H9B—C9—H9BC109.5H29B—C29—H29C109.5
C8—C10—H10A109.5C27—C30—H30A109.5
C8—C10—H10B109.5C27—C30—H30B109.5
H10A—C10—H10B109.5H30A—C30—H30B109.5
C8—C10—H10C109.5C27—C30—H30C109.5
H10A—C10—H10C109.5H30A—C30—H30C109.5
H10B—C10—H10C109.5H30B—C30—H30C109.5
C8—C11—H11A109.5N1—C31—C32110.8 (3)
C8—C11—H11B109.5N1—C31—H31A109.5
H11A—C11—H11B109.5C32—C31—H31A109.5
C8—C11—H11C109.5N1—C31—H31B109.5
H11A—C11—H11C109.5C32—C31—H31B109.5
H11B—C11—H11C109.5H31A—C31—H31B108.1
C13—C12—C14109.3 (4)N2—C32—C31111.7 (3)
C13—C12—C5109.2 (4)N2—C32—H32A109.3
C14—C12—C5112.0 (4)C31—C32—H32A109.3
C13—C12—C15109.0 (4)N2—C32—H32B109.3
C14—C12—C15106.7 (4)C31—C32—H32B109.3
C5—C12—C15110.5 (3)H32A—C32—H32B107.9
C12—C13—H13A109.5N2—C33—H33A109.5
C12—C13—H13B109.5N2—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C12—C13—H13C109.5N2—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
C12—C14—H14A109.5N2—C34—H34A109.5
C12—C14—H14B109.5N2—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C12—C14—H14C109.5N2—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C12—C15—H15A109.5Cl1—C35—Cl2111.3 (3)
C12—C15—H15B109.5Cl1—C35—Cl3110.1 (2)
H15A—C15—H15B109.5Cl2—C35—Cl3110.0 (2)
C12—C15—H15C109.5Cl1—C35—H35108.5
H15A—C15—H15C109.5Cl2—C35—H35108.5
H15B—C15—H15C109.5Cl3—C35—H35108.5
C17—C16—N1114.4 (3)
O3—Mo1—O1—C2136.2 (3)C16—N1—C7—C1172.9 (4)
O4—Mo1—O1—C226.5 (3)Mo1—N1—C7—C148.2 (4)
O2—Mo1—O1—C289.4 (4)C6—C1—C7—N1167.6 (4)
N1—Mo1—O1—C262.3 (3)C2—C1—C7—N115.7 (7)
N2—Mo1—O1—C2138.4 (3)C4—C3—C8—C90.4 (5)
O3—Mo1—O2—C18133.7 (3)C2—C3—C8—C9177.7 (4)
O4—Mo1—O2—C1824.1 (3)C4—C3—C8—C10118.6 (4)
O1—Mo1—O2—C1891.9 (3)C2—C3—C8—C1063.2 (5)
N1—Mo1—O2—C1865.1 (3)C4—C3—C8—C11119.9 (4)
N2—Mo1—O2—C18140.8 (3)C2—C3—C8—C1158.3 (5)
O3—Mo1—N1—C7138.1 (3)C4—C5—C12—C13102.5 (5)
O4—Mo1—N1—C737.9 (2)C6—C5—C12—C1376.6 (5)
O1—Mo1—N1—C758.3 (2)C4—C5—C12—C1418.7 (6)
O2—Mo1—N1—C7133.3 (2)C6—C5—C12—C14162.1 (4)
N2—Mo1—N1—C7142.2 (2)C4—C5—C12—C15137.6 (4)
O3—Mo1—N1—C3118.7 (5)C6—C5—C12—C1543.3 (6)
O4—Mo1—N1—C31157.3 (2)C7—N1—C16—C1785.1 (4)
O1—Mo1—N1—C3161.2 (2)C31—N1—C16—C17156.2 (3)
O2—Mo1—N1—C31107.3 (2)Mo1—N1—C16—C1736.3 (4)
N2—Mo1—N1—C3122.8 (2)N1—C16—C17—C1860.3 (5)
O3—Mo1—N1—C16101.8 (4)N1—C16—C17—C22128.1 (4)
O4—Mo1—N1—C1682.2 (3)Mo1—O2—C18—C1764.7 (4)
O1—Mo1—N1—C16178.4 (3)Mo1—O2—C18—C19114.9 (3)
O2—Mo1—N1—C1613.2 (2)C22—C17—C18—O2176.6 (3)
N2—Mo1—N1—C1697.7 (3)C16—C17—C18—O211.6 (5)
O3—Mo1—N2—C3454.6 (3)C22—C17—C18—C193.0 (6)
O4—Mo1—N2—C34126.1 (5)C16—C17—C18—C19168.8 (4)
O1—Mo1—N2—C34154.0 (3)O2—C18—C19—C20177.7 (3)
O2—Mo1—N2—C3445.2 (3)C17—C18—C19—C201.9 (6)
N1—Mo1—N2—C34126.7 (3)O2—C18—C19—C232.1 (6)
O3—Mo1—N2—C3363.7 (2)C17—C18—C19—C23178.4 (4)
O4—Mo1—N2—C33115.6 (5)C18—C19—C20—C211.2 (6)
O1—Mo1—N2—C3335.8 (2)C23—C19—C20—C21178.5 (4)
O2—Mo1—N2—C33163.5 (2)C19—C20—C21—C223.1 (6)
N1—Mo1—N2—C33115.0 (2)C19—C20—C21—C27179.9 (4)
O3—Mo1—N2—C32175.9 (3)C20—C21—C22—C172.0 (6)
O4—Mo1—N2—C324.9 (6)C27—C21—C22—C17178.8 (4)
O1—Mo1—N2—C3284.7 (2)C18—C17—C22—C211.0 (6)
O2—Mo1—N2—C3276.0 (2)C16—C17—C22—C21170.6 (4)
N1—Mo1—N2—C325.4 (2)C20—C19—C23—C24106.9 (5)
Mo1—O1—C2—C146.0 (6)C18—C19—C23—C2472.9 (5)
Mo1—O1—C2—C3133.2 (3)C20—C19—C23—C2612.1 (5)
C6—C1—C2—O1179.0 (4)C18—C19—C23—C26168.2 (4)
C7—C1—C2—O14.5 (7)C20—C19—C23—C25131.4 (4)
C6—C1—C2—C31.9 (7)C18—C19—C23—C2548.9 (5)
C7—C1—C2—C3174.7 (4)C22—C21—C27—C30112.4 (4)
O1—C2—C3—C4179.4 (4)C20—C21—C27—C3064.4 (5)
C1—C2—C3—C40.2 (6)C22—C21—C27—C298.4 (5)
O1—C2—C3—C81.2 (6)C20—C21—C27—C29174.7 (3)
C1—C2—C3—C8178.0 (4)C22—C21—C27—C28128.7 (4)
C2—C3—C4—C50.5 (6)C20—C21—C27—C2854.5 (5)
C8—C3—C4—C5178.8 (4)C7—N1—C31—C32168.7 (3)
C3—C4—C5—C60.4 (6)C16—N1—C31—C3274.5 (4)
C3—C4—C5—C12179.5 (4)Mo1—N1—C31—C3249.8 (3)
C4—C5—C6—C12.1 (6)C34—N2—C32—C31155.2 (3)
C12—C5—C6—C1178.7 (4)C33—N2—C32—C3187.7 (4)
C2—C1—C6—C52.9 (7)Mo1—N2—C32—C3133.8 (4)
C7—C1—C6—C5174.0 (4)N1—C31—C32—N258.0 (4)
C31—N1—C7—C169.4 (5)

Experimental details

Crystal data
Chemical formula[Mo(C34H54N2O2)O2]·CHCl3
Mr770.10
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)110
a, b, c (Å)24.3475 (10), 13.9748 (6), 11.0267 (4)
V3)3751.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)5.12
Crystal size (mm)0.50 × 0.20 × 0.02
Data collection
DiffractometerBruker MWPC area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.184, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
79926, 5548, 5061
Rint0.081
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.00
No. of reflections5548
No. of parameters421
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.51
Absolute structureFlack (1983), 2649 Friedel pairs
Absolute structure parameter0.000 (9)

Computer programs: FRAMBO (Bruker, 1999), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Welch Foundation (V-004) for financial support. We are very grateful to Dr Joseph Reibenspies at Texas A & M University for the X-ray crystallographic analysis. The X-ray diffractometers, small angle scattering instrumentation and crystallographic computing systems in the X-ray Diffraction Laboratory at the Department of Chemistry, Texas A & M University were purchased with funds provided by the National Science Foundation (CHE-9807975, CHE-0079822 and CHE-0215838).

References

First citationBruker (1999). FRAMBO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHinshaw, C. J., Peng, G., Singh, R., Spence, J. T., Enemark, J. H., Bruck, M., Kristofzski, J., Merbs, S. L., Ortega, R. B. & Wexler, P. A. (1989). Inorg. Chem. 28, 4483–4491.  CSD CrossRef CAS Web of Science Google Scholar
First citationLehtonen, A. & Sillanpää, R. (2005). Polyhedron, 24, 257–265.  Web of Science CSD CrossRef CAS Google Scholar
First citationLehtonen, A., Wasberg, M. & Sillanpää, R. (2006). Polyhedron, 25, 767–775.  Web of Science CSD CrossRef CAS Google Scholar
First citationRappe, A. K. & Goddard, W. A. (1982). J. Am. Chem. Soc. 104, 448–456.  CrossRef CAS Web of Science Google Scholar
First citationSchultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714–2722.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTshuva, E., Goldberg, I. & Kol, M. (2001). Organometallics, 20, 3017–3028.  Web of Science CSD CrossRef CAS Google Scholar
First citationTucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602–1608.  Web of Science CrossRef CAS Google Scholar
First citationWong, Y. L., Tong, L. H., Dilworth, J. R., Ng, D. K. P. & Lee, H. K. (2010). Dalton Trans. 39, 4602–4611.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds