organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3052-o3053

Propargylaminyl 3α-hy­dr­oxy-11-oxo-18β-olean-12-en-29-oate

aInstitute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bInstitute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria
*Correspondence e-mail: kurt.mereiter@tuwien.ac.at

(Received 25 August 2011; accepted 20 October 2011; online 29 October 2011)

The title compound, C33H49NO3, is the propargyl­amide of 18β-glycyrrhetinic acid, a penta­cyclic triterpenoid of inter­est as a therapeutic agent. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring C in a half-chair conformation. In the crystal, the terminal N-propargylcarboxamide group has remarkable structural effects on weak hydrogen-bond-like inter­actions. Particularly noteworthy are an inter­molecular O—H⋯π inter­action accepted side-on by the terminal alkyne group [O⋯C = 3.097 (2) and 3.356 (2) Å] and a short inter­molecular C—H⋯O inter­action [C⋯O = 3.115 (2) Å] donated by the alkyne C—H group. An N—H⋯O [N⋯O = 3.251 (2) Å] and a Calkyl—H⋯O [C⋯O = 3.254 (2) Å] interaction complement the crystal structure.

Related literature

For general information on the therapeutic aspects of the parent compounds glycyrrhizin and 18β-glycyrrhetinic acid, see: Baran et al. (1974[Baran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184-191.]); Kitagawa (2002[Kitagawa, I. (2002). Pure Appl. Chem. 74, 1189-1198.]); Asl & Hosseinzadeh (2008[Asl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709-724.]). For the synthesis of derivatives of 18β-glycyrrhetinic acid with a therapeutic background, see: Su et al. (2004[Su, X., Lawrence, H., Ganeshapillai, D., Cruttenden, A., Purohit, A., Reed, M. J., Vicker, N. & Potter, B. V. L. (2004). Bioorg. Med. Chem. 12, 4439-4457.]); Beseda et al. (2010[Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433-454.]). For the crystal structures of 18β-glycyrrhetinic acid and derivatives, see: Campsteyn et al. (1977[Campsteyn, H., Dupont, L., Lamotte, J., Dideberg, O. & Vermeire, M. (1977). Acta Cryst. B33, 3443-3448.]); Alvarez-Larena et al. (2007[Alvarez-Larena, A., Brianso, J. L., Capparelli, M. V., Farran, J. & Piniella, J. F. (2007). Afinidad, 64, 278-283.]); Beseda et al. (2010[Beseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433-454.]); Amer et al. (2010[Amer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390-4402.]). For the crystal structure data of several N-propargylcarboxamides, see: Hashmi et al. (2004[Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett. 6, 4391-4394.]); Frey et al. (2008[Frey, W., Schetter, S., Rominger, F. & Hashmi, A. S. K. (2008). Acta Cryst. E64, o1495.]). For weak hydrogen bonds involving C≡C—H moieties, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C33H49NO3

  • Mr = 507.73

  • Orthorhombic, P 21 21 21

  • a = 6.7534 (8) Å

  • b = 13.4879 (16) Å

  • c = 31.132 (4) Å

  • V = 2835.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.56 × 0.43 × 0.38 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.97

  • 41876 measured reflections

  • 4658 independent reflections

  • 4531 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.08

  • 4658 reflections

  • 349 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond and O—H⋯π geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯C32i 0.81 (2) 2.57 (2) 3.3559 (17) 164 (2)
O1—H1O⋯C33i 0.81 (2) 2.40 (2) 3.0973 (17) 145 (2)
N1—H1N⋯O2ii 0.80 (2) 2.57 (2) 3.2511 (15) 144 (2)
C31—H31B⋯O1iii 0.99 2.56 3.2541 (17) 127
C33—H33⋯O2iv 0.95 2.27 3.1154 (17) 148
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT, SADABS and XPREP (Bruker, 2008[Bruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

18β-glycyrrhetinic acid (GA) is a pentacyclic triterpene and the aglycone of glycyrrhizin, the main sweet tasting compound from liquorice root in use as flavoring and sweetener (Kitagawa, 2002). GA is a therapeutic agent with a broad range of activity by modulating the steroid hormone cortisol (Baran et al., 1974; Asl & Hosseinzadeh, 2008). One strategy to improve or modify its therapeutic profile is to leave the triterpene core of GA unaltered and to attach suitable functional groups to its 3-hydroxy group (Su et al., 2004). An example for this strategy is the hydrogen succinate of GA, the licenced anti-ulcer drug Carbenoxolone. An analogous approach was used for the title compound (I), here however with the COOH group at the opposite side of GA functionalized by a propargylamide group. The synthesis of this compound and a series of relatives was recently described (Beseda et al., 2010). Here we report the crystal structure of this compound. The molecular structure of (I) is shown in Fig. 1. The GA core of the molecule consists of four six-membered rings A, B, D, and E in chair conformation and the unsaturated ring C in half-chair conformation (Fig. 1). The GA core agrees well in bond lengths, bond angles, and conformation with related compounds (Campsteyn et al., 1977; Alvarez-Larena et al., 2007; Beseda et al., 2010) and needs no further discussion. The carboxamide group O3C29—N1 is exo-oriented with respect to N, C18—C20—C29—N1 = 162.3 (1)°. In case of endo-orientation (rare) this angle is about -30° (for examples, see: Amer et al., 2010). The propargyl group has a C32C33 bond length of 1.197 (2) Å and an orientation defined by the torsion angle C29—N1—C31—C32 = 106.5 (1)°. In N-propargylcarboxamides this torsion angle varies widely (Hashmi et al., 2004; Frey et al., 2008). In the unit cell the molecules of (I) are aligned with their longest direction slightly inclined to the c-axis and adopt in this direction an undular head-to-tail-like arrangement (Fig. 2). Along the short a-axis (6.75 Å) the molecules are stacked directly upon each other by translation. Coherence of the structure is provided by a combination of van der Waals and weak hydrogen bond interactions listed in Table 1. Most interesting in this respect are the interactions of the N-propargylcarboxamide group outlined in Fig. 3. The terminal alkyne group C32C33—H33 has a distinctly acidic hydrogen atom and forms the by far shortest weak hydrogen bond-like interaction of the structure with distances of H33···O2iv = 2.27 Å and C33···O2iv = 3.115 (2) Å to the 11-keto-oxygen of the compound. After normalization (C—H = 1.083 Å; Desiraju & Steiner, 1999), the distance H33···O2iv is 2.16 Å, distinctly shorter than the mean distance d(H···O) = 2.29 (3) Å reported by Desiraju & Steiner (1999; Table 2.3 of this reference) for CC—H···OC< entities. The second remarkable association in Fig. 3 is the intermolecular O—H···π interaction from the hydroxy group O1v—H1ov side-on to the two alkyne carbon atoms C32 and C33. The normalized H1ov···C distances (O1—H1o normalized to 0.983 Å), are 2.26 Å to C33 and 2.41 Å to C32, and correspond to the shortest O—H···π interactions reported by Desiraju & Steiner (1999; Table 3.12 of this reference). Comparable C—H···O and X—H···π interactions with mostly longer respective interatomic distances can be found in a small group of N-propargylcarboxamide containing crystal structures reported by Hashmi and coworkers in context with oxazole ring forming reactions (Hashmi et al., 2004; Frey et al., 2008).

Related literature top

For general information on the therapeutic aspects of the parent compounds glycyrrhizin and 18β-glycyrrhetinic acid, see: Baran et al. (1974); Kitagawa (2002); Asl & Hosseinzadeh (2008). For the synthesis of derivatives of 18β-glycyrrhetinic acid with a therapeutic backgound, see: Su et al. (2004); Beseda et al. (2010). For the crystal structures of 18β-glycyrrhetinic acid and derivatives, see: Campsteyn et al. (1977); Alvarez-Larena et al. (2007); Beseda et al. (2010); Amer et al. (2010). For the crystal structure data of several N-propargylcarboxamides, see: Hashmi et al. (2004); Frey et al. (2008). For weak hydrogen bonds involving CC—H moieties, see: Desiraju & Steiner (1999).

Experimental top

The synthesis and properties of the title compound were described by Beseda et al. (2010). Platy colourless crystals for X-ray diffraction were obtained from CH2Cl2 by diethyl ether vapour diffusion at ambient temperature.

Refinement top

The two N– and O–bonded hydrogen atoms were located by a Fourier map and were the refined in x, y, z, and Uiso. All C-bonded H atoms were placed in calculated positions and thereafter treated as riding with CH = 1.00 Å, CH2 = 0.99 Å and CH3 = 0.98 Å. A torsional parameter was refined for each methyl group. Uiso(H) = 1.2Ueq(Cnon-methyl) and Uiso(H) = 1.5Ueq(Cmethyl) were used. Because of insignificant anomalous dispersion effects, the 3501 Friedel pairs were merged prior to the final refinement. The absolute structure of the parent compound 18β-glycyrrhetinic acid is known.

Structure description top

Use for replaced text. Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT, SADABS and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Red capitals are the ring designations.
[Figure 2] Fig. 2. Packing diagram of (I) in a view along the a-axis. Dashed lines indicate weak O—H···C, N—H···O and C—H···O interactions outlined in section Comment.
[Figure 3] Fig. 3. Close-up of the N-propargylcarboxamide group in (I) and its weak O—H···C, N—H···O and C—H···O interactions. Numbers with two decimal places are H···acceptor distances, numbers with three decimal places are corresponding C/N/O—acceptor distances (Å). Symmetry codes ii, iii, and iv are given in Table 1, code v is -x + 3/2, -y + 1, z + 1/2.
Propargylaminyl 3α-hydroxy-11-oxo-18β-olean-12-en-29-oate top
Crystal data top
C33H49NO3F(000) = 1112
Mr = 507.73Dx = 1.189 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9975 reflections
a = 6.7534 (8) Åθ = 2.5–31.0°
b = 13.4879 (16) ŵ = 0.07 mm1
c = 31.132 (4) ÅT = 100 K
V = 2835.8 (6) Å3Block, colourless
Z = 40.56 × 0.43 × 0.38 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4658 independent reflections
Radiation source: fine-focus sealed tube4531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.87, Tmax = 0.97k = 1818
41876 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.405P]
where P = (Fo2 + 2Fc2)/3
4658 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C33H49NO3V = 2835.8 (6) Å3
Mr = 507.73Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7534 (8) ŵ = 0.07 mm1
b = 13.4879 (16) ÅT = 100 K
c = 31.132 (4) Å0.56 × 0.43 × 0.38 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4531 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.97Rint = 0.026
41876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
4658 reflectionsΔρmin = 0.21 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33309 (16)0.31149 (7)0.07972 (3)0.02015 (19)
H1O0.442 (4)0.2913 (16)0.0864 (7)0.037 (6)*
O20.69829 (15)0.41262 (7)0.11669 (3)0.02086 (19)
O30.54563 (16)0.58041 (7)0.29778 (3)0.0230 (2)
N10.44107 (17)0.70328 (9)0.34128 (3)0.0200 (2)
H1N0.359 (4)0.7444 (15)0.3467 (6)0.036 (5)*
C10.48914 (18)0.36216 (8)0.03539 (3)0.0145 (2)
H1A0.59020.32980.05370.017*
H1B0.35820.35100.04890.017*
C20.49087 (19)0.31341 (8)0.00911 (4)0.0151 (2)
H2A0.62580.31790.02140.018*
H2B0.45700.24230.00620.018*
C30.34512 (18)0.36236 (8)0.03949 (4)0.0145 (2)
H30.21160.35690.02580.017*
C40.38603 (19)0.47405 (8)0.04565 (4)0.0146 (2)
C50.38760 (18)0.52135 (8)0.00015 (3)0.0134 (2)
H50.25240.50760.01180.016*
C60.4025 (2)0.63474 (9)0.00030 (4)0.0185 (2)
H6A0.54160.65480.00530.022*
H6B0.32060.66170.02390.022*
C70.3310 (2)0.67657 (9)0.04257 (4)0.0189 (2)
H7A0.18910.66010.04630.023*
H7B0.34280.74970.04190.023*
C80.44738 (18)0.63652 (8)0.08139 (3)0.0136 (2)
C90.47071 (17)0.52100 (8)0.07863 (3)0.01207 (19)
H90.33430.49500.08400.014*
C100.53109 (17)0.47525 (8)0.03395 (3)0.01207 (19)
C110.59034 (18)0.48589 (8)0.11744 (3)0.0141 (2)
C120.57055 (18)0.54248 (8)0.15768 (4)0.0150 (2)
H120.64180.51950.18200.018*
C130.45862 (17)0.62445 (8)0.16244 (3)0.0131 (2)
C140.33519 (18)0.66155 (8)0.12473 (4)0.0138 (2)
C150.2914 (2)0.77451 (9)0.12719 (4)0.0201 (2)
H15A0.40540.81100.11500.024*
H15B0.17430.78920.10910.024*
C160.2526 (2)0.81288 (9)0.17273 (4)0.0206 (2)
H16A0.12690.78430.18340.025*
H16B0.23700.88580.17180.025*
C170.4198 (2)0.78659 (9)0.20414 (4)0.0167 (2)
C180.44227 (18)0.67238 (8)0.20660 (3)0.0139 (2)
H180.56960.65880.22190.017*
C190.27685 (19)0.62085 (9)0.23255 (4)0.0164 (2)
H19A0.15170.62490.21610.020*
H19B0.31070.54980.23570.020*
C200.24291 (18)0.66535 (9)0.27734 (4)0.0163 (2)
C210.2018 (2)0.77698 (10)0.27197 (4)0.0203 (2)
H21A0.07840.78620.25530.024*
H21B0.18220.80740.30060.024*
C220.3723 (2)0.82909 (9)0.24901 (4)0.0198 (2)
H22A0.49240.82420.26710.024*
H22B0.33930.90030.24600.024*
C230.2125 (2)0.51640 (10)0.07188 (4)0.0226 (3)
H23A0.19120.47540.09740.034*
H23B0.24350.58440.08070.034*
H23C0.09230.51640.05420.034*
C240.5763 (2)0.49108 (10)0.07175 (4)0.0205 (2)
H24A0.55420.47100.10160.031*
H24B0.68410.45160.05950.031*
H24C0.61170.56150.07080.031*
C250.75367 (19)0.49072 (9)0.02375 (4)0.0169 (2)
H25A0.82960.49090.05060.025*
H25B0.77160.55420.00900.025*
H25C0.80050.43680.00530.025*
C260.6530 (2)0.68636 (9)0.08061 (4)0.0188 (2)
H26A0.71870.67170.05330.028*
H26B0.73340.66080.10440.028*
H26C0.63750.75820.08370.028*
C270.13253 (18)0.60715 (10)0.12792 (4)0.0190 (2)
H27A0.04690.64220.14830.028*
H27B0.15380.53910.13790.028*
H27C0.06930.60600.09960.028*
C280.6161 (2)0.83234 (10)0.18927 (4)0.0232 (3)
H28A0.65390.80380.16150.035*
H28B0.71940.81820.21050.035*
H28C0.60050.90420.18630.035*
C290.42524 (18)0.64604 (9)0.30565 (4)0.0158 (2)
C300.0673 (2)0.61229 (11)0.29881 (4)0.0229 (3)
H30A0.05280.62330.28180.034*
H30B0.04800.63880.32780.034*
H30C0.09480.54110.30050.034*
C310.5958 (2)0.68737 (9)0.37267 (4)0.0198 (2)
H31A0.65670.62160.36760.024*
H31B0.53650.68680.40170.024*
C320.7511 (2)0.76365 (9)0.37105 (4)0.0189 (2)
C330.8791 (2)0.82502 (10)0.37026 (4)0.0225 (2)
H330.98070.87370.36960.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (5)0.0186 (4)0.0179 (4)0.0004 (4)0.0040 (3)0.0042 (3)
O20.0255 (5)0.0196 (4)0.0175 (4)0.0108 (4)0.0036 (4)0.0009 (3)
O30.0276 (5)0.0207 (4)0.0207 (4)0.0077 (4)0.0027 (4)0.0045 (3)
N10.0178 (5)0.0238 (5)0.0186 (4)0.0035 (4)0.0015 (4)0.0069 (4)
C10.0187 (5)0.0115 (4)0.0132 (4)0.0004 (4)0.0004 (4)0.0013 (4)
C20.0184 (5)0.0123 (4)0.0147 (5)0.0009 (4)0.0007 (4)0.0011 (4)
C30.0163 (5)0.0132 (4)0.0139 (4)0.0009 (4)0.0012 (4)0.0006 (4)
C40.0186 (5)0.0127 (4)0.0125 (4)0.0004 (4)0.0012 (4)0.0009 (4)
C50.0166 (5)0.0116 (4)0.0120 (4)0.0009 (4)0.0014 (4)0.0013 (4)
C60.0302 (6)0.0117 (4)0.0137 (4)0.0015 (5)0.0027 (5)0.0021 (4)
C70.0284 (6)0.0135 (5)0.0148 (5)0.0057 (5)0.0044 (5)0.0005 (4)
C80.0173 (5)0.0105 (4)0.0131 (4)0.0012 (4)0.0013 (4)0.0010 (4)
C90.0130 (4)0.0118 (4)0.0114 (4)0.0018 (4)0.0004 (4)0.0004 (4)
C100.0122 (4)0.0118 (4)0.0122 (4)0.0009 (4)0.0001 (4)0.0008 (4)
C110.0158 (5)0.0135 (4)0.0132 (4)0.0015 (4)0.0008 (4)0.0009 (4)
C120.0170 (5)0.0155 (5)0.0126 (4)0.0037 (4)0.0016 (4)0.0005 (4)
C130.0130 (5)0.0128 (4)0.0133 (4)0.0001 (4)0.0003 (4)0.0005 (4)
C140.0148 (5)0.0125 (4)0.0142 (4)0.0024 (4)0.0018 (4)0.0007 (4)
C150.0289 (6)0.0142 (5)0.0172 (5)0.0071 (5)0.0030 (5)0.0007 (4)
C160.0280 (6)0.0150 (5)0.0188 (5)0.0068 (5)0.0025 (5)0.0022 (4)
C170.0207 (5)0.0133 (5)0.0162 (5)0.0005 (4)0.0008 (4)0.0023 (4)
C180.0154 (5)0.0126 (4)0.0135 (4)0.0004 (4)0.0005 (4)0.0013 (4)
C190.0169 (5)0.0178 (5)0.0147 (4)0.0019 (4)0.0013 (4)0.0036 (4)
C200.0148 (5)0.0189 (5)0.0153 (4)0.0005 (4)0.0012 (4)0.0038 (4)
C210.0213 (6)0.0209 (6)0.0186 (5)0.0059 (5)0.0008 (5)0.0053 (4)
C220.0273 (6)0.0148 (5)0.0174 (5)0.0007 (5)0.0004 (5)0.0036 (4)
C230.0303 (7)0.0190 (5)0.0183 (5)0.0053 (5)0.0091 (5)0.0003 (4)
C240.0279 (6)0.0184 (5)0.0152 (5)0.0057 (5)0.0041 (5)0.0009 (4)
C250.0135 (5)0.0195 (5)0.0177 (5)0.0019 (4)0.0014 (4)0.0015 (4)
C260.0223 (6)0.0161 (5)0.0179 (5)0.0051 (5)0.0020 (4)0.0000 (4)
C270.0132 (5)0.0236 (5)0.0200 (5)0.0022 (4)0.0012 (4)0.0044 (4)
C280.0292 (7)0.0172 (5)0.0231 (6)0.0062 (5)0.0022 (5)0.0015 (5)
C290.0166 (5)0.0157 (5)0.0150 (5)0.0029 (4)0.0024 (4)0.0007 (4)
C300.0176 (5)0.0302 (6)0.0210 (5)0.0046 (5)0.0048 (4)0.0044 (5)
C310.0201 (6)0.0225 (6)0.0168 (5)0.0013 (5)0.0017 (5)0.0021 (4)
C320.0186 (5)0.0210 (5)0.0171 (5)0.0027 (5)0.0013 (4)0.0032 (4)
C330.0189 (6)0.0220 (5)0.0266 (6)0.0021 (5)0.0025 (5)0.0028 (5)
Geometric parameters (Å, º) top
O1—C31.4303 (14)C16—C171.5354 (18)
O1—H1O0.81 (2)C16—H16A0.9900
O2—C111.2284 (14)C16—H16B0.9900
O3—C291.2266 (15)C17—C281.5339 (19)
N1—C291.3557 (15)C17—C221.5438 (16)
N1—C311.4468 (17)C17—C181.5498 (16)
N1—H1N0.80 (2)C18—C191.5439 (17)
C1—C21.5335 (15)C18—H181.0000
C1—C101.5521 (15)C19—C201.5352 (16)
C1—H1A0.9900C19—H19A0.9900
C1—H1B0.9900C19—H19B0.9900
C2—C31.5165 (16)C20—C291.5366 (17)
C2—H2A0.9900C20—C301.5381 (18)
C2—H2B0.9900C20—C211.5403 (18)
C3—C41.5434 (15)C21—C221.5269 (19)
C3—H31.0000C21—H21A0.9900
C4—C241.5373 (17)C21—H21B0.9900
C4—C231.5383 (18)C22—H22A0.9900
C4—C51.5622 (15)C22—H22B0.9900
C5—C61.5328 (15)C23—H23A0.9800
C5—C101.5597 (15)C23—H23B0.9800
C5—H51.0000C23—H23C0.9800
C6—C71.5276 (16)C24—H24A0.9800
C6—H6A0.9900C24—H24B0.9800
C6—H6B0.9900C24—H24C0.9800
C7—C81.5397 (16)C25—H25A0.9800
C7—H7A0.9900C25—H25B0.9800
C7—H7B0.9900C25—H25C0.9800
C8—C261.5429 (17)C26—H26A0.9800
C8—C91.5685 (15)C26—H26B0.9800
C8—C141.5837 (16)C26—H26C0.9800
C9—C111.5286 (15)C27—H27A0.9800
C9—C101.5754 (15)C27—H27B0.9800
C9—H91.0000C27—H27C0.9800
C10—C251.5505 (17)C28—H28A0.9800
C11—C121.4731 (15)C28—H28B0.9800
C12—C131.3475 (15)C28—H28C0.9800
C12—H120.9500C30—H30A0.9800
C13—C181.5232 (15)C30—H30B0.9800
C13—C141.5243 (15)C30—H30C0.9800
C14—C151.5539 (16)C31—C321.4697 (18)
C14—C271.5561 (17)C31—H31A0.9900
C15—C161.5318 (17)C31—H31B0.9900
C15—H15A0.9900C32—C331.1973 (19)
C15—H15B0.9900C33—H330.9500
C3—O1—H1O109.5 (15)H16A—C16—H16B107.8
C29—N1—C31121.67 (11)C28—C17—C16110.53 (10)
C29—N1—H1N120.6 (15)C28—C17—C22107.66 (10)
C31—N1—H1N117.5 (15)C16—C17—C22109.74 (10)
C2—C1—C10113.20 (9)C28—C17—C18109.28 (11)
C2—C1—H1A108.9C16—C17—C18109.45 (10)
C10—C1—H1A108.9C22—C17—C18110.16 (9)
C2—C1—H1B108.9C13—C18—C19109.49 (9)
C10—C1—H1B108.9C13—C18—C17112.60 (9)
H1A—C1—H1B107.8C19—C18—C17113.74 (10)
C3—C2—C1111.83 (10)C13—C18—H18106.9
C3—C2—H2A109.3C19—C18—H18106.9
C1—C2—H2A109.3C17—C18—H18106.9
C3—C2—H2B109.3C20—C19—C18114.03 (9)
C1—C2—H2B109.3C20—C19—H19A108.7
H2A—C2—H2B107.9C18—C19—H19A108.7
O1—C3—C2111.97 (9)C20—C19—H19B108.7
O1—C3—C4111.69 (9)C18—C19—H19B108.7
C2—C3—C4112.72 (10)H19A—C19—H19B107.6
O1—C3—H3106.7C19—C20—C29109.58 (10)
C2—C3—H3106.7C19—C20—C30109.15 (10)
C4—C3—H3106.7C29—C20—C30106.84 (10)
C24—C4—C23107.49 (10)C19—C20—C21108.10 (10)
C24—C4—C3111.17 (10)C29—C20—C21111.87 (10)
C23—C4—C3106.98 (10)C30—C20—C21111.27 (11)
C24—C4—C5114.57 (10)C22—C21—C20111.39 (10)
C23—C4—C5109.76 (10)C22—C21—H21A109.4
C3—C4—C5106.64 (9)C20—C21—H21A109.4
C6—C5—C10111.30 (10)C22—C21—H21B109.4
C6—C5—C4113.55 (9)C20—C21—H21B109.4
C10—C5—C4117.20 (9)H21A—C21—H21B108.0
C6—C5—H5104.4C21—C22—C17114.17 (10)
C10—C5—H5104.4C21—C22—H22A108.7
C4—C5—H5104.4C17—C22—H22A108.7
C7—C6—C5109.85 (10)C21—C22—H22B108.7
C7—C6—H6A109.7C17—C22—H22B108.7
C5—C6—H6A109.7H22A—C22—H22B107.6
C7—C6—H6B109.7C4—C23—H23A109.5
C5—C6—H6B109.7C4—C23—H23B109.5
H6A—C6—H6B108.2H23A—C23—H23B109.5
C6—C7—C8113.25 (10)C4—C23—H23C109.5
C6—C7—H7A108.9H23A—C23—H23C109.5
C8—C7—H7A108.9H23B—C23—H23C109.5
C6—C7—H7B108.9C4—C24—H24A109.5
C8—C7—H7B108.9C4—C24—H24B109.5
H7A—C7—H7B107.7H24A—C24—H24B109.5
C7—C8—C26107.12 (9)C4—C24—H24C109.5
C7—C8—C9110.90 (9)H24A—C24—H24C109.5
C26—C8—C9109.97 (10)H24B—C24—H24C109.5
C7—C8—C14110.46 (9)C10—C25—H25A109.5
C26—C8—C14110.56 (9)C10—C25—H25B109.5
C9—C8—C14107.85 (9)H25A—C25—H25B109.5
C11—C9—C8108.51 (9)C10—C25—H25C109.5
C11—C9—C10116.09 (9)H25A—C25—H25C109.5
C8—C9—C10117.61 (9)H25B—C25—H25C109.5
C11—C9—H9104.3C8—C26—H26A109.5
C8—C9—H9104.3C8—C26—H26B109.5
C10—C9—H9104.3H26A—C26—H26B109.5
C25—C10—C1108.37 (9)C8—C26—H26C109.5
C25—C10—C5114.24 (9)H26A—C26—H26C109.5
C1—C10—C5107.33 (9)H26B—C26—H26C109.5
C25—C10—C9112.28 (9)C14—C27—H27A109.5
C1—C10—C9108.19 (9)C14—C27—H27B109.5
C5—C10—C9106.18 (9)H27A—C27—H27B109.5
O2—C11—C12119.14 (10)C14—C27—H27C109.5
O2—C11—C9123.22 (10)H27A—C27—H27C109.5
C12—C11—C9117.63 (10)H27B—C27—H27C109.5
C13—C12—C11124.71 (10)C17—C28—H28A109.5
C13—C12—H12117.6C17—C28—H28B109.5
C11—C12—H12117.6H28A—C28—H28B109.5
C12—C13—C18119.21 (10)C17—C28—H28C109.5
C12—C13—C14119.44 (10)H28A—C28—H28C109.5
C18—C13—C14121.08 (9)H28B—C28—H28C109.5
C13—C14—C15112.83 (9)O3—C29—N1121.48 (12)
C13—C14—C27106.08 (9)O3—C29—C20122.60 (11)
C15—C14—C27106.96 (10)N1—C29—C20115.86 (11)
C13—C14—C8108.94 (9)C20—C30—H30A109.5
C15—C14—C8110.00 (9)C20—C30—H30B109.5
C27—C14—C8112.00 (9)H30A—C30—H30B109.5
C16—C15—C14114.17 (10)C20—C30—H30C109.5
C16—C15—H15A108.7H30A—C30—H30C109.5
C14—C15—H15A108.7H30B—C30—H30C109.5
C16—C15—H15B108.7N1—C31—C32112.85 (11)
C14—C15—H15B108.7N1—C31—H31A109.0
H15A—C15—H15B107.6C32—C31—H31A109.0
C15—C16—C17112.68 (11)N1—C31—H31B109.0
C15—C16—H16A109.1C32—C31—H31B109.0
C17—C16—H16A109.1H31A—C31—H31B107.8
C15—C16—H16B109.1C33—C32—C31178.94 (15)
C17—C16—H16B109.1C32—C33—H33180.0
C10—C1—C2—C356.26 (13)C12—C13—C14—C2788.45 (13)
C1—C2—C3—O1174.64 (9)C18—C13—C14—C2785.52 (12)
C1—C2—C3—C458.41 (13)C12—C13—C14—C832.28 (14)
O1—C3—C4—C2456.59 (13)C18—C13—C14—C8153.74 (10)
C2—C3—C4—C2470.50 (12)C7—C8—C14—C13177.79 (9)
O1—C3—C4—C2360.48 (13)C26—C8—C14—C1359.40 (11)
C2—C3—C4—C23172.42 (10)C9—C8—C14—C1360.87 (12)
O1—C3—C4—C5177.88 (10)C7—C8—C14—C1553.63 (13)
C2—C3—C4—C555.02 (12)C26—C8—C14—C1564.75 (12)
C24—C4—C5—C663.27 (14)C9—C8—C14—C15174.98 (10)
C23—C4—C5—C657.75 (14)C7—C8—C14—C2765.18 (12)
C3—C4—C5—C6173.29 (11)C26—C8—C14—C27176.43 (9)
C24—C4—C5—C1068.75 (13)C9—C8—C14—C2756.16 (12)
C23—C4—C5—C10170.23 (10)C13—C14—C15—C1637.49 (16)
C3—C4—C5—C1054.69 (13)C27—C14—C15—C1678.78 (13)
C10—C5—C6—C765.10 (14)C8—C14—C15—C16159.35 (11)
C4—C5—C6—C7160.06 (10)C14—C15—C16—C1754.15 (15)
C5—C6—C7—C858.01 (14)C15—C16—C17—C2860.43 (13)
C6—C7—C8—C2673.20 (12)C15—C16—C17—C22179.01 (10)
C6—C7—C8—C946.81 (14)C15—C16—C17—C1859.98 (14)
C6—C7—C8—C14166.33 (10)C12—C13—C18—C1985.20 (13)
C7—C8—C9—C11178.96 (10)C14—C13—C18—C1988.79 (12)
C26—C8—C9—C1160.67 (12)C12—C13—C18—C17147.22 (12)
C14—C8—C9—C1159.97 (12)C14—C13—C18—C1738.79 (15)
C7—C8—C9—C1044.66 (14)C28—C17—C18—C1370.48 (12)
C26—C8—C9—C1073.64 (12)C16—C17—C18—C1350.69 (13)
C14—C8—C9—C10165.72 (9)C22—C17—C18—C13171.44 (10)
C2—C1—C10—C2572.74 (12)C28—C17—C18—C19164.22 (10)
C2—C1—C10—C551.10 (12)C16—C17—C18—C1974.61 (12)
C2—C1—C10—C9165.29 (10)C22—C17—C18—C1946.14 (14)
C6—C5—C10—C2565.74 (13)C13—C18—C19—C20178.29 (9)
C4—C5—C10—C2567.29 (13)C17—C18—C19—C2051.35 (14)
C6—C5—C10—C1174.08 (10)C18—C19—C20—C2966.74 (13)
C4—C5—C10—C152.88 (12)C18—C19—C20—C30176.58 (10)
C6—C5—C10—C958.55 (12)C18—C19—C20—C2155.41 (13)
C4—C5—C10—C9168.41 (9)C19—C20—C21—C2257.84 (13)
C11—C9—C10—C2555.10 (13)C29—C20—C21—C2262.90 (13)
C8—C9—C10—C2575.83 (12)C30—C20—C21—C22177.68 (10)
C11—C9—C10—C164.45 (12)C20—C21—C22—C1757.88 (14)
C8—C9—C10—C1164.63 (10)C28—C17—C22—C21169.30 (10)
C11—C9—C10—C5179.40 (9)C16—C17—C22—C2170.36 (13)
C8—C9—C10—C549.68 (13)C18—C17—C22—C2150.22 (14)
C8—C9—C11—O2149.86 (12)C31—N1—C29—O32.50 (19)
C10—C9—C11—O214.78 (17)C31—N1—C29—C20174.64 (11)
C8—C9—C11—C1231.32 (14)C19—C20—C29—O320.57 (16)
C10—C9—C11—C12166.40 (10)C30—C20—C29—O397.56 (14)
O2—C11—C12—C13179.31 (12)C21—C20—C29—O3140.44 (12)
C9—C11—C12—C131.82 (18)C19—C20—C29—N1162.32 (10)
C11—C12—C13—C18176.53 (11)C30—C20—C29—N179.55 (13)
C11—C12—C13—C142.44 (18)C21—C20—C29—N142.45 (14)
C12—C13—C14—C15154.75 (11)C29—N1—C31—C32106.52 (14)
C18—C13—C14—C1531.27 (15)
Hydrogen-bond geometry (Å, º) top
Please add C—H···π interaction to table
D—H···AD—HH···AD···AD—H···A
O1—H1O···C32i0.81 (2)2.57 (2)3.3559 (17)164 (2)
O1—H1O···C33i0.81 (2)2.40 (2)3.0973 (17)145 (2)
N1—H1N···O2ii0.80 (2)2.57 (2)3.2511 (15)144 (2)
C31—H31B···O1iii0.992.563.2541 (17)127
C33—H33···O2iv0.952.273.1154 (17)148
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H49NO3
Mr507.73
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.7534 (8), 13.4879 (16), 31.132 (4)
V3)2835.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.56 × 0.43 × 0.38
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.87, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
41876, 4658, 4531
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.08
No. of reflections4658
No. of parameters349
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SAINT, SADABS and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Please add C—H···π interaction to table
D—H···AD—HH···AD···AD—H···A
O1—H1O···C32i0.81 (2)2.57 (2)3.3559 (17)164 (2)
O1—H1O···C33i0.81 (2)2.40 (2)3.0973 (17)145 (2)
N1—H1N···O2ii0.80 (2)2.57 (2)3.2511 (15)144 (2)
C31—H31B···O1iii0.992.563.2541 (17)126.9
C33—H33···O2iv0.952.273.1154 (17)147.7
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the ZIT Zentrum für Innovation und Technologie GmbH (Vienna Spot of Excellence, 182081).

References

First citationAlvarez-Larena, A., Brianso, J. L., Capparelli, M. V., Farran, J. & Piniella, J. F. (2007). Afinidad, 64, 278–283.  CAS Google Scholar
First citationAmer, H., Mereiter, K., Stanetty, C., Hofinger, A., Czollner, L., Beseda, I., Jordis, U., Kueenburg, B., Classen-Houben, D. & Kosma, P. (2010). Tetrahedron, 66, 4390–4402.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsl, M. N. & Hosseinzadeh, H. (2008). Phytother. Res. 22, 709–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaran, J. S., Langford, D. D., Liang, C. & Pitzele, B. S. (1974). J. Med. Chem. 17, 184–191.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBeseda, I., Czollner, L., Shah, P. S., Khunt, R., Gaware, R., Kosma, P., Stanetty, C., del Ruiz-Ruiz, M. C., Amer, H., Mereiter, K., Da Cunha, T., Odermatt, A., Classen-Houben, D. & Jordis, U. (2010). Bioorg. Med. Chem. 18, 433–454.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampsteyn, H., Dupont, L., Lamotte, J., Dideberg, O. & Vermeire, M. (1977). Acta Cryst. B33, 3443–3448.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFrey, W., Schetter, S., Rominger, F. & Hashmi, A. S. K. (2008). Acta Cryst. E64, o1495.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett. 6, 4391–4394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, I. (2002). Pure Appl. Chem. 74, 1189–1198.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X., Lawrence, H., Ganeshapillai, D., Cruttenden, A., Purohit, A., Reed, M. J., Vicker, N. & Potter, B. V. L. (2004). Bioorg. Med. Chem. 12, 4439–4457.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3052-o3053
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds