metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1568-m1569

μ-Oxido-bis­­[bis­­(phenanthroline-κ2N,N′)(sulfato-κO)iron(III)] octa­hydrate

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China, and bChemistry Department, Zheng Zhou Normal University, Zhengzhou 450044, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 6 September 2011; accepted 15 October 2011; online 22 October 2011)

The title complex, [Fe2O(SO4)2(C12H8N2)4]·8H2O, contains two unique FeIII cations, one oxide anion, four 1,10-phenanthroline (phen) ligands, two coordinated sulfate anions and eight lattice water mol­ecules. Each FeIII ion has an approximate octa­hedral geometry, coordinated by four N atoms from two phen mol­ecules, two O atoms from oxide and sulfate anions, respectively. The parallel phen mol­ecules form two-dimensional supermolecules through ππ stacking inter­actions [centroid–centroid distances = 3.684 (3), 3.711 (3), 3.790 (3), 3.847 (3), 3.746 (3), 3.732 (3) and 3.729 (3) Å]. This architecture is further stabilized by O—H⋯O hydrogen bonds involving the lattice water mol­ecules and sulfate O atoms.

Related literature

For transition metal complexes containing organic ligands with nitro­gen heteroatoms, see: Manson et al. (2001[Manson, J. L., Huang, Q. Z., Lynn, J. W., Koo, H. J., Whangbo, M. H., Bateman, R., Otsuka, T., Wada, N., Argyriou, D. N. & Miller, J. S. (2001). J. Am. Chem. Soc. 123, 162-172.]); Wu et al. (2009[Wu, D. Y., Sato, O. & Duan, C. Y. (2009). Inorg. Chem. Commun. 12, 325-327.]); Accorsi et al. (2009[Accorsi, G., Listorti, A., Yoosaf, K. & Armaroli, N. (2009). Chem. Soc. Rev. 38, 1690-1700.]); Xie & Huang (2011[Xie, J.-Y. & Huang, F. (2011). Acta Cryst. E67, m1326.]); Feng et al. (2006[Feng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. (2006). Acta Cryst. E62, m2033-m2035.]); Yu et al. (2010[Yu, X. Y., Ye, L., Zhang, X., Cui, X. B., Zhang, J. P., Xu, J. Q., Hou, Q. & Wang, T. G. (2010). Dalton Trans. 39, 10617-10625.]); Weyhermüller et al. (2005[Weyhermüller, T., Wagner, R., Khanra, S. & Chaudhuri, P. (2005). Dalton Trans. 15, 2539-2546.]). For phen (1,10-phenanthroline) ligands, see: Gu et al. (2006[Gu, J. Z., Jiang, L., Liang, J. H., Lu, T. B. & Tan, M. Y. (2006). Chin. J. Inorg. Chem. 22, 1375-1379.]); Hu et al. (2009[Hu, X., Guo, J., Liu, C., Zen, H., Wang, Y. & Du, W. (2009). Inorg. Chim. Acta, 362, 3421-3426.]). For related bond lengths and angles, see: Yang et al. (2010[Yang, M.-X., Lin, S., Shen, H.-Y. & Chen, L.-J. (2010). Acta Cryst. E66, m1129-m1130.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2O(SO4)2(C12H8N2)4]·8H2O

  • Mr = 1184.76

  • Monoclinic, C 2/c

  • a = 21.589 (15) Å

  • b = 14.181 (10) Å

  • c = 16.500 (12) Å

  • β = 97.289 (9)°

  • V = 5010 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 273 K

  • 0.20 × 0.10 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.865, Tmax = 0.971

  • 11655 measured reflections

  • 4398 independent reflections

  • 3506 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.05

  • 4398 reflections

  • 372 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O1 1.7804 (10)
Fe1—O2 1.936 (2)
Fe1—N4 2.125 (2)
Fe1—N1 2.151 (2)
Fe1—N3 2.237 (3)
Fe1—N2 2.243 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3WA⋯O3i 0.85 (1) 2.14 (3) 2.872 (4) 144 (4)
O2W—H2WB⋯O4ii 0.85 (1) 1.89 (2) 2.713 (4) 163 (4)
O4W—H4WB⋯O5 0.85 (1) 1.98 (2) 2.756 (4) 151 (4)
O1W—H1WB⋯O3Wiii 0.86 (1) 2.06 (1) 2.909 (5) 171 (4)
O1W—H1WA⋯O4Wiv 0.86 (1) 1.97 (2) 2.811 (5) 165 (5)
O3W—H3WB⋯O4Wv 0.85 (1) 2.28 (3) 2.964 (5) 138 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (iv) [-x+1, y, -z+{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic ligands containing nitrogen heteroatoms play an important role in the assembling process of transition-metal complexes (Manson et al., 2001; Wu et al., 2009; Accorsi et al., 2009; Xie et al., 2011; Feng et al., 2006; Yu et al., 2010; Weyhermuller et al., 2005). Phen (1,10-phenanthroline) ligands fit together to form transition-metal complexes (Gu et al., 2006; Hu et al., 2009). In order to study the coordination behavior of this ligand to Fe, we have synthesized herein the title complex [(Fe2O)(phen)4(SO4)2).8H2O], (I). The asymmetric unit contains one FeIII atom, one half of an O2- atom, two phen ligands, one coordinated SO4 anion and four lattice water molecules (Fig. 1). The phen ligands lie parallel to each other in the structure and form two-dimensional supermolecules through ππ stacking inteactions [centroid–centroid distances = 3.684 (3)Å (Cg1—Cg1)i; 3.711 (3)Å (Cg3—Cg4)i, 3.790 (3)Å; (Cg4—Cg4)i, 3.847 (3)Å (Cg4—Cg7)i; 3.746 (3)Å (Cg6—Cg6)ii; 3.732(3(Å (Cg7—Cg7)i and 3.729(30Å Cg8—Cg6)ii where i = 1-x, y, 1/2-z; ii = 1-x, -y, -z and Cg1 = Fe/N1/C5/C10/N2; Cg3 = Fe1/N3/C17/C22/N4; Cg4 = N2/C6–C10; Cg6 = N4/C18–C22; Cg7 = C4/C5/C9–C12; Cg8 = C16/C17/C21–C24]. This architecture is further stabilized by O—H···O hydrogen bonds involving the lattice water molecules and oxygen atoms from the SO4 anions (Table 1). The bond distances for Fe—N vary from 2.125 (2)Å to 2.243 (2)Å, and the angles for N—Fe—N and N—Fe—O are between 75.21 (10)° and 168.95 (6)°, respectively. The Fe—O bond lengths are 1.7804 (10)Å, 1.936 (2)Å and the bond angle for O1—Fe—O2 is 97.99 (10)°, respectively. These bond distances and bondangles are in agreement with those found in the reported iron phen compounds (Yang et al. 2010).

Related literature top

For transition metal complexes containing organic ligands with nitrogen heteroatoms, see: Manson et al., (2001); Wu et al. (2009); Accorsi et al. (2009); Xie & Huang (2011); Feng et al. (2006); Yu et al. (2010); Weyhermuller et al. (2005). For phen (1,10-phenanthroline) ligands, see: Gu et al. (2006); Hu et al. (2009). For related bond distances and angles, see: Yang et al. (2010).

Experimental top

0.151 g of 1,10-phenanthroline hydrate was dissolved in methanol (5 ml). To the solution, 5 ml of H2O was added, then layered with 5 ml of a methanol solution of Fe2(SO4)3 (0.020 g). The resulting solution was allowed to stand at room temperature for several days and black block crystals were obtained.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically with restrained O—H distance = 0.85 Å and an H···H distance = 1.37 Å. The remaining H atoms were generated geometrically and then refined using the riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure for title compound. Displacement ellipsoids at the 30% probability level. Hydrogen atoms have been deleated for clarity.
µ-Oxido-bis[bis(phenanthroline-κ2N,N')(sulfato- κO)iron(III)] octahydrate top
Crystal data top
[Fe2O(SO4)2(C12H8N2)4]·8H2OF(000) = 2448
Mr = 1184.76Dx = 1.571 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5306 reflections
a = 21.589 (15) Åθ = 2.2–27.3°
b = 14.181 (10) ŵ = 0.75 mm1
c = 16.500 (12) ÅT = 273 K
β = 97.289 (9)°Block, black
V = 5010 (6) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4398 independent reflections
Radiation source: fine-focus sealed tube3506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 2524
Tmin = 0.865, Tmax = 0.971k = 1516
11655 measured reflectionsl = 1019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.059P)2 + 4.8592P]
where P = (Fo2 + 2Fc2)/3
4398 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.66 e Å3
15 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Fe2O(SO4)2(C12H8N2)4]·8H2OV = 5010 (6) Å3
Mr = 1184.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.589 (15) ŵ = 0.75 mm1
b = 14.181 (10) ÅT = 273 K
c = 16.500 (12) Å0.20 × 0.10 × 0.04 mm
β = 97.289 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
3506 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.971Rint = 0.029
11655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03715 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.66 e Å3
4398 reflectionsΔρmin = 0.34 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.448260 (15)0.23530 (3)0.15718 (2)0.02377 (13)
S10.33448 (3)0.07600 (5)0.16883 (4)0.03358 (19)
N10.38927 (10)0.34694 (15)0.19124 (14)0.0311 (5)
N20.49425 (10)0.36835 (15)0.12194 (13)0.0300 (5)
N30.40007 (10)0.24313 (16)0.02909 (14)0.0324 (5)
N40.50712 (9)0.15827 (15)0.08713 (13)0.0280 (5)
C10.33823 (14)0.3357 (2)0.2267 (2)0.0451 (8)
H1A0.32420.27490.23500.054*
C20.30476 (15)0.4114 (2)0.2520 (2)0.0542 (9)
H2A0.26880.40070.27620.065*
C30.32438 (15)0.5010 (2)0.2414 (2)0.0529 (9)
H3A0.30230.55180.25910.063*
C40.37800 (14)0.5163 (2)0.20385 (19)0.0405 (7)
C50.40939 (12)0.43659 (18)0.18015 (16)0.0299 (6)
C60.54657 (13)0.3774 (2)0.08885 (18)0.0374 (7)
H6A0.56670.32320.07420.045*
C70.57287 (14)0.4650 (2)0.0749 (2)0.0468 (8)
H7A0.61000.46880.05190.056*
C80.54351 (15)0.5446 (2)0.0954 (2)0.0481 (8)
H8A0.56030.60340.08590.058*
C90.48812 (14)0.5384 (2)0.13080 (18)0.0390 (7)
C100.46545 (12)0.44758 (18)0.14267 (16)0.0294 (6)
C110.40202 (17)0.6080 (2)0.1890 (2)0.0527 (9)
H11A0.38100.66120.20370.063*
C120.45421 (17)0.6181 (2)0.1542 (2)0.0536 (9)
H12A0.46870.67840.14500.064*
C130.34567 (14)0.2827 (2)0.0008 (2)0.0483 (8)
H13A0.32420.31570.03720.058*
C140.31937 (16)0.2773 (3)0.0807 (2)0.0602 (10)
H14A0.28090.30530.09750.072*
C150.35054 (17)0.2305 (3)0.1358 (2)0.0566 (9)
H15A0.33350.22630.19040.068*
C160.40840 (15)0.1890 (2)0.10906 (18)0.0440 (7)
C170.43098 (13)0.1969 (2)0.02581 (16)0.0327 (6)
C180.56001 (12)0.1158 (2)0.11755 (19)0.0368 (7)
H18A0.57260.11880.17350.044*
C190.59695 (14)0.0673 (2)0.0685 (2)0.0440 (8)
H19A0.63370.03870.09170.053*
C200.57940 (15)0.0616 (2)0.0132 (2)0.0456 (8)
H20A0.60400.02890.04600.055*
C210.52383 (14)0.1052 (2)0.04818 (18)0.0384 (7)
C220.48900 (12)0.15288 (18)0.00512 (16)0.0308 (6)
C230.44517 (19)0.1396 (3)0.1616 (2)0.0552 (9)
H23A0.43060.13430.21690.066*
C240.50066 (18)0.1005 (2)0.1325 (2)0.0524 (9)
H24A0.52400.07010.16830.063*
O10.50000.22796 (18)0.25000.0307 (6)
O1W0.65938 (13)0.2776 (2)0.01141 (19)0.0760 (8)
O20.39311 (9)0.13274 (15)0.17760 (13)0.0445 (5)
O2W0.32992 (16)0.80292 (19)0.14393 (18)0.0765 (8)
O30.31002 (12)0.0750 (2)0.08246 (15)0.0694 (7)
O3W0.21915 (15)0.9578 (3)0.9884 (2)0.1018 (11)
O40.35088 (12)0.01746 (17)0.19715 (18)0.0709 (8)
O4W0.26638 (15)0.1716 (2)0.36928 (17)0.0777 (8)
O50.29116 (11)0.12164 (18)0.21519 (16)0.0640 (7)
H2WA0.334 (2)0.792 (3)0.0943 (11)0.096*
H4WA0.2455 (19)0.220 (2)0.352 (2)0.096*
H2WB0.333 (2)0.8619 (9)0.151 (2)0.096*
H1WA0.6784 (19)0.250 (3)0.0541 (19)0.096*
H4WB0.2867 (18)0.153 (3)0.3310 (18)0.096*
H1WB0.6807 (17)0.3280 (18)0.008 (3)0.096*
H3WB0.2496 (13)0.936 (3)0.966 (3)0.096*
H3WA0.2316 (17)1.0085 (18)1.013 (3)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0213 (2)0.0267 (2)0.0239 (2)0.00157 (14)0.00528 (14)0.00084 (15)
S10.0288 (4)0.0339 (4)0.0391 (4)0.0059 (3)0.0086 (3)0.0057 (3)
N10.0267 (11)0.0321 (13)0.0356 (13)0.0037 (9)0.0089 (10)0.0025 (10)
N20.0285 (12)0.0313 (12)0.0305 (12)0.0006 (9)0.0054 (9)0.0018 (10)
N30.0249 (12)0.0375 (13)0.0338 (13)0.0004 (9)0.0003 (10)0.0025 (10)
N40.0270 (11)0.0290 (12)0.0285 (12)0.0002 (9)0.0057 (9)0.0043 (9)
C10.0353 (16)0.0445 (18)0.059 (2)0.0010 (13)0.0179 (15)0.0051 (15)
C20.0362 (17)0.061 (2)0.070 (2)0.0075 (15)0.0244 (17)0.0127 (19)
C30.0414 (18)0.055 (2)0.062 (2)0.0223 (15)0.0065 (16)0.0137 (17)
C40.0385 (16)0.0369 (17)0.0448 (18)0.0129 (13)0.0001 (14)0.0047 (14)
C50.0280 (13)0.0315 (15)0.0288 (15)0.0064 (11)0.0014 (11)0.0006 (11)
C60.0326 (15)0.0409 (17)0.0402 (17)0.0023 (12)0.0101 (13)0.0034 (13)
C70.0376 (17)0.055 (2)0.049 (2)0.0118 (15)0.0106 (14)0.0064 (16)
C80.0517 (19)0.0401 (18)0.051 (2)0.0160 (15)0.0028 (16)0.0063 (15)
C90.0460 (17)0.0319 (15)0.0370 (16)0.0044 (13)0.0021 (13)0.0050 (13)
C100.0312 (14)0.0285 (14)0.0270 (14)0.0011 (11)0.0021 (11)0.0011 (11)
C110.065 (2)0.0285 (16)0.063 (2)0.0141 (15)0.0031 (18)0.0055 (15)
C120.070 (2)0.0262 (16)0.063 (2)0.0002 (15)0.0034 (19)0.0021 (15)
C130.0364 (17)0.060 (2)0.0479 (19)0.0023 (15)0.0028 (14)0.0070 (16)
C140.0385 (18)0.079 (3)0.057 (2)0.0018 (17)0.0150 (17)0.023 (2)
C150.057 (2)0.071 (2)0.0373 (18)0.0160 (18)0.0108 (16)0.0111 (17)
C160.0529 (19)0.0467 (18)0.0312 (16)0.0169 (15)0.0009 (14)0.0044 (14)
C170.0367 (15)0.0324 (14)0.0291 (15)0.0084 (12)0.0049 (12)0.0015 (12)
C180.0297 (14)0.0370 (16)0.0441 (17)0.0026 (12)0.0057 (12)0.0030 (13)
C190.0305 (15)0.0391 (17)0.064 (2)0.0040 (12)0.0138 (15)0.0052 (15)
C200.0472 (18)0.0387 (17)0.057 (2)0.0020 (14)0.0297 (16)0.0101 (15)
C210.0473 (17)0.0331 (15)0.0386 (17)0.0110 (13)0.0206 (14)0.0049 (13)
C220.0366 (15)0.0283 (14)0.0285 (14)0.0067 (11)0.0083 (12)0.0002 (11)
C230.081 (3)0.058 (2)0.0278 (17)0.0188 (19)0.0112 (17)0.0084 (15)
C240.074 (2)0.051 (2)0.0370 (18)0.0136 (18)0.0265 (17)0.0101 (15)
O10.0298 (14)0.0383 (15)0.0241 (13)0.0000.0038 (11)0.000
O1W0.0698 (19)0.077 (2)0.084 (2)0.0032 (15)0.0218 (16)0.0093 (16)
O20.0327 (11)0.0473 (12)0.0547 (14)0.0119 (9)0.0102 (10)0.0007 (10)
O2W0.109 (2)0.0455 (15)0.076 (2)0.0050 (16)0.0158 (18)0.0005 (14)
O30.0637 (16)0.089 (2)0.0500 (15)0.0046 (14)0.0119 (12)0.0159 (14)
O3W0.081 (2)0.119 (3)0.104 (3)0.027 (2)0.005 (2)0.030 (2)
O40.0770 (18)0.0403 (14)0.094 (2)0.0042 (12)0.0056 (15)0.0135 (13)
O4W0.078 (2)0.096 (2)0.0598 (18)0.0219 (16)0.0127 (15)0.0060 (16)
O50.0531 (14)0.0703 (17)0.0763 (18)0.0122 (12)0.0377 (13)0.0198 (14)
Geometric parameters (Å, º) top
Fe1—O11.7804 (10)C9—C121.427 (4)
Fe1—O21.936 (2)C11—C121.335 (5)
Fe1—N42.125 (2)C11—H11A0.9300
Fe1—N12.151 (2)C12—H12A0.9300
Fe1—N32.237 (3)C13—C141.393 (5)
Fe1—N22.243 (2)C13—H13A0.9300
S1—O41.435 (3)C14—C151.370 (5)
S1—O51.435 (2)C14—H14A0.9300
S1—O31.456 (3)C15—C161.401 (5)
S1—O21.491 (2)C15—H15A0.9300
N1—C11.321 (4)C16—C171.403 (4)
N1—C51.363 (3)C16—C231.431 (5)
N2—C61.322 (3)C17—C221.434 (4)
N2—C101.349 (3)C18—C191.389 (4)
N3—C131.332 (4)C18—H18A0.9300
N3—C171.360 (4)C19—C201.355 (5)
N4—C181.331 (3)C19—H19A0.9300
N4—C221.362 (3)C20—C211.407 (5)
C1—C21.387 (4)C20—H20A0.9300
C1—H1A0.9300C21—C221.401 (4)
C2—C31.358 (5)C21—C241.419 (4)
C2—H2A0.9300C23—C241.351 (5)
C3—C41.398 (4)C23—H23A0.9300
C3—H3A0.9300C24—H24A0.9300
C4—C51.399 (4)O1—Fe1i1.7804 (10)
C4—C111.432 (5)O1W—H1WA0.861 (10)
C5—C101.436 (4)O1W—H1WB0.856 (10)
C6—C71.397 (4)O2W—H2WA0.849 (10)
C6—H6A0.9300O2W—H2WB0.845 (10)
C7—C81.358 (5)O3W—H3WB0.848 (7)
C7—H7A0.9300O3W—H3WA0.849 (7)
C8—C91.399 (4)O4W—H4WA0.851 (10)
C8—H8A0.9300O4W—H4WB0.854 (10)
C9—C101.400 (4)
O1—Fe1—O297.99 (10)C9—C8—H8A119.9
O1—Fe1—N494.85 (9)C8—C9—C10116.7 (3)
O2—Fe1—N497.58 (10)C8—C9—C12123.9 (3)
O1—Fe1—N198.39 (9)C10—C9—C12119.4 (3)
O2—Fe1—N196.31 (10)N2—C10—C9123.4 (3)
N4—Fe1—N1159.26 (9)N2—C10—C5117.4 (2)
O1—Fe1—N3168.95 (6)C9—C10—C5119.3 (2)
O2—Fe1—N388.80 (9)C12—C11—C4121.0 (3)
N4—Fe1—N375.53 (9)C12—C11—H11A119.5
N1—Fe1—N389.46 (9)C4—C11—H11A119.5
O1—Fe1—N291.27 (9)C11—C12—C9121.4 (3)
O2—Fe1—N2168.33 (8)C11—C12—H12A119.3
N4—Fe1—N288.65 (9)C9—C12—H12A119.3
N1—Fe1—N275.21 (10)N3—C13—C14123.3 (3)
N3—Fe1—N283.19 (8)N3—C13—H13A118.4
O4—S1—O5113.16 (17)C14—C13—H13A118.4
O4—S1—O3110.74 (17)C15—C14—C13119.5 (3)
O5—S1—O3110.24 (16)C15—C14—H14A120.2
O4—S1—O2107.19 (15)C13—C14—H14A120.2
O5—S1—O2107.91 (14)C14—C15—C16119.2 (3)
O3—S1—O2107.35 (14)C14—C15—H15A120.4
C1—N1—C5118.0 (2)C16—C15—H15A120.4
C1—N1—Fe1125.6 (2)C15—C16—C17117.4 (3)
C5—N1—Fe1116.24 (17)C15—C16—C23123.8 (3)
C6—N2—C10118.0 (2)C17—C16—C23118.8 (3)
C6—N2—Fe1128.21 (19)N3—C17—C16123.5 (3)
C10—N2—Fe1113.67 (18)N3—C17—C22116.9 (2)
C13—N3—C17117.1 (3)C16—C17—C22119.5 (3)
C13—N3—Fe1129.5 (2)N4—C18—C19122.2 (3)
C17—N3—Fe1113.38 (17)N4—C18—H18A118.9
C18—N4—C22118.3 (2)C19—C18—H18A118.9
C18—N4—Fe1124.80 (19)C20—C19—C18120.0 (3)
C22—N4—Fe1116.94 (17)C20—C19—H19A120.0
N1—C1—C2122.4 (3)C18—C19—H19A120.0
N1—C1—H1A118.8C19—C20—C21119.9 (3)
C2—C1—H1A118.8C19—C20—H20A120.1
C3—C2—C1120.2 (3)C21—C20—H20A120.1
C3—C2—H2A119.9C22—C21—C20116.9 (3)
C1—C2—H2A119.9C22—C21—C24119.2 (3)
C2—C3—C4119.4 (3)C20—C21—C24123.9 (3)
C2—C3—H3A120.3N4—C22—C21122.8 (3)
C4—C3—H3A120.3N4—C22—C17117.2 (2)
C3—C4—C5117.2 (3)C21—C22—C17120.0 (3)
C3—C4—C11123.7 (3)C24—C23—C16121.4 (3)
C5—C4—C11119.1 (3)C24—C23—H23A119.3
N1—C5—C4122.8 (3)C16—C23—H23A119.3
N1—C5—C10117.3 (2)C23—C24—C21121.0 (3)
C4—C5—C10119.8 (3)C23—C24—H24A119.5
N2—C6—C7122.8 (3)C21—C24—H24A119.5
N2—C6—H6A118.6Fe1i—O1—Fe1173.30 (17)
C7—C6—H6A118.6H1WA—O1W—H1WB103 (2)
C8—C7—C6119.1 (3)S1—O2—Fe1157.16 (15)
C8—C7—H7A120.5H2WA—O2W—H2WB107 (2)
C6—C7—H7A120.5H3WB—O3W—H3WA107.4
C7—C8—C9120.1 (3)H4WA—O4W—H4WB107 (2)
C7—C8—H8A119.9
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3ii0.85 (1)2.14 (3)2.872 (4)144 (4)
O2W—H2WB···O4iii0.85 (1)1.89 (2)2.713 (4)163 (4)
O4W—H4WB···O50.85 (1)1.98 (2)2.756 (4)151 (4)
O1W—H1WB···O3Wiv0.86 (1)2.06 (1)2.909 (5)171 (4)
O1W—H1WA···O4Wi0.86 (1)1.97 (2)2.811 (5)165 (5)
O3W—H3WB···O4Wv0.85 (1)2.28 (3)2.964 (5)138 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1/2, y1/2, z1; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2O(SO4)2(C12H8N2)4]·8H2O
Mr1184.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)21.589 (15), 14.181 (10), 16.500 (12)
β (°) 97.289 (9)
V3)5010 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.865, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11655, 4398, 3506
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.05
No. of reflections4398
No. of parameters372
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Fe1—O11.7804 (10)S1—O21.491 (2)
Fe1—O21.936 (2)N1—C11.321 (4)
Fe1—N42.125 (2)N1—C51.363 (3)
Fe1—N12.151 (2)N2—C61.322 (3)
Fe1—N32.237 (3)N2—C101.349 (3)
Fe1—N22.243 (2)N3—C131.332 (4)
S1—O41.435 (3)N3—C171.360 (4)
S1—O51.435 (2)N4—C181.331 (3)
S1—O31.456 (3)N4—C221.362 (3)
O1—Fe1—O297.99 (10)O2—Fe1—N2168.33 (8)
O1—Fe1—N494.85 (9)N4—Fe1—N288.65 (9)
O2—Fe1—N497.58 (10)N1—Fe1—N275.21 (10)
O1—Fe1—N198.39 (9)N3—Fe1—N283.19 (8)
O2—Fe1—N196.31 (10)O4—S1—O5113.16 (17)
N4—Fe1—N1159.26 (9)O4—S1—O3110.74 (17)
O1—Fe1—N3168.95 (6)O5—S1—O3110.24 (16)
O2—Fe1—N388.80 (9)O4—S1—O2107.19 (15)
N4—Fe1—N375.53 (9)O5—S1—O2107.91 (14)
N1—Fe1—N389.46 (9)O3—S1—O2107.35 (14)
O1—Fe1—N291.27 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3i0.849 (7)2.14 (3)2.872 (4)144 (4)
O2W—H2WB···O4ii0.845 (10)1.894 (15)2.713 (4)163 (4)
O4W—H4WB···O50.854 (10)1.98 (2)2.756 (4)151 (4)
O1W—H1WB···O3Wiii0.856 (10)2.061 (12)2.909 (5)171 (4)
O1W—H1WA···O4Wiv0.861 (10)1.970 (17)2.811 (5)165 (5)
O3W—H3WB···O4Wv0.848 (7)2.28 (3)2.964 (5)138 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1/2, y1/2, z1; (iv) x+1, y, z+1/2; (v) x, y+1, z+1/2.
 

Acknowledgements

This study was supported by the Science and Technology Department of Henan Province (grant No. 102102310321) and the Doctoral Research Fund of Henan Chinese Medicine (grant No. BSJJ2009–38).

References

First citationAccorsi, G., Listorti, A., Yoosaf, K. & Armaroli, N. (2009). Chem. Soc. Rev. 38, 1690–1700.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, W.-J., Zhou, G.-P., Zheng, X.-F., Liu, Y.-G. & Xu, Y. (2006). Acta Cryst. E62, m2033–m2035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, J. Z., Jiang, L., Liang, J. H., Lu, T. B. & Tan, M. Y. (2006). Chin. J. Inorg. Chem. 22, 1375–1379.  CAS Google Scholar
First citationHu, X., Guo, J., Liu, C., Zen, H., Wang, Y. & Du, W. (2009). Inorg. Chim. Acta, 362, 3421–3426.  Web of Science CSD CrossRef CAS Google Scholar
First citationManson, J. L., Huang, Q. Z., Lynn, J. W., Koo, H. J., Whangbo, M. H., Bateman, R., Otsuka, T., Wada, N., Argyriou, D. N. & Miller, J. S. (2001). J. Am. Chem. Soc. 123, 162–172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyhermüller, T., Wagner, R., Khanra, S. & Chaudhuri, P. (2005). Dalton Trans. 15, 2539–2546.  Web of Science PubMed Google Scholar
First citationWu, D. Y., Sato, O. & Duan, C. Y. (2009). Inorg. Chem. Commun. 12, 325–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationXie, J.-Y. & Huang, F. (2011). Acta Cryst. E67, m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, M.-X., Lin, S., Shen, H.-Y. & Chen, L.-J. (2010). Acta Cryst. E66, m1129–m1130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, X. Y., Ye, L., Zhang, X., Cui, X. B., Zhang, J. P., Xu, J. Q., Hou, Q. & Wang, T. G. (2010). Dalton Trans. 39, 10617–10625.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1568-m1569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds