organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-2-Oxo-4-(1-phenyl­ethyl­amino)-1,2-di­hydro­quinoline-3-carb­­oxy­lic acid

aSTC `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina avenue, Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Blyukhera avenue, Kharkiv 61002, Ukraine
*Correspondence e-mail: sveta@xray.isc.kharkov.com

(Received 14 September 2011; accepted 19 October 2011; online 29 October 2011)

The mol­ecular structure of the title compound, C18H16N2O3, does not differ in the crystals of the racemic mixture, (I), and the pure enantiomer, (II). In their crystal structures, inversion dimers occur in (I) via N—H⋯O hydrogen bonds and infinite chains in (II) also via N—H⋯O hydrogen bonds.

Related literature

For the S and R enanti­omers, see: Ukrainets et al. (2010[Ukrainets, I. V., Mospanova, E. V., Davidenko, A. A. & Shishkina, S. V. (2010). Khim. Geterotsikl. Soedin. pp. 1690-1701.]). For bond lengths in related structures, see: Bürgi & Dunitz (1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O3

  • Mr = 308.33

  • Monoclinic, P 21 /n

  • a = 14.612 (2) Å

  • b = 5.9750 (6) Å

  • c = 18.014 (2) Å

  • β = 110.814 (14)°

  • V = 1470.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur 3 diffractometer

  • 10943 measured reflections

  • 2541 independent reflections

  • 1174 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.033

  • S = 0.66

  • 2541 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 1.038 (17) 1.794 (17) 2.8291 (15) 174.5 (14)
N2—H2N⋯O2 0.926 (14) 1.738 (14) 2.5849 (17) 150.4 (12)
O3—H3O⋯O1 0.943 (19) 1.59 (2) 2.4712 (15) 154.1 (18)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the title compound, (I), the racemate of 2-oxo-4-(1-phenylethylamino)-1,2- dihydroquinoline-3-carboxylic acid reveals high analgesic activity. Compared to its pure S and R enantiomers, they are completely inactive (Ukrainets et al., 2010). In this paper we compare the molecular and crystal structure of the racemate (I) with a previously studied structure of the pure enantiomer (II). In the title compound (Fig. 1) the formation of two strong N2—H···O2 and O3—H···O1 intramolecular hydrogen bonds (Table 1) contributes to the coplanarity of the heterocycle, carboxyl, carbonyl groups and N2 atom all to be within 0.02 Å. As a result a significant redistribution of the electron density occurs in the quinolone fragment: the O3—C10 and C8—C9 bonds are shortened (Table 1) as compared with their mean values of 1.362 Å and 1.455 Å (Bürgi & Dunitz, 1994). The O1—C9, O2—C10, and C7—C8 bonds are elongated (mean values are 1.210 Å for a Csp2= O bond and 1.418 Å for a Csp2= Csp2 bond). The substituent at the amino group has a sp- conformation. The C6—C7 bond (C11/N2/C7/C6 torsion angle = -1.6 (2)%A) is twisted slghtly allowing the methyl group to be ap- oriented relative to the C7—N2 bond (C7/N2/C11/C12 torsion angle = 171.3 (1)%A). The phenyl substituent is in a -sc-conformation relative to the C7—N2 bond and is twisted toward the N2—C11 bond (C7/N2/C11/C13 and N2/C11/C13/C18 torsion angles = -67.3 (2) %A and 36.3 (2) %A, respectively). The crystal structure of (I), therefore, differs significantly from that of (II). In the pure enantiomer (II) infinite chains (Fig. 2) result from the formation of an N1—H···O2 intermolecular hydrogen bond (Ukrainets et al., 2010). In the racemte, (I), centrosymmetric dimers (Fig. 3) are formed by a N1—H1N···O1 intermolecular hydrogen bond (Table 2). This allows for Cg1—Cg1 ππ stacking interactions to be observed [centroid–centroid distance = 3.894 (1)Åi; i = 1-x, 2-y, -z; Cg1 = N1/C1/C6-C9].

Related literature top

For the pure S and R enantiomers, see: Ukrainets et al. (2010). For related bond lengths, see: Bürgi & Dunitz (1994).

Experimental top

2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid was synthesized using the published method (Ukrainets et al., 2010). Yield 75%. M.p. 225–227° C.

Refinement top

H1N, H2N and H3O were located from by a Fourier map and refined isotropically. All of the remaining hydrogen atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2005); cell refinement: CrysAlis PRO (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the pure enantiomer (II) in crystal phase. Hydrogen bonds are shown by dashed lines.
[Figure 3] Fig. 3. The packing of the title racemate (I) in crystal phase. Hydrogen bonds are shown by dashed lines.
(RS)-2-Oxo-4-(1-phenylethylamino)-1,2-dihydroquinoline-3-carboxylic acid top
Crystal data top
C18H16N2O3F(000) = 648
Mr = 308.33Dx = 1.393 Mg m3
Monoclinic, P21/nMelting point = 498–500 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 14.612 (2) ÅCell parameters from 1534 reflections
b = 5.9750 (6) Åθ = 3.0–32.0°
c = 18.014 (2) ŵ = 0.10 mm1
β = 110.814 (14)°T = 293 K
V = 1470.0 (3) Å3Needle, colourless
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1174 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.068
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
Detector resolution: 16.1827 pixels mm-1h = 1717
ω scansk = 77
10943 measured reflectionsl = 2021
2541 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.033H atoms treated by a mixture of independent and constrained refinement
S = 0.66 w = 1/[σ2(Fo2) + (0.0067P)2]
where P = (Fo2 + 2Fc2)/3
2541 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
C18H16N2O3V = 1470.0 (3) Å3
Mr = 308.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.612 (2) ŵ = 0.10 mm1
b = 5.9750 (6) ÅT = 293 K
c = 18.014 (2) Å0.30 × 0.10 × 0.05 mm
β = 110.814 (14)°
Data collection top
Oxford Diffraction Xcalibur 3
diffractometer
1174 reflections with I > 2σ(I)
10943 measured reflectionsRint = 0.068
2541 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.033H atoms treated by a mixture of independent and constrained refinement
S = 0.66Δρmax = 0.10 e Å3
2541 reflectionsΔρmin = 0.10 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54636 (9)0.7456 (2)0.03766 (8)0.0393 (3)
H1N0.4891 (13)0.631 (2)0.0545 (9)0.116 (7)*
N20.77647 (10)1.19200 (19)0.02901 (9)0.0456 (4)
H2N0.8164 (9)1.153 (2)0.0800 (9)0.058 (5)*
O10.61318 (7)0.55549 (16)0.07595 (6)0.0498 (3)
O20.84379 (7)0.97876 (16)0.16236 (6)0.0615 (3)
O30.76182 (8)0.6926 (2)0.18244 (7)0.0613 (4)
H3O0.7056 (15)0.610 (3)0.1530 (12)0.138 (9)*
C10.54064 (10)0.9229 (2)0.08811 (8)0.0350 (4)
C20.45947 (10)0.9355 (2)0.15744 (9)0.0447 (4)
H20.41310.82140.17030.054*
C30.44735 (11)1.1146 (2)0.20685 (9)0.0485 (4)
H30.39211.12510.25270.058*
C40.51788 (11)1.2804 (2)0.18817 (9)0.0490 (4)
H40.50971.40340.22160.059*
C50.59936 (10)1.2656 (2)0.12129 (9)0.0448 (4)
H50.64631.37810.11040.054*
C60.61435 (10)1.0856 (2)0.06863 (8)0.0340 (4)
C70.69759 (10)1.0588 (2)0.00556 (8)0.0344 (4)
C80.69570 (10)0.8825 (2)0.05766 (9)0.0351 (4)
C90.61762 (11)0.7222 (2)0.03378 (10)0.0378 (4)
C100.77197 (12)0.8569 (3)0.13643 (10)0.0472 (4)
C110.80766 (10)1.3854 (2)0.00571 (9)0.0424 (4)
H110.75581.49870.01910.051*
C120.89830 (10)1.4790 (2)0.05891 (8)0.0595 (5)
H12C0.95031.37120.07140.089*
H12B0.88331.51020.10560.089*
H12A0.91831.61450.04040.089*
C130.83092 (10)1.3343 (2)0.07889 (9)0.0379 (4)
C140.81570 (10)1.4954 (2)0.13665 (10)0.0498 (4)
H140.78511.62880.13240.060*
C150.84497 (12)1.4625 (3)0.20070 (10)0.0609 (5)
H150.83411.57330.23920.073*
C160.88995 (12)1.2670 (3)0.20764 (11)0.0664 (5)
H160.91031.24430.25040.080*
C170.90463 (12)1.1050 (3)0.15065 (12)0.0642 (5)
H170.93510.97180.15520.077*
C180.87513 (11)1.1362 (2)0.08708 (10)0.0513 (4)
H180.88491.02360.04940.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0343 (8)0.0428 (8)0.0359 (10)0.0088 (7)0.0063 (7)0.0011 (6)
N20.0365 (9)0.0539 (9)0.0423 (11)0.0131 (7)0.0091 (8)0.0010 (7)
O10.0443 (7)0.0459 (6)0.0516 (8)0.0080 (5)0.0075 (6)0.0116 (6)
O20.0469 (8)0.0690 (7)0.0517 (8)0.0163 (6)0.0031 (6)0.0055 (6)
O30.0458 (8)0.0709 (8)0.0538 (10)0.0083 (7)0.0011 (7)0.0206 (7)
C10.0342 (10)0.0403 (10)0.0311 (11)0.0008 (8)0.0122 (8)0.0026 (8)
C20.0367 (11)0.0486 (10)0.0443 (12)0.0072 (7)0.0090 (9)0.0016 (8)
C30.0385 (10)0.0665 (11)0.0356 (12)0.0035 (9)0.0071 (8)0.0007 (9)
C40.0402 (10)0.0580 (11)0.0468 (13)0.0002 (9)0.0133 (9)0.0142 (8)
C50.0330 (10)0.0503 (10)0.0497 (13)0.0089 (8)0.0132 (9)0.0036 (8)
C60.0306 (9)0.0414 (10)0.0305 (11)0.0022 (8)0.0113 (8)0.0044 (7)
C70.0276 (10)0.0399 (9)0.0373 (11)0.0021 (8)0.0135 (8)0.0065 (8)
C80.0259 (9)0.0428 (10)0.0334 (11)0.0028 (7)0.0066 (8)0.0019 (8)
C90.0356 (10)0.0367 (10)0.0415 (12)0.0008 (8)0.0143 (9)0.0011 (8)
C100.0426 (12)0.0479 (12)0.0490 (13)0.0006 (9)0.0137 (10)0.0017 (9)
C110.0357 (10)0.0423 (9)0.0499 (12)0.0100 (8)0.0163 (9)0.0049 (8)
C120.0563 (11)0.0621 (11)0.0569 (13)0.0238 (9)0.0161 (9)0.0139 (9)
C130.0334 (10)0.0371 (10)0.0440 (12)0.0090 (7)0.0145 (8)0.0046 (8)
C140.0458 (11)0.0454 (11)0.0590 (13)0.0042 (7)0.0195 (10)0.0003 (9)
C150.0609 (13)0.0689 (13)0.0548 (14)0.0091 (10)0.0230 (10)0.0084 (10)
C160.0680 (14)0.0798 (15)0.0593 (14)0.0109 (11)0.0323 (11)0.0136 (11)
C170.0672 (13)0.0517 (11)0.0828 (16)0.0006 (9)0.0377 (12)0.0127 (11)
C180.0563 (12)0.0433 (11)0.0597 (13)0.0006 (9)0.0273 (10)0.0019 (9)
Geometric parameters (Å, º) top
N1—C91.3444 (17)C7—C81.4177 (16)
N1—C11.3788 (16)C8—C91.4334 (17)
N1—H1N1.038 (17)C8—C101.4679 (18)
N2—C71.3395 (15)C11—C131.5051 (17)
N2—C111.4619 (16)C11—C121.5251 (16)
N2—H2N0.926 (14)C11—H110.9800
O1—C91.2684 (15)C12—H12C0.9600
O2—C101.2252 (15)C12—H12B0.9600
O3—C101.3268 (17)C12—H12A0.9600
O3—H3O0.943 (19)C13—C141.3760 (16)
C1—C21.3854 (16)C13—C181.3812 (16)
C1—C61.4000 (15)C14—C151.3796 (19)
C2—C31.3626 (16)C14—H140.9300
C2—H20.9300C15—C161.3675 (19)
C3—C41.3825 (17)C15—H150.9300
C3—H30.9300C16—C171.3712 (19)
C4—C51.3629 (19)C16—H160.9300
C4—H40.9300C17—C181.3721 (19)
C5—C61.3986 (17)C17—H170.9300
C5—H50.9300C18—H180.9300
C6—C71.4614 (17)
C9—N1—C1123.76 (14)O2—C10—O3118.18 (16)
C9—N1—H1N118.7 (9)O2—C10—C8124.05 (15)
C1—N1—H1N117.3 (8)O3—C10—C8117.77 (14)
C7—N2—C11134.34 (14)N2—C11—C13114.59 (12)
C7—N2—H2N109.4 (8)N2—C11—C12106.35 (12)
C11—N2—H2N116.2 (8)C13—C11—C12109.74 (12)
C10—O3—H3O107.6 (12)N2—C11—H11108.7
N1—C1—C2117.90 (14)C13—C11—H11108.7
N1—C1—C6120.48 (14)C12—C11—H11108.7
C2—C1—C6121.61 (14)C11—C12—H12C109.5
C3—C2—C1120.16 (14)C11—C12—H12B109.5
C3—C2—H2119.9H12C—C12—H12B109.5
C1—C2—H2119.9C11—C12—H12A109.5
C2—C3—C4119.44 (15)H12C—C12—H12A109.5
C2—C3—H3120.3H12B—C12—H12A109.5
C4—C3—H3120.3C14—C13—C18118.34 (14)
C5—C4—C3120.65 (14)C14—C13—C11119.62 (14)
C5—C4—H4119.7C18—C13—C11121.81 (14)
C3—C4—H4119.7C13—C14—C15121.19 (15)
C4—C5—C6121.79 (14)C13—C14—H14119.4
C4—C5—H5119.1C15—C14—H14119.4
C6—C5—H5119.1C16—C15—C14120.00 (16)
C5—C6—C1116.28 (13)C16—C15—H15120.0
C5—C6—C7125.69 (14)C14—C15—H15120.0
C1—C6—C7117.98 (13)C15—C16—C17119.13 (17)
N2—C7—C8116.72 (13)C15—C16—H16120.4
N2—C7—C6124.51 (14)C17—C16—H16120.4
C8—C7—C6118.77 (13)C16—C17—C18121.14 (16)
C7—C8—C9119.89 (14)C16—C17—H17119.4
C7—C8—C10122.05 (14)C18—C17—H17119.4
C9—C8—C10118.06 (14)C17—C18—C13120.19 (14)
O1—C9—N1117.89 (13)C17—C18—H18119.9
O1—C9—C8123.34 (15)C13—C18—H18119.9
N1—C9—C8118.75 (15)
C9—N1—C1—C2175.26 (14)C1—N1—C9—C83.8 (2)
C9—N1—C1—C63.8 (2)C7—C8—C9—O1177.18 (13)
N1—C1—C2—C3175.92 (13)C10—C8—C9—O12.7 (2)
C6—C1—C2—C33.2 (2)C7—C8—C9—N11.2 (2)
C1—C2—C3—C41.6 (2)C10—C8—C9—N1178.91 (13)
C2—C3—C4—C50.4 (2)C7—C8—C10—O22.3 (2)
C3—C4—C5—C60.9 (2)C9—C8—C10—O2177.57 (14)
C4—C5—C6—C10.5 (2)C7—C8—C10—O3177.13 (13)
C4—C5—C6—C7177.97 (14)C9—C8—C10—O33.0 (2)
N1—C1—C6—C5176.49 (13)C7—N2—C11—C1367.3 (2)
C2—C1—C6—C52.57 (19)C7—N2—C11—C12171.26 (14)
N1—C1—C6—C71.15 (19)N2—C11—C13—C14149.27 (13)
C2—C1—C6—C7179.79 (13)C12—C11—C13—C1491.19 (15)
C11—N2—C7—C8179.24 (15)N2—C11—C13—C1836.34 (18)
C11—N2—C7—C61.6 (2)C12—C11—C13—C1883.21 (15)
C5—C6—C7—N27.6 (2)C18—C13—C14—C151.0 (2)
C1—C6—C7—N2175.04 (13)C11—C13—C14—C15173.62 (14)
C5—C6—C7—C8171.59 (13)C13—C14—C15—C160.0 (2)
C1—C6—C7—C85.81 (18)C14—C15—C16—C170.5 (2)
N2—C7—C8—C9174.91 (12)C15—C16—C17—C180.1 (3)
C6—C7—C8—C95.87 (19)C16—C17—C18—C130.8 (3)
N2—C7—C8—C104.98 (19)C14—C13—C18—C171.4 (2)
C6—C7—C8—C10174.23 (13)C11—C13—C18—C17173.10 (15)
C1—N1—C9—O1177.72 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i1.038 (17)1.794 (17)2.8291 (15)174.5 (14)
N2—H2N···O20.926 (14)1.738 (14)2.5849 (17)150.4 (12)
O3—H3O···O10.943 (19)1.59 (2)2.4712 (15)154.1 (18)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16N2O3
Mr308.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.612 (2), 5.9750 (6), 18.014 (2)
β (°) 110.814 (14)
V3)1470.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur 3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10943, 2541, 1174
Rint0.068
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.033, 0.66
No. of reflections2541
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.10, 0.10

Computer programs: CrysAlis PRO (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—C91.2684 (15)C7—C81.4177 (16)
O2—C101.2252 (15)C8—C91.4334 (17)
O3—C101.3268 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i1.038 (17)1.794 (17)2.8291 (15)174.5 (14)
N2—H2N···O20.926 (14)1.738 (14)2.5849 (17)150.4 (12)
O3—H3O···O10.943 (19)1.59 (2)2.4712 (15)154.1 (18)
Symmetry code: (i) x+1, y+1, z.
 

References

First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationOxford Diffraction (2005). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Mospanova, E. V., Davidenko, A. A. & Shishkina, S. V. (2010). Khim. Geterotsikl. Soedin. pp. 1690–1701.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds