organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[4-(Pyridin-2-yl)pyrimidin-2-yl]sulfan­yl}acetic acid

aDeparment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
*Correspondence e-mail: dapdong@163.com

(Received 17 August 2011; accepted 28 September 2011; online 12 October 2011)

In the title mol­ecule, C11H9N3O2S, the pyridine and pyrimidine rings are almost parallel [dihedral angle = 6.7 (1)°]. In the crystal, adjacent mol­ecules are joined by O—H⋯N and C—H⋯O hydrogen bonds, leading to the formation of a sheet parallel to (10[\overline{2}]).

Related literature

For details of the synthesis and general background, see: Dong et al. (2009[Dong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040-1048.]); Wang (2011[Wang, C.-H. (2011). Acta Cryst. E67, o690.]). For the crystal structures of coord­ination complexes with related ligands, see: Du et al. (2004[Du, M., Zhao, X. J. & Wang, Y. (2004). Dalton Trans. pp. 2065-2072.]); Zhu et al. (2009[Zhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N3O2S

  • Mr = 247.28

  • Monoclinic, P 21 /c

  • a = 6.5722 (2) Å

  • b = 22.4650 (8) Å

  • c = 7.4314 (2) Å

  • β = 93.237 (2)°

  • V = 1095.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 291 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.920, Tmax = 0.950

  • 10868 measured reflections

  • 2524 independent reflections

  • 2116 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.05

  • 2524 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 1.87 2.694 (2) 178
C2—H2A⋯O1ii 0.93 2.58 3.230 (2) 127
C8—H8⋯O2iii 0.93 2.48 3.392 (2) 165
C9—H9⋯O1iv 0.93 2.45 3.296 (2) 151
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational dsign and assembly of new coordination polymers with with thioethers derived from 4-pyridinyl pyrimidine-2-thiol have received considerable attention in recent years (Dong et al., 2009; Du et al., 2004; Wang, 2011; Zhu et al., 2009). Here we report the crystal structure of a newly synthesized compound derived from 4-(4-pyridinyl)pyrimidine-2-thiol.

The molecular structure of title compound is shown in Fig. 1 together with the atom-numbering scheme. The pyridine and pyrimidine rings are almost parallel with a dihedral angle of 6.7 (1)°. Molecules are linked by O-H···N hydrogen bonds into a chain running in direction [2 0 1]. C-H···O interactions join these chains into a two-dimensional network with base vectors [2 0 1] and [0 1 0] (equivalent to a sheet parallel to the (1 0 -2) lattice planes). Geometrical details are given in Table 1; a plot is given in Fig. 2.

Related literature top

For details of the synthesis and general background, see: Dong et al. (2009); Wang (2011). For the crystal structures of coordination complexes with related ligands, see: Du et al. (2004); Zhu et al. (2009).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by a similar procedure as reported in the literature (Dong et al., 2009). To a solution of 4-(4-pyridinyl)pyrimidine-2-thiol (3.78 g, 20 mmol) and sodium hydroxide (0.80 g, 20 mmol) in water (30 ml), 2-bromoacetic acid (2.78 g, 20 mmol) in water (30 ml) was added. The mixture was stirred at room temperature for 4 h. Dilute hydrochloric acid was added to the reacted solution until the pH was about 4. Precipitates were filtered, washed by water and ethanol, and dried in vacuum. Single crystals suitable for X-ray diffraction were grown from a methanol solution by slow evaporation in air at room temperature.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Perspective view of the crystal packing. Hydrogen bonding interactions are indicated with dashed lines.
2-{[4-(Pyridin-2-yl)pyrimidin-2-yl]sulfanyl}acetic acid top
Crystal data top
C11H9N3O2SF(000) = 512.0
Mr = 247.28Dx = 1.499 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2524 reflections
a = 6.5722 (2) Åθ = 1.8–27.5°
b = 22.4650 (8) ŵ = 0.29 mm1
c = 7.4314 (2) ÅT = 291 K
β = 93.237 (2)°Block, pale yellow
V = 1095.45 (6) Å30.28 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2524 independent reflections
Radiation source: fine-focus sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.920, Tmax = 0.950k = 2429
10868 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.289P]
where P = (Fo2 + 2Fc2)/3
2524 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H9N3O2SV = 1095.45 (6) Å3
Mr = 247.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5722 (2) ŵ = 0.29 mm1
b = 22.4650 (8) ÅT = 291 K
c = 7.4314 (2) Å0.28 × 0.20 × 0.18 mm
β = 93.237 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2116 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.950Rint = 0.022
10868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2524 reflectionsΔρmin = 0.24 e Å3
155 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0901 (2)0.34978 (6)0.26132 (19)0.0342 (3)
C20.3668 (2)0.39680 (7)0.1300 (2)0.0412 (4)
H2A0.49730.39590.07470.049*
C30.2718 (2)0.45062 (7)0.1562 (2)0.0391 (3)
H30.33700.48600.12290.047*
C40.0745 (2)0.45042 (6)0.23433 (19)0.0327 (3)
C50.0431 (2)0.50633 (6)0.25998 (19)0.0333 (3)
C60.2462 (2)0.50591 (7)0.3208 (2)0.0427 (4)
H60.31200.47020.34930.051*
C70.3493 (3)0.55934 (8)0.3385 (2)0.0511 (4)
H70.48620.56020.37780.061*
C80.2464 (3)0.61115 (7)0.2972 (2)0.0493 (4)
H80.31130.64780.30960.059*
C90.0444 (3)0.60757 (7)0.2367 (3)0.0490 (4)
H90.02420.64280.20780.059*
C100.2527 (2)0.30146 (7)0.4321 (2)0.0380 (3)
H10A0.32690.32420.34630.046*
H10B0.23690.32590.53800.046*
C110.3674 (2)0.24555 (7)0.4832 (2)0.0365 (3)
N10.01710 (17)0.39939 (5)0.28821 (16)0.0340 (3)
N20.27844 (18)0.34541 (6)0.18112 (18)0.0391 (3)
N30.0580 (2)0.55666 (6)0.21748 (19)0.0432 (3)
O10.30963 (19)0.19622 (5)0.4458 (2)0.0623 (4)
O20.53762 (17)0.25707 (5)0.57657 (19)0.0544 (3)
H20.59450.22570.60570.082*
S10.00702 (6)0.280700 (17)0.33349 (6)0.04496 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (7)0.0315 (7)0.0371 (8)0.0008 (6)0.0044 (6)0.0020 (6)
C20.0329 (7)0.0395 (8)0.0500 (9)0.0000 (6)0.0100 (6)0.0044 (7)
C30.0357 (7)0.0329 (8)0.0477 (9)0.0046 (6)0.0053 (6)0.0035 (6)
C40.0344 (7)0.0297 (7)0.0338 (7)0.0004 (5)0.0004 (6)0.0001 (5)
C50.0373 (7)0.0279 (7)0.0345 (7)0.0011 (6)0.0004 (6)0.0005 (6)
C60.0425 (8)0.0330 (8)0.0512 (9)0.0010 (6)0.0106 (7)0.0027 (7)
C70.0470 (9)0.0454 (10)0.0591 (11)0.0091 (7)0.0137 (8)0.0012 (8)
C80.0612 (10)0.0321 (8)0.0543 (10)0.0104 (7)0.0000 (8)0.0057 (7)
C90.0564 (10)0.0281 (8)0.0628 (11)0.0042 (7)0.0045 (8)0.0008 (7)
C100.0340 (7)0.0297 (8)0.0491 (9)0.0002 (6)0.0078 (6)0.0004 (6)
C110.0324 (7)0.0313 (8)0.0452 (8)0.0003 (6)0.0041 (6)0.0005 (6)
N10.0328 (6)0.0284 (6)0.0399 (7)0.0004 (5)0.0052 (5)0.0024 (5)
N20.0347 (6)0.0331 (7)0.0482 (7)0.0028 (5)0.0096 (5)0.0040 (5)
N30.0418 (7)0.0286 (7)0.0587 (8)0.0041 (5)0.0000 (6)0.0007 (6)
O10.0526 (7)0.0291 (6)0.1011 (11)0.0001 (5)0.0329 (7)0.0024 (6)
O20.0424 (6)0.0322 (6)0.0852 (9)0.0028 (5)0.0269 (6)0.0038 (6)
S10.0384 (2)0.0272 (2)0.0670 (3)0.00354 (15)0.01691 (18)0.00762 (17)
Geometric parameters (Å, º) top
C1—N11.3276 (18)C7—C81.372 (2)
C1—N21.3466 (18)C7—H70.9300
C1—S11.7507 (15)C8—C91.380 (2)
C2—N21.3377 (19)C8—H80.9300
C2—C31.369 (2)C9—N31.331 (2)
C2—H2A0.9300C9—H90.9300
C3—C41.3909 (19)C10—C111.503 (2)
C3—H30.9300C10—S11.7964 (14)
C4—N11.3453 (17)C10—H10A0.9700
C4—C51.4815 (19)C10—H10B0.9700
C5—N31.3401 (18)C11—O11.1991 (18)
C5—C61.385 (2)C11—O21.3085 (17)
C6—C71.381 (2)O2—H20.8200
C6—H60.9300
N1—C1—N2126.48 (13)C7—C8—C9118.45 (15)
N1—C1—S1121.11 (10)C7—C8—H8120.8
N2—C1—S1112.41 (10)C9—C8—H8120.8
N2—C2—C3122.31 (13)N3—C9—C8123.84 (15)
N2—C2—H2A118.8N3—C9—H9118.1
C3—C2—H2A118.8C8—C9—H9118.1
C2—C3—C4117.60 (13)C11—C10—S1108.22 (10)
C2—C3—H3121.2C11—C10—H10A110.1
C4—C3—H3121.2S1—C10—H10A110.1
N1—C4—C3121.20 (13)C11—C10—H10B110.1
N1—C4—C5117.57 (12)S1—C10—H10B110.1
C3—C4—C5121.23 (13)H10A—C10—H10B108.4
N3—C5—C6122.60 (14)O1—C11—O2123.76 (14)
N3—C5—C4115.89 (12)O1—C11—C10124.47 (13)
C6—C5—C4121.49 (13)O2—C11—C10111.76 (12)
C7—C6—C5118.94 (15)C1—N1—C4116.48 (12)
C7—C6—H6120.5C2—N2—C1115.86 (12)
C5—C6—H6120.5C9—N3—C5117.29 (14)
C8—C7—C6118.87 (15)C11—O2—H2109.5
C8—C7—H7120.6C1—S1—C10101.46 (7)
C6—C7—H7120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.872.694 (2)178
C2—H2A···O1ii0.932.583.230 (2)127
C8—H8···O2iii0.932.483.392 (2)165
C9—H9···O1iv0.932.453.296 (2)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9N3O2S
Mr247.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.5722 (2), 22.4650 (8), 7.4314 (2)
β (°) 93.237 (2)
V3)1095.45 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.920, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
10868, 2524, 2116
Rint0.022
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.05
No. of reflections2524
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.872.694 (2)178
C2—H2A···O1ii0.932.583.230 (2)127
C8—H8···O2iii0.932.483.392 (2)165
C9—H9···O1iv0.932.453.296 (2)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Foundation of China (No. 20871039), the Program for Excellent Young Talents in Universities of Anhui Province (2011SQRL128) and the Science Foundation of Hefei Normal University(2010kj01zd).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28, 1040–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Zhao, X. J. & Wang, Y. (2004). Dalton Trans. pp. 2065–2072.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-H. (2011). Acta Cryst. E67, o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-B., Xu, G. & Sun, Y.-Y. (2009). Acta Cryst. E65, m1126.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds