organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-({(E)-[2-(But-3-en-1-yl)-1-(prop-2-en-1-yl)-4-sulfanyl-1H-imidazol-5-yl]methyl­­idene}amino)-3-phenyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Advanced Technology Fusion, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143 701, Republic of Korea
*Correspondence e-mail: sampath@konkuk.ac.kr, sams76@gmail.com

(Received 19 August 2011; accepted 28 September 2011; online 5 October 2011)

In the title compound, C19H20N6S2, the dihedral angle between the phenyl and triazole rings is 24.1 (2)° while the dihedral angles between the imidazole ring and the triazole and phenyl rings are 39.9 (2) and 55.3 (2)°, respectively. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonds which form chains along [10[\overline{1}]].

Related literature

For biological applications of Schiff base compounds, see: Liang (2003[Liang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50-51.]); Bacci et al. (2005[Bacci, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397-408.]). For the biological activity of triazoles and their derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056-2066.]); Sztanke et al. (2008[Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszen, M. (2008). Eur. J. Med. Chem. 43, 404-419.]); Padmavathi et al. (2008[Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]); Thenmozhi et al. (2010[Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558.]). Pharmacological compounds having triazole moieties appear to be very effective aromatese inhibitors for the prevention of breast cancer, see: Ünver et al. (2010[Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N6S2

  • Mr = 396.53

  • Monoclinic, C c

  • a = 13.384 (3) Å

  • b = 13.892 (3) Å

  • c = 11.349 (2) Å

  • β = 101.953 (3)°

  • V = 2064.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 7754 measured reflections

  • 3788 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.139

  • S = 1.07

  • 3788 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N16i 0.86 2.05 2.907 (5) 172
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Synthesis and structural investigation of Schiff base compounds have been given attention due to their interesting structural features and potential biological applications (Liang, 2003; Bacci et al., 2005). The biological importance of imidazoles and triazoles has stimulated much work on these heterocycles. Triazole compounds and their derivatives have many applications in medicine and were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti-inflammatory, anticancer and antioxidant properties (Amir et al., 2008; Sztanke et al., 2008; Padmavathi et al., 2008; Thenmozhi et al., 2010). The 1,2,4-triazole group interacts strongly with heme iron and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, it was reported that pharmacological compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatese inhibitors for preventing breast cancer (Ünver et al., 2010). In view of these important applications of imidazolines, here we report the crystal structure of the title compound (Fig. 1).

The title compound contains imidazole and 1,2,4-triazole rings connected by an imine group. A phenyl ring is substituted at position 5 of the triazole ring and the dihedral angle between these rings is 24.1 (2)°. The imidazole and triazole groups are substituted on the imine group (N12—C13) in the E-configuration [N1—N12—C13—C14 = -174.4 (3)°]. The triazole ring is not co-planar with the imidazole ring and this may be due to the substitution of the phenyl ring on the triazole ring. The dihedral angles between the imidazole ring and the triazole and phenyl rings are 39.9 (2)° and 55.3 (2)°, respectively. The imidazole ring is substituted by bulky groups (3-butene, 2-propene) as well as an imine and a thiol group, which gives strain on the ring. The 3-butene and imine substituents show an extended zigzag confirmation with respect to the imidazole ring.

The packing diagram of the title compound viewed down the a axis is shown in Fig. 2. The crystal packing displays intermolecular N—H···N hydrogen bonds (Table 1), which join the molecules into chains in the [1 0 -1] direction.

Related literature top

For biological applications of Schiff base compounds, see: Liang (2003); Bacci et al. (2005). For the biological activity of triazoles and their derivatives, see: Amir et al. (2008); Sztanke et al. (2008); Padmavathi et al. (2008); Thenmozhi et al. (2010). Pharmacological compounds having triazole moieties appear to be very effective aromatese inhibitors for the prevention of breast cancer, see: Ünver et al. (2010).

Experimental top

The title compound was synthesized by refluxing 4-amino-5-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (0.01 mmol) and 2-(but-3-en-1-yl)-1-(prop-2-en-1-yl)-4-sulfanyl-1H-imidazole-5- carbaldehyde (0.01 mmol) in ethanol (50 ml) with a few drops of H2SO4 for 3 h on a water bath. The reaction progress was monitored by TLC. The resulting precipitate was filtered off, washed with cold ethanol, dried and purified to give the target product as a colorless solid in 74% yield. The resulting Schiff base compound was seperated out and crystallized in ethanol.

Refinement top

H atoms were positioned geometrically, taking H-bond formation potential into account where necessary, and refined using a riding model with C—H = 0.93 Å for aromatic H, 0.97 Å for methylene, for aromatic N—H = 0.86 Å and for S—H = 1.2 Å. The Uiso parameters for H atoms were constrained to be 1.5Ueq of the carrier atom for the thiol H atom and 1.2Ueq of the carrier atom for the remaining H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title molecule with the atom numbering scheme. H atoms were omitted. Displacement ellipsoid are drawn at 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. H atoms not involved in hydrogen bonds were omitted. Dashed lines indicate the intermolecular interactions between the molecules.
4-({(E)-[2-(But-3-en-1-yl)-1-(prop-2-en-1-yl)-4-sulfanyl- 1H-imidazol-5-yl]methylidene}amino)-3-phenyl-1H- 1,2,4-triazole-5(4H)-thione top
Crystal data top
C19H20N6S2F(000) = 832
Mr = 396.53Dx = 1.276 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 13.384 (3) ÅCell parameters from 7754 reflections
b = 13.892 (3) Åθ = 2.1–27.0°
c = 11.349 (2) ŵ = 0.27 mm1
β = 101.953 (3)°T = 293 K
V = 2064.5 (7) Å3Prism, pale yellow
Z = 40.28 × 0.25 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 2.1°
ω scansh = 1616
7754 measured reflectionsk = 1717
3788 independent reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0788P)2 + 0.8006P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H20N6S2V = 2064.5 (7) Å3
Mr = 396.53Z = 4
Monoclinic, CcMo Kα radiation
a = 13.384 (3) ŵ = 0.27 mm1
b = 13.892 (3) ÅT = 293 K
c = 11.349 (2) Å0.28 × 0.25 × 0.23 mm
β = 101.953 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3391 reflections with I > 2σ(I)
7754 measured reflectionsRint = 0.017
3788 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.07Δρmax = 0.33 e Å3
3788 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62454 (8)0.22573 (8)0.09079 (10)0.0795 (3)
H10.67130.19350.16130.119*
S20.50671 (9)0.18382 (7)0.24665 (11)0.0776 (3)
N10.4682 (2)0.38001 (19)0.2489 (3)0.0520 (6)
C20.4505 (3)0.2855 (3)0.2779 (3)0.0607 (8)
N30.3797 (2)0.2949 (2)0.3446 (3)0.0677 (8)
H30.35360.24650.37480.081*
N40.3523 (3)0.3875 (2)0.3605 (3)0.0695 (8)
C50.4076 (3)0.4390 (3)0.3039 (3)0.0565 (8)
C60.3977 (3)0.5438 (3)0.2943 (3)0.0607 (8)
C70.4199 (3)0.5949 (3)0.1981 (4)0.0718 (10)
H70.44870.56410.14050.086*
C80.3985 (4)0.6924 (3)0.1887 (5)0.0930 (14)
H80.41350.72680.12420.112*
C90.3562 (4)0.7392 (4)0.2712 (6)0.0979 (16)
H90.34050.80430.26210.117*
C100.3367 (5)0.6889 (4)0.3690 (6)0.1026 (16)
H100.30980.72050.42760.123*
C110.3571 (4)0.5923 (3)0.3796 (5)0.0864 (13)
H110.34340.55880.44540.104*
N120.5512 (2)0.4157 (2)0.2041 (2)0.0534 (6)
C130.5707 (2)0.3656 (2)0.1163 (3)0.0510 (7)
H130.52630.31570.08630.061*
C140.6567 (2)0.3821 (2)0.0621 (3)0.0498 (7)
C150.6859 (3)0.3256 (2)0.0233 (3)0.0554 (8)
N160.7739 (2)0.3557 (2)0.0521 (3)0.0586 (7)
C170.8009 (3)0.4324 (2)0.0163 (3)0.0576 (8)
N180.7337 (2)0.45065 (18)0.0878 (2)0.0529 (6)
C190.7387 (3)0.5317 (3)0.1724 (3)0.0615 (8)
H19A0.70620.51300.23780.074*
H19B0.80980.54590.20670.074*
C200.6890 (4)0.6192 (3)0.1151 (5)0.0787 (12)
H200.68810.67150.16590.094*
C210.6481 (5)0.6321 (4)0.0080 (6)0.0983 (16)
H21A0.64650.58260.04750.118*
H21B0.61910.69150.01700.118*
C220.8959 (4)0.4875 (3)0.0161 (5)0.0925 (16)
H22A0.90240.49730.06660.111*
H22B0.89020.55030.05140.111*
C230.9883 (4)0.4404 (4)0.0821 (9)0.152 (3)
H23B0.98790.37360.05710.182*
H23A0.98800.44150.16750.182*
C241.0858 (6)0.4886 (5)0.0613 (15)0.220 (6)
H241.08440.55050.02980.264*
C251.1675 (6)0.4425 (8)0.0880 (11)0.199 (5)
H25A1.16770.38070.11950.239*
H25B1.22810.47000.07640.239*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0824 (7)0.0741 (6)0.0920 (7)0.0194 (5)0.0409 (6)0.0316 (5)
S20.0906 (7)0.0572 (5)0.0970 (7)0.0004 (5)0.0467 (6)0.0015 (5)
N10.0515 (14)0.0552 (15)0.0571 (15)0.0019 (11)0.0294 (12)0.0031 (12)
C20.0590 (19)0.068 (2)0.061 (2)0.0067 (16)0.0263 (16)0.0024 (15)
N30.0701 (18)0.0648 (18)0.081 (2)0.0029 (14)0.0454 (16)0.0120 (15)
N40.0696 (18)0.0688 (18)0.084 (2)0.0036 (15)0.0483 (17)0.0082 (16)
C50.0526 (17)0.070 (2)0.0534 (18)0.0031 (15)0.0248 (14)0.0057 (15)
C60.0495 (18)0.0632 (19)0.075 (2)0.0059 (15)0.0267 (16)0.0011 (17)
C70.081 (2)0.067 (2)0.074 (2)0.0027 (19)0.031 (2)0.0065 (18)
C80.111 (4)0.076 (3)0.095 (3)0.005 (3)0.027 (3)0.019 (2)
C90.102 (4)0.066 (3)0.125 (4)0.027 (2)0.022 (3)0.005 (3)
C100.112 (4)0.082 (3)0.127 (4)0.024 (3)0.057 (3)0.007 (3)
C110.092 (3)0.087 (3)0.095 (3)0.023 (2)0.053 (3)0.002 (2)
N120.0522 (14)0.0620 (15)0.0540 (15)0.0017 (12)0.0295 (12)0.0045 (12)
C130.0480 (16)0.0578 (18)0.0504 (18)0.0032 (13)0.0178 (14)0.0021 (14)
C140.0515 (17)0.0523 (16)0.0499 (18)0.0035 (13)0.0208 (14)0.0019 (13)
C150.0579 (18)0.0545 (18)0.060 (2)0.0018 (14)0.0274 (15)0.0023 (14)
N160.0628 (16)0.0585 (16)0.0652 (18)0.0012 (13)0.0380 (14)0.0036 (13)
C170.063 (2)0.0534 (17)0.067 (2)0.0015 (15)0.0368 (17)0.0028 (15)
N180.0605 (15)0.0483 (13)0.0578 (15)0.0009 (12)0.0303 (12)0.0003 (12)
C190.066 (2)0.0562 (18)0.067 (2)0.0088 (15)0.0261 (17)0.0108 (15)
C200.082 (3)0.068 (2)0.089 (3)0.002 (2)0.024 (3)0.016 (2)
C210.108 (4)0.073 (3)0.106 (4)0.014 (3)0.006 (3)0.002 (3)
C220.095 (3)0.082 (3)0.125 (4)0.032 (3)0.079 (3)0.029 (3)
C230.059 (3)0.084 (3)0.322 (11)0.019 (2)0.063 (4)0.027 (5)
C240.093 (5)0.090 (4)0.514 (19)0.031 (4)0.152 (8)0.058 (7)
C250.080 (4)0.223 (10)0.314 (14)0.025 (5)0.087 (6)0.018 (10)
Geometric parameters (Å, º) top
S1—C151.711 (4)C14—C151.365 (4)
S1—H11.2000C14—N181.389 (4)
S2—C21.673 (4)C15—N161.352 (4)
N1—C21.385 (5)N16—C171.324 (5)
N1—C51.389 (4)C17—N181.355 (4)
N1—N121.405 (4)C17—C221.485 (5)
C2—N31.337 (5)N18—C191.472 (4)
N3—N41.359 (4)C19—C201.471 (6)
N3—H30.8600C19—H19A0.9700
N4—C51.292 (4)C19—H19B0.9700
C5—C61.463 (5)C20—C211.239 (7)
C6—C111.380 (5)C20—H200.9300
C6—C71.386 (5)C21—H21A0.9300
C7—C81.384 (6)C21—H21B0.9300
C7—H70.9300C22—C231.461 (9)
C8—C91.356 (8)C22—H22A0.9700
C8—H80.9300C22—H22B0.9700
C9—C101.381 (8)C23—C241.529 (8)
C9—H90.9300C23—H23B0.9700
C10—C111.370 (7)C23—H23A0.9700
C10—H100.9300C24—C251.250 (13)
C11—H110.9300C24—H240.9300
N12—C131.285 (4)C25—H25A0.9300
C13—C141.432 (4)C25—H25B0.9300
C13—H130.9300
C15—S1—H1109.5N16—C15—S1120.2 (2)
C2—N1—C5107.9 (3)C14—C15—S1127.1 (3)
C2—N1—N12127.4 (3)C17—N16—C15104.6 (3)
C5—N1—N12122.3 (3)N16—C17—N18111.6 (3)
N3—C2—N1102.6 (3)N16—C17—C22123.0 (3)
N3—C2—S2127.2 (3)N18—C17—C22125.4 (3)
N1—C2—S2130.1 (3)C17—N18—C14107.5 (3)
C2—N3—N4114.2 (3)C17—N18—C19126.0 (3)
C2—N3—H3122.9C14—N18—C19126.4 (3)
N4—N3—H3122.9C20—C19—N18112.8 (3)
C5—N4—N3105.1 (3)C20—C19—H19A109.0
N4—C5—N1110.2 (3)N18—C19—H19A109.0
N4—C5—C6122.4 (3)C20—C19—H19B109.0
N1—C5—C6127.2 (3)N18—C19—H19B109.0
C11—C6—C7118.8 (4)H19A—C19—H19B107.8
C11—C6—C5118.4 (4)C21—C20—C19128.4 (4)
C7—C6—C5122.6 (3)C21—C20—H20115.8
C8—C7—C6119.2 (4)C19—C20—H20115.8
C8—C7—H7120.4C20—C21—H21A120.0
C6—C7—H7120.4C20—C21—H21B120.0
C9—C8—C7121.6 (5)H21A—C21—H21B120.0
C9—C8—H8119.2C23—C22—C17113.7 (4)
C7—C8—H8119.2C23—C22—H22A108.8
C8—C9—C10119.2 (4)C17—C22—H22A108.8
C8—C9—H9120.4C23—C22—H22B108.8
C10—C9—H9120.4C17—C22—H22B108.8
C11—C10—C9119.9 (5)H22A—C22—H22B107.7
C11—C10—H10120.1C22—C23—C24112.6 (7)
C9—C10—H10120.1C22—C23—H23B109.1
C10—C11—C6121.2 (5)C24—C23—H23B109.1
C10—C11—H11119.4C22—C23—H23A109.1
C6—C11—H11119.4C24—C23—H23A109.1
C13—N12—N1113.1 (3)H23B—C23—H23A107.8
N12—C13—C14123.8 (3)C25—C24—C23118.0 (9)
N12—C13—H13118.1C25—C24—H24121.0
N14—C13—H13118.1C23—C24—H24121.0
C15—C14—N18103.6 (3)C24—C25—H25A120.0
C15—C14—C13125.9 (3)C24—C25—H25B120.0
N18—C14—C13130.3 (3)H25A—C25—H25B120.0
N16—C15—C14112.7 (3)
C5—N1—C2—N31.5 (4)N1—N12—C13—C14174.4 (3)
N12—N1—C2—N3164.0 (3)N12—C13—C14—C15173.5 (3)
C5—N1—C2—S2175.1 (3)N12—C13—C14—N180.4 (5)
N12—N1—C2—S212.6 (6)N18—C14—C15—N160.8 (4)
N1—C2—N3—N40.5 (4)C13—C14—C15—N16176.0 (3)
S2—C2—N3—N4176.2 (3)N18—C14—C15—S1178.4 (3)
C2—N3—N4—C50.7 (4)C13—C14—C15—S13.3 (5)
N3—N4—C5—N11.6 (4)C14—C15—N16—C170.1 (4)
N3—N4—C5—C6177.0 (3)S1—C15—N16—C17179.2 (3)
C2—N1—C5—N42.0 (4)C15—N16—C17—N180.7 (4)
N12—N1—C5—N4165.6 (3)C15—N16—C17—C22178.4 (4)
C2—N1—C5—C6177.2 (4)N16—C17—N18—C141.3 (4)
N12—N1—C5—C619.2 (5)C22—C17—N18—C14178.8 (4)
N4—C5—C6—C1123.2 (6)N16—C17—N18—C19178.2 (3)
N1—C5—C6—C11162.2 (4)C22—C17—N18—C194.2 (6)
N4—C5—C6—C7151.5 (4)C15—C14—N18—C171.2 (3)
N1—C5—C6—C723.0 (6)C13—C14—N18—C17176.1 (3)
C11—C6—C7—C81.5 (6)C15—C14—N18—C19178.1 (3)
C5—C6—C7—C8173.2 (4)C13—C14—N18—C197.0 (5)
C6—C7—C8—C90.1 (8)C17—N18—C19—C2086.8 (4)
C7—C8—C9—C101.9 (9)C14—N18—C19—C2089.6 (4)
C8—C9—C10—C112.1 (9)N18—C19—C20—C212.4 (7)
C9—C10—C11—C60.4 (9)N16—C17—C22—C2376.5 (6)
C7—C6—C11—C101.4 (7)N18—C17—C22—C23100.8 (5)
C5—C6—C11—C10173.5 (5)C17—C22—C23—C24169.4 (7)
C2—N1—N12—C1347.3 (4)C22—C23—C24—C25162.9 (12)
C5—N1—N12—C13152.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N16i0.862.052.907 (5)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20N6S2
Mr396.53
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)13.384 (3), 13.892 (3), 11.349 (2)
β (°) 101.953 (3)
V3)2064.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7754, 3788, 3391
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.139, 1.07
No. of reflections3788
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N16i0.862.052.907 (5)172
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

References

First citationAmir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBacci, A., Carcelli, M., Pelagatti, P., Pelizzi, G., Rodriguez-Arguelles, M. C., Rogolino, D., Solinas, C. & Zani, F. (2005). J. Inorg. Biochem. 99, 397–408.  Web of Science PubMed Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiang, F.-Z. (2003). J. Shandong Normal Univ. (Nat. Sci.), 18, 50–51.  Google Scholar
First citationPadmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszen, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds