organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-3,6-Dioxopiperazine-2,5-diacet­amide

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 7 September 2011; accepted 19 October 2011; online 29 October 2011)

The title compound, C8H12N4O4, was obtained by cyclization of the two L-asparagine mol­ecules and reveals a crystallographic inversion symmetry, and accordingly the two stereogenic centres are of opposite chirality. Thus, an asymmetric unit comprises a half of a mol­ecule. The mol­ecules are assembled into a three-dimensional hydrogen-bonding network by N—H⋯O hydrogen bonds.

Related literature

For general background to coordination polymers, see: Anitha et al. (2005[Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463-o1465.]); Aarthy et al. (2005[Aarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042-o2044.]); Guenifa et al. (2009[Guenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264-o2265.]); Moussa Slimane et al. (2009[Moussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180-o2181.]). For related structures, see: Howes et al. (1983[Howes, C., Alcock, N. W., Golding, B. T. & McCabe, R. W. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2287-2291.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N4O4

  • Mr = 228.22

  • Monoclinic, P 21 /c

  • a = 5.0409 (10) Å

  • b = 8.3178 (17) Å

  • c = 12.900 (3) Å

  • β = 109.76 (3)°

  • V = 509.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.988, Tmax = 0.988

  • 4836 measured reflections

  • 1166 independent reflections

  • 889 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.07

  • 1166 reflections

  • 73 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.12 2.9185 (19) 154
N1—H1B⋯O2ii 0.86 2.03 2.8795 (18) 167
N2—H2C⋯O1iii 0.86 2.06 2.8509 (17) 152
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The past decade has witnessed enormous expansion of research on non-centrosymmetric coordination polymers. For such purpose, rational design and synthesis have been focused on choices of metal cations with non-centrosymmetric organic ligands. Asparagine (Anitha et al., (2005); Aarthy et al., (2005); Guenifa et al., (2009); Moussa Slimane et al., (2009)) is a chiral molecule and one of the common neutral amino acids with carboxamide as the side-chain functional group. However, condensation led to a centrosyymmetric compound and we report its crystal structure.

In (I) (Fig. 1), two L–asparagine molecules engage in the dehydration condensation between each carboxyl and the adjacent amino groups. The resulting product reveals the molecular symmetry Ci (crystallographic inversion symmetry). In (I) a piperazinedione-2,5 unit is close to be planar (the mean value of intracyclic torsion angles is 2.65 °) and it is different to those reported by (Howes et al., (1983)). The molecules are connected through N1–H1A···O2i, N1–H1B···O2ii, and N2–H2C···O1iii hydrogen bonds generating a 3D-network (Table 1, Figs. 2 and 3.

Related literature top

For general background to coordination polymers, see: Anitha et al. (2005); Aarthy et al. (2005); Guenifa et al. (2009); Moussa Slimane et al. (2009). For related structures, see: Howes et al. (1983).

Experimental top

Dropwise addition of 1 M NaOH (1.0 mL) to a stirred aqueous solution of (0.1438 g, 0.5 mmol) ZnSO4.7H2O in 5.0 mL H2O produced pale-white Zn(OH)2.xH2O precipitate, which was separated by centrifugation and washed with distilled water for several times. Subsequently, the 0.1501 g (1.0 mmol) L–asparagine was dissolved completely with 10.0 mL H2O, and then the precipitate was added. The resulting mixture was further stirred at 323 K for 1 h and then filtered. The white filtrate was allowed to stand at room temperature. Slow evaporation for several days afforded colourless needle-like crystals.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.93Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 45% probability dispalcement ellipsoids. [Symmetry codes: (i)–x+1, -y, –z+1.]
[Figure 2] Fig. 2. Packing diagram of the title crystal structure viewed down along [010] direction with N2-H2C···O1 hydrogen bond motif.
[Figure 3] Fig. 3. Packing diagram of the title crystal viewed down the a axis shows 3D-hydrogen bond network. N–H···O hydrogen bonds are shown as dashed lines.
3,6-Dioxopiperazine-2,5-diacetamide top
Crystal data top
C8H12N4O4F(000) = 240
Mr = 228.22Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3368 reflections
a = 5.0409 (10) Åθ = 3.4–27.4°
b = 8.3178 (17) ŵ = 0.12 mm1
c = 12.900 (3) ÅT = 293 K
β = 109.76 (3)°Needle, colourless
V = 509.0 (2) Å30.10 × 0.10 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1166 independent reflections
Radiation source: fine-focus sealed tube889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 65
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.988, Tmax = 0.988l = 1616
4836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.146P]
where P = (Fo2 + 2Fc2)/3
1166 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C8H12N4O4V = 509.0 (2) Å3
Mr = 228.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.0409 (10) ŵ = 0.12 mm1
b = 8.3178 (17) ÅT = 293 K
c = 12.900 (3) Å0.10 × 0.10 × 0.10 mm
β = 109.76 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1166 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
889 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.988Rint = 0.028
4836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
1166 reflectionsΔρmin = 0.16 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0282 (2)0.01262 (16)0.31172 (9)0.0483 (4)
O20.2805 (3)0.29340 (13)0.49666 (9)0.0482 (3)
N10.0676 (4)0.0393 (2)0.14760 (11)0.0580 (5)
H1A0.07360.02130.11410.070*
H1B0.15610.08890.11070.070*
N20.6588 (2)0.04206 (14)0.43619 (9)0.0316 (3)
H2C0.75460.06780.39480.038*
C10.1482 (3)0.05588 (18)0.25545 (11)0.0320 (3)
C20.3991 (3)0.16430 (17)0.30689 (11)0.0300 (3)
H2A0.33530.27490.30220.036*
H2B0.52740.15540.26560.036*
C30.5568 (3)0.12212 (17)0.42763 (11)0.0289 (3)
H3A0.72240.19230.45310.035*
C40.3792 (3)0.15646 (18)0.49910 (11)0.0307 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0425 (6)0.0752 (9)0.0326 (6)0.0194 (6)0.0199 (5)0.0009 (5)
O20.0730 (8)0.0412 (6)0.0366 (6)0.0250 (6)0.0267 (6)0.0066 (5)
N10.0743 (11)0.0739 (11)0.0270 (7)0.0402 (9)0.0185 (7)0.0063 (7)
N20.0336 (6)0.0399 (7)0.0266 (6)0.0094 (5)0.0172 (5)0.0028 (5)
C10.0331 (7)0.0392 (8)0.0267 (7)0.0000 (6)0.0140 (6)0.0016 (6)
C20.0347 (7)0.0327 (7)0.0261 (7)0.0005 (6)0.0150 (6)0.0024 (6)
C30.0292 (7)0.0322 (7)0.0268 (7)0.0005 (6)0.0116 (6)0.0003 (6)
C40.0329 (7)0.0364 (7)0.0227 (7)0.0067 (6)0.0093 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C11.2304 (17)C1—C21.512 (2)
O2—C41.2392 (17)C2—C31.5309 (19)
N1—C11.3182 (19)C2—H2A0.9700
N1—H1A0.8599C2—H2B0.9700
N1—H1B0.8599C3—C41.5135 (19)
N2—C4i1.3219 (18)C3—H3A0.9800
N2—C31.4502 (18)C4—N2i1.3219 (18)
N2—H2C0.8599
C1—N1—H1A119.9C1—C2—H2B109.1
C1—N1—H1B120.1C3—C2—H2B109.1
H1A—N1—H1B120.0H2A—C2—H2B107.9
C4i—N2—C3127.05 (12)N2—C3—C4113.51 (11)
C4i—N2—H2C116.4N2—C3—C2110.01 (11)
C3—N2—H2C116.5C4—C3—C2111.46 (11)
O1—C1—N1122.47 (14)N2—C3—H3A107.2
O1—C1—C2121.49 (13)C4—C3—H3A107.2
N1—C1—C2116.05 (13)C2—C3—H3A107.2
C1—C2—C3112.30 (12)O2—C4—N2i122.34 (13)
C1—C2—H2A109.1O2—C4—C3118.24 (13)
C3—C2—H2A109.1N2i—C4—C3119.39 (12)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.862.122.9185 (19)154
N1—H1B···O2iii0.862.032.8795 (18)167
N2—H2C···O1iv0.862.062.8509 (17)152
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12N4O4
Mr228.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.0409 (10), 8.3178 (17), 12.900 (3)
β (°) 109.76 (3)
V3)509.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.988, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4836, 1166, 889
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.07
No. of reflections1166
No. of parameters73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.122.9185 (19)154.0
N1—H1B···O2ii0.862.032.8795 (18)167.3
N2—H2C···O1iii0.862.062.8509 (17)151.8
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

This project was supported by the Scientific Reaearch Fund of Zhejiang Provincial Education Department (grant No. Y201017782). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationAarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463–o1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuenifa, F., Bendjeddou, L., Cherouana, A., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2264–o2265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHowes, C., Alcock, N. W., Golding, B. T. & McCabe, R. W. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 2287–2291.  CSD CrossRef Web of Science Google Scholar
First citationMoussa Slimane, N., Cherouana, A., Bendjeddou, L., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o2180–o2181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds