organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Dodec­yl­oxy)benzo­nitrile

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: sidik@science.upm.edu.my

(Received 14 September 2011; accepted 10 October 2011; online 22 October 2011)

In the title compound, C19H29NO, the C—C and C—N bond distances of the benzonitrile group are 1.445 (2) and 1.157 (2) Å, respectively. The aliphatic fragment adopts a bent zigzag arangement which differs from the planar zigzag arrangement normally observed in n-alkanes or long-chain alkyl­benzenes. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds occur. A C—H⋯N inter­action also occurs. In the crystal, mol­ecules are packed with the nitrile and aliphatic groups oriented in a head-to-tail fashion involving, forming a ripple-like motif along the a axis.

Related literature

For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Merz (2002[Merz, K. (2002). Acta Cryst. E58, o450-o451.]); Britton et al. (2004[Britton, D., Sowa, J. R. & Mann, K. R. (2004). Acta Cryst. C60, o418-o420.]); Kwong et al. (2011[Kwong, H. C., Rahman, M. Z. A., Mohamed Tahir, M. I. & Silong, S. (2011). Acta Cryst. E67, o612.]); Boese et al. (1999[Boese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988-992.]). The title compound was synthesised by reacting hy­droxy­benzonitrile with bromo­alkane, see Rahman et al. (2009[Rahman, M. Z. A., Salisu, A. A., Silong, S., Luffor, M. R. & Ayub, M. B. A. (2009). Asian J. Appl. Sci. 2, 177-183.]).

[Scheme 1]

Experimental

Crystal data
  • C19H29NO

  • Mr = 287.45

  • Monoclinic, P 21 /n

  • a = 5.7080 (6) Å

  • b = 7.3644 (8) Å

  • c = 40.642 (5) Å

  • β = 90°

  • V = 1708.4 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 100 K

  • 0.17 × 0.14 × 0.09 mm

Data collection
  • Oxford Diffraction Gemini E diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.930, Tmax = 0.955

  • 9444 measured reflections

  • 3214 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 0.98

  • 3202 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H102⋯N7i 0.98 2.67 3.468 (2) 139
C3—H31⋯O1ii 0.94 2.67 3.569 (5) 159
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: Gemini (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The titled compound (I), 4-(dodecyloxy)benzonitrile (Fig. 1) was synthesised by reacting hydroxybenzonitrile with bromoalkane (Rahman et al., 2009). Bond distance and angles of (I) are in normal range (Allen et al. 1987). Bond distance of the benzonitrile group C5—C6 and C6—N7 are 1.445 (2) Å and 1.157 (2) Å, respectively and these bond lengths are comparable with those in p-decylbenzonitrile of 1.446 (3) Å and 1.153 (3) Å, respectively (Britton et al., 2004).

In this molecule, the plane formed by benzonitrile ring and O1 was almost planar, the largest deviation from the least-squares plane is 0.0187 (12) Å at O1. The benzene ring and the alkane carbon skeleton (C9—C2—O1—C10) form the torsion angle of 1.62 (2)°. In this structure the alkane carbon skeleton has a bended zigzag arrangement; this arrangement is in agreement with previously reported alkoxy benzenen [4-hexyloxybenzamide, Kwong et al., 2011] However, the mean C(H3)—C(H2) and C(H2)—C(H2) distances, and C(H3)—C(H2)—C and C(H2)—C(H2)—C angles, are in accordance of those determined for n-alkanes and long-chain alkylbenzene, 1.521 (1) Å and 112.8 (1)–113.5 (1)°, respectively. (Boese et al., 1999; Merz, 2002; Britton et al., 2004).

In the crystal packing, the centrosymmetric hydrogen bond C3—H31···O1 is formed generating a hydrogen bonded ring (Table 1 and Fig. 2). Packing of the titled compound shows a ripple-like motif (Fig. 2) with nitrile and aliphatic groups oriented head-to-tail. The stacking interaction between the aromatic rings with the separation distances of their centres of gravity Cg1···Cg1i (-x,1-y,1-z) of 3.573 (1) and Cg1···Cg1ii(-x,2-y,1-z) of 3.808 (1) Å and slipage of 1.395 and 1.865 Å, respectively, were observed.

Related literature top

For standard bond lengths, see Allen et al. (1987). For related structures, see: Merz (2002); Britton et al. (2004); Kwong et al. (2011); Boese et al. (1999). The title compound was synthesised by reacting hydroxybenzonitrile with bromoalkane, see Rahman et al. (2009).

Experimental top

The titled compound (I) was synthesised by reacting hydroxybenzonitrile with bromoalkane with conventional heating (Rahman et al., 2009). Crystals of (I) were grown from hexane using a slow evaporation.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.90 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Computing details top

Data collection: Gemini (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with atom numbering and displacement ellipsoids at 50% probability level.
[Figure 2] Fig. 2. The packing diagram of (I) showing a ripple-like motif viewing along a axis; hydrogen bonds were shown as dashed lines [b axis green; c axis blue].
4-(Dodecyloxy)benzonitrile top
Crystal data top
C19H29NOF(000) = 632
Mr = 287.45Dx = 1.117 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
a = 5.7080 (6) ÅCell parameters from 3853 reflections
b = 7.3644 (8) Åθ = 3–71°
c = 40.642 (5) ŵ = 0.52 mm1
β = 90°T = 100 K
V = 1708.4 (3) Å3Plate-like, colourless
Z = 40.17 × 0.14 × 0.09 mm
Data collection top
Oxford Diffraction Gemini E
diffractometer
3214 independent reflections
Radiation source: sealed x-ray tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω/2θ scansθmax = 71.6°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 66
Tmin = 0.930, Tmax = 0.955k = 89
9444 measured reflectionsl = 3749
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.05P)2 + 1.35P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98(Δ/σ)max = 0.007
3202 reflectionsΔρmax = 0.24 e Å3
190 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C19H29NOV = 1708.4 (3) Å3
Mr = 287.45Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.7080 (6) ŵ = 0.52 mm1
b = 7.3644 (8) ÅT = 100 K
c = 40.642 (5) Å0.17 × 0.14 × 0.09 mm
β = 90°
Data collection top
Oxford Diffraction Gemini E
diffractometer
3214 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2575 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.955Rint = 0.020
9444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.98Δρmax = 0.24 e Å3
3202 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Refinement. Refinement. For this compound, 9444 numbers of reflections were collected and measured during the refinement. Symmetry related reflections were measured more than once and after merging the symmetry equivalent reflections there were only 3214 reflection left. 12 more reflections were filtered, as σ cutoff was set as 3 and (sin?/x)set to>0.01 (to eliminate reflection measured near the vicinity of beam stop) therefore numbers of reflection reduced to 3202.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33735 (19)0.61108 (16)0.45325 (3)0.0243
C20.1734 (3)0.6793 (2)0.47454 (4)0.0214
C30.2277 (3)0.6631 (2)0.50786 (4)0.0221
C40.0719 (3)0.7247 (2)0.53150 (4)0.0228
C50.1403 (3)0.8033 (2)0.52206 (4)0.0219
C60.3025 (3)0.8685 (2)0.54668 (4)0.0234
N70.4333 (3)0.9209 (2)0.56623 (4)0.0295
C80.1922 (3)0.8209 (2)0.48877 (4)0.0221
C90.0351 (3)0.7606 (2)0.46502 (4)0.0220
C100.2944 (3)0.6284 (2)0.41859 (4)0.0242
C110.5019 (3)0.5506 (2)0.40024 (4)0.0252
C120.4902 (3)0.5918 (2)0.36351 (4)0.0246
C130.6978 (3)0.5162 (2)0.34403 (4)0.0257
C140.7033 (3)0.5790 (2)0.30831 (4)0.0251
C150.9124 (3)0.5066 (2)0.28868 (4)0.0258
C160.9230 (3)0.5776 (2)0.25349 (4)0.0257
C171.1323 (3)0.5068 (2)0.23378 (4)0.0257
C181.1450 (3)0.5806 (2)0.19882 (4)0.0258
C191.3543 (3)0.5106 (2)0.17902 (4)0.0259
C201.3684 (3)0.5847 (3)0.14407 (4)0.0282
C211.5784 (3)0.5133 (3)0.12487 (4)0.0322
H310.37040.60930.51440.0260*
H410.10980.71500.55460.0259*
H810.33530.87250.48210.0251*
H910.07100.77430.44220.0250*
H1020.27510.75770.41310.0287*
H1010.14980.56320.41280.0284*
H1110.64260.60500.40910.0296*
H1120.50600.41860.40400.0302*
H1220.48750.72260.36050.0291*
H1210.34730.54160.35440.0290*
H1310.83920.55610.35460.0305*
H1320.69190.38340.34450.0313*
H1420.70850.71110.30800.0303*
H1410.56150.54020.29740.0293*
H1511.05370.54280.30000.0304*
H1520.90370.37300.28810.0309*
H1620.93050.70930.25410.0313*
H1610.78090.54260.24200.0302*
H1721.27450.54080.24500.0312*
H1711.12350.37370.23280.0314*
H1811.15430.71340.19980.0308*
H1821.00270.54870.18720.0310*
H1921.49720.54400.19070.0307*
H1911.34420.37770.17800.0315*
H2011.37880.71750.14510.0338*
H2021.22540.55350.13260.0335*
H2121.58130.55870.10210.0465*
H2111.72460.54860.13520.0467*
H2131.57460.38040.12390.0474*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (6)0.0292 (7)0.0208 (6)0.0029 (5)0.0019 (5)0.0005 (5)
C20.0216 (8)0.0179 (8)0.0247 (8)0.0037 (7)0.0010 (6)0.0006 (7)
C30.0195 (8)0.0198 (8)0.0269 (9)0.0008 (7)0.0045 (6)0.0010 (7)
C40.0238 (9)0.0212 (9)0.0235 (8)0.0035 (7)0.0044 (7)0.0001 (7)
C50.0208 (8)0.0199 (8)0.0251 (8)0.0043 (7)0.0002 (6)0.0002 (7)
C60.0224 (9)0.0215 (8)0.0261 (9)0.0022 (7)0.0055 (7)0.0019 (7)
N70.0269 (8)0.0338 (9)0.0279 (8)0.0001 (7)0.0017 (6)0.0015 (7)
C80.0173 (8)0.0207 (9)0.0283 (9)0.0022 (6)0.0044 (6)0.0016 (7)
C90.0223 (8)0.0211 (9)0.0224 (8)0.0037 (7)0.0039 (6)0.0016 (6)
C100.0231 (9)0.0274 (9)0.0221 (8)0.0011 (7)0.0031 (7)0.0000 (7)
C110.0227 (9)0.0283 (9)0.0247 (9)0.0004 (7)0.0018 (7)0.0009 (7)
C120.0226 (8)0.0264 (9)0.0249 (9)0.0001 (7)0.0024 (7)0.0007 (7)
C130.0257 (9)0.0274 (9)0.0240 (9)0.0034 (7)0.0025 (7)0.0012 (7)
C140.0228 (9)0.0282 (9)0.0244 (9)0.0010 (7)0.0026 (7)0.0001 (7)
C150.0249 (9)0.0277 (9)0.0249 (9)0.0026 (7)0.0036 (7)0.0016 (7)
C160.0251 (9)0.0277 (9)0.0242 (9)0.0011 (7)0.0032 (7)0.0001 (7)
C170.0254 (9)0.0283 (9)0.0234 (9)0.0010 (7)0.0041 (7)0.0013 (7)
C180.0239 (9)0.0284 (9)0.0251 (9)0.0009 (7)0.0034 (7)0.0008 (7)
C190.0255 (9)0.0281 (9)0.0240 (9)0.0003 (7)0.0040 (7)0.0016 (7)
C200.0270 (9)0.0313 (10)0.0264 (9)0.0000 (8)0.0026 (7)0.0006 (7)
C210.0308 (10)0.0387 (11)0.0269 (9)0.0008 (8)0.0012 (8)0.0007 (8)
Geometric parameters (Å, º) top
O1—C21.3698 (19)C13—H1320.979
O1—C101.4355 (19)C14—C151.531 (2)
C2—C31.394 (2)C14—H1420.973
C2—C91.387 (2)C14—H1410.966
C3—C41.385 (2)C15—C161.524 (2)
C3—H310.943C15—H1510.967
C4—C51.396 (2)C15—H1520.985
C4—H410.965C16—C171.530 (2)
C5—C61.445 (2)C16—H1620.972
C5—C81.391 (2)C16—H1610.970
C6—N71.157 (2)C17—C181.523 (2)
C8—C91.390 (2)C17—H1720.963
C8—H810.941C17—H1710.982
C9—H910.954C18—C191.530 (2)
C10—C111.512 (2)C18—H1810.980
C10—H1020.984C18—H1820.968
C10—H1010.984C19—C201.524 (2)
C11—C121.525 (2)C19—H1920.976
C11—H1110.967C19—H1910.981
C11—H1120.984C20—C211.524 (2)
C12—C131.530 (2)C20—H2010.981
C12—H1220.971C20—H2020.967
C12—H1210.969C21—H2120.985
C13—C141.524 (2)C21—H2110.969
C13—H1310.961C21—H2130.980
C2—O1—C10118.08 (12)C15—C14—H142108.6
O1—C2—C3115.50 (14)C13—C14—H141109.3
O1—C2—C9124.62 (14)C15—C14—H141108.1
C3—C2—C9119.89 (15)H142—C14—H141108.4
C2—C3—C4120.20 (15)C14—C15—C16113.61 (14)
C2—C3—H31120.0C14—C15—H151107.8
C4—C3—H31119.8C16—C15—H151108.7
C3—C4—C5120.14 (15)C14—C15—H152108.7
C3—C4—H41120.4C16—C15—H152108.8
C5—C4—H41119.4H151—C15—H152109.2
C4—C5—C6120.23 (15)C15—C16—C17113.93 (14)
C4—C5—C8119.37 (15)C15—C16—H162108.6
C6—C5—C8120.40 (15)C17—C16—H162108.6
C5—C6—N7179.56 (17)C15—C16—H161109.0
C5—C8—C9120.54 (15)C17—C16—H161108.1
C5—C8—H81120.1H162—C16—H161108.3
C9—C8—H81119.4C16—C17—C18113.81 (14)
C8—C9—C2119.85 (15)C16—C17—H172108.8
C8—C9—H91120.1C18—C17—H172107.9
C2—C9—H91120.0C16—C17—H171108.7
O1—C10—C11108.46 (13)C18—C17—H171108.8
O1—C10—H102109.2H172—C17—H171108.7
C11—C10—H102110.0C17—C18—C19114.02 (14)
O1—C10—H101109.5C17—C18—H181108.6
C11—C10—H101110.8C19—C18—H181108.4
H102—C10—H101108.9C17—C18—H182109.1
C10—C11—C12111.90 (14)C19—C18—H182108.5
C10—C11—H111108.0H181—C18—H182108.0
C12—C11—H111108.6C18—C19—C20114.25 (14)
C10—C11—H112108.4C18—C19—H192108.1
C12—C11—H112110.4C20—C19—H192108.7
H111—C11—H112109.4C18—C19—H191108.2
C11—C12—C13113.60 (14)C20—C19—H191108.8
C11—C12—H122108.7H192—C19—H191108.7
C13—C12—H122108.0C19—C20—C21113.30 (15)
C11—C12—H121109.5C19—C20—H201108.7
C13—C12—H121108.5C21—C20—H201108.5
H122—C12—H121108.5C19—C20—H202108.7
C12—C13—C14113.50 (14)C21—C20—H202109.5
C12—C13—H131107.9H201—C20—H202108.0
C14—C13—H131108.5C20—C21—H212112.2
C12—C13—H132109.1C20—C21—H211111.4
C14—C13—H132108.8H212—C21—H211107.5
H131—C13—H132109.0C20—C21—H213110.4
C13—C14—C15114.01 (14)H212—C21—H213107.5
C13—C14—H142108.3H211—C21—H213107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H102···N7i0.982.673.468 (2)139
C3—H31···O1ii0.942.673.569 (5)159
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H29NO
Mr287.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)5.7080 (6), 7.3644 (8), 40.642 (5)
β (°)90, 90, 90
V3)1708.4 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.52
Crystal size (mm)0.17 × 0.14 × 0.09
Data collection
DiffractometerOxford Diffraction Gemini E
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.930, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
9444, 3214, 2575
Rint0.020
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 0.98
No. of reflections3202
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: Gemini (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H102···N7i0.9842.6693.468 (2)138.49
C3—H31···O1ii0.9442.6733.569 (5)158.72
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors would like to acknowledge the Ministry of Science, Technology and Innovation (MOSTI) Malaysia for funding (Research Grant Nos. 04–01–04-SF0144 and 05–02–10–0934RU).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Prpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoese, R., Weiss, H.-C. & Blaeser, D. (1999). Angew. Chem. Int. Ed. 38, 988–992.  CrossRef CAS Google Scholar
First citationBritton, D., Sowa, J. R. & Mann, K. R. (2004). Acta Cryst. C60, o418–o420.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKwong, H. C., Rahman, M. Z. A., Mohamed Tahir, M. I. & Silong, S. (2011). Acta Cryst. E67, o612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMerz, K. (2002). Acta Cryst. E58, o450–o451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO, CrysAlis RED and Gemini. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRahman, M. Z. A., Salisu, A. A., Silong, S., Luffor, M. R. & Ayub, M. B. A. (2009). Asian J. Appl. Sci. 2, 177–183.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds