metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(2-amino­pyridinium) hexa­chlorido­indate(III)

aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China
*Correspondence e-mail: jinxudong@yahoo.com

(Received 16 September 2011; accepted 19 October 2011; online 29 October 2011)

The Schiff base (E)-4-chloro-2-[(pyridin-2-yl­imino)­meth­yl]phenol was reacted with InCl3·4H2O, generating the title molecular salt, (C5H7N2)3[InCl6]. The octa­hedral hexa­chlorido­indate(III) anion is located on an inversion centre, and one half of the anion and two crystallographically independent cations form the asymmetric unit. One of the cations is located on a twofold rotation axis and its intra-ring C and N atoms simulate this symmetry by exchanging their positions in statistical disorder. In the crystal, weak N—H⋯Cl hydrogen bonds and two types of ππ interactions with centroid–centroid separations of 4.047 (3) and 4.202 (3) Å are observed.

Related literature

For the synthesis of 2-amino­pyridine and salicyl­aldehyde Schiff bases, see: Burlova et al.(2008[Burlova, A. S., Uraeva, A. I. & Ikorskiib, V. N. (2008). Russ. J. Gen. Chem. 7, 1230-1235.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)3[InCl6]

  • Mr = 612.90

  • Monoclinic, C 2/c

  • a = 18.6491 (17) Å

  • b = 16.2454 (14) Å

  • c = 8.4004 (5) Å

  • β = 112.214 (1)°

  • V = 2356.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 298 K

  • 0.46 × 0.43 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.509, Tmax = 0.925

  • 5734 measured reflections

  • 2053 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.08

  • 2053 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected bond lengths (Å)

In1—Cl1 2.5121 (11)
In1—Cl2 2.5406 (11)
In1—Cl3 2.5120 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.43 3.242 158
N2—H2A⋯Cl2i 0.86 2.58 3.354 150
N2—H2B⋯Cl1ii 0.86 2.75 3.558 157
N2—H2B⋯Cl3ii 0.86 2.82 3.359 122
N3—H3a⋯Cl3iii 0.86 2.70 3.549 169
N3—H3a⋯Cl2iii 0.86 2.91 3.337 112
N4—H4A⋯Cl1 0.86 2.56 3.358 154
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Instead of an expected formation of a Schiff base indium complex, the reaction of the Schiff base with InCl3.4H2O in anhydrous alcohol leads to the title compound (Fig. 1). It could be reasonably explained that the Schiff base molecule decomposed in presence of water when a reactant InCl3.4H2O in alcohol was heated at 333 K.

A single-crystal analysis reveals that the asymmetric unit of the complex comprises a half of a hexachloro-indium anion and two 2-amino pyridinium cations. The indium (III) ion is located at the inversion centre (the special position 1/4, 1/4, 1/2 in the space group C2/c) surrounded by six Cl atoms in the octahedral coordination (Table 1, Fig. 2). The three crystallographically independent In—Cl bond lengths [2.5120 (12), 2.5121 (11) and 2.5406 (11) Å] (Table 1, Fig. 2) characterise the coordination. One of pyridinium cations involves the two C atoms (C6 and C9) located at the twofold axis whereas the atoms C8, C7 and N3 are in general position (Fig. 2). However, C7 and N3 (pp = 1/2) are in statistical disorder to simulate the twofold symmetry. The N1—C5 cation is in general position. The pyridinium cations (one in general position and one in a special position - totally three cations per structural unit) balance the charge of InCl63-. An interplanar angle between two pyridine rings of N1/C1–C5 and N3/C6–C9 is 67.37°. A pair of weak ππ stacking interactions are found between the almost parallel pyridine rings, N1/C1–C5 and its symmetry related moiety (symmetry code: -x + 1, y, -z + 3/2) with the centroid separation of 4.047 (3) Å, perpendicular distance of 3.647 (2) Å and an angle of 9°. In addition, another pair of ππ stacking interactions (with amino groups in staggered arrangement in stacked rings) is observed in the crystal packing between the antiparallel aromatic rings, N3/C6–C9 and its symmetry related ring (symmetry code: -x + 1, -y + 1, -z + 1), with the interplanar spacing of 3.847 (3) Å, slippage of 1.690 Å and the centroid separation of 4.202 (3) Å. In the crystal packing, looking down the c axis, a cavity can be seen (Fig. 3).

Related literature top

For the synthesis of 2-aminopyridine and salicylaldehyde Schiff bases, see: Burlova et al.(2008).

Experimental top

In this work, the Schiff base was prepared according to the similar method (Burlova et al., 2008). A mixture of 5-chlorosalicylaldehyde (0.470 g, 3.0 mmol) and 2-aminopyridine (0.285 g, 3.0 mmol) in 12 ml anhydrous alcohol was stirred at 333 K for 2 h, a yellow Schiff base precipitate was filtered and dried. Then a solution of Schiff base (0.235 g, 1.0 mmol) in 10 ml anhydrous alcohol was added to another solution of InCl3.4H2O (0.293 g, 1.0 mmol) in 3 ml of anhydrous alcohol. The mixture was stirred at 333 K for ca 2.5 h, concentrated and left to stand at room temperature. Yellow single crystals suitable for X-ray analysis were obtained by slow solvent evaporation in 10 d.

Refinement top

H atoms attached to N atoms were located in a difference Fourier synthesis and allowed to refine with a fixed isotropic displacement parameter of Uiso(H) = 1.2Ueq(N), distance restraint of N—H = 0.86 Å. All other H atoms were constrained to idealized geometries (C—H = 0.98 Å) and were assigned isotropic displacement parameters of Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The chemical reaction scheme.
[Figure 2] Fig. 2. ORTEP drawing of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are drawn as small spheres of arbitrary radii. The atoms C7/N3 are statistically disordered exchanging location (50:50) to simulate the twofold rotation symmetry.
[Figure 3] Fig. 3. A view of a packing section of the title compound, stacking along the c axis. Dashed lines indicate intramolecular hydrogen bonds.
Tris(2-aminopyridinium) hexachloridoindate(III) top
Crystal data top
(C5H7N2)3[InCl6]F(000) = 1216
Mr = 612.90Dx = 1.728 Mg m3
Monoclinic, C2/cMelting point: 465.0 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.6491 (17) ÅCell parameters from 3465 reflections
b = 16.2454 (14) Åθ = 2.5–28.3°
c = 8.4004 (5) ŵ = 1.70 mm1
β = 112.214 (1)°T = 298 K
V = 2356.1 (3) Å3Plate, yellow
Z = 40.46 × 0.43 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2053 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2214
Tmin = 0.509, Tmax = 0.925k = 1919
5734 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0466P)2 + 6.8482P]
where P = (Fo2 + 2Fc2)/3
2053 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
(C5H7N2)3[InCl6]V = 2356.1 (3) Å3
Mr = 612.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.6491 (17) ŵ = 1.70 mm1
b = 16.2454 (14) ÅT = 298 K
c = 8.4004 (5) Å0.46 × 0.43 × 0.05 mm
β = 112.214 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2053 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1672 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.925Rint = 0.030
5734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.96 e Å3
2053 reflectionsΔρmin = 0.79 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
In10.25000.25000.50000.03637 (17)
Cl10.37640 (6)0.17532 (7)0.57322 (15)0.0487 (3)
Cl20.19049 (7)0.15088 (7)0.25064 (15)0.0490 (3)
Cl30.20941 (7)0.15470 (7)0.68614 (16)0.0529 (3)
N10.3380 (2)0.8489 (2)0.6354 (5)0.0473 (9)
H10.30420.83530.67750.057*
N20.3012 (3)0.9833 (3)0.6428 (7)0.0728 (14)
H2A0.26690.96700.68130.087*
H2B0.30611.03490.62630.087*
N30.4384 (3)0.4542 (3)0.6425 (7)0.0632 (13)0.50
H30.39870.42850.57280.076*0.50
N40.50000.3304 (4)0.75000.083 (2)
H4A0.46050.30390.68100.099*
C10.3466 (3)0.9288 (3)0.6088 (6)0.0471 (11)
C20.4025 (3)0.9494 (3)0.5426 (7)0.0593 (13)
H20.41091.00420.52280.071*
C30.4442 (3)0.8897 (4)0.5076 (7)0.0645 (15)
H3A0.48120.90370.46300.077*
C40.4331 (3)0.8075 (4)0.5366 (7)0.0653 (15)
H40.46230.76650.51260.078*
C50.3792 (3)0.7888 (3)0.6000 (7)0.0581 (13)
H50.37020.73410.61950.070*
C60.50000.4118 (4)0.75000.0477 (16)
C70.4384 (3)0.4542 (3)0.6425 (7)0.0632 (13)0.50
H70.39540.42640.56710.076*0.50
C80.4397 (5)0.5396 (5)0.6454 (11)0.103 (3)
H80.39720.56880.57190.123*
C90.50000.5795 (7)0.75000.117 (4)
H90.50000.63680.75000.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0320 (3)0.0386 (3)0.0448 (3)0.00200 (17)0.02156 (19)0.00423 (18)
Cl10.0379 (6)0.0538 (7)0.0584 (7)0.0112 (5)0.0227 (5)0.0016 (5)
Cl20.0460 (6)0.0546 (7)0.0533 (7)0.0071 (5)0.0265 (5)0.0144 (5)
Cl30.0598 (7)0.0535 (7)0.0597 (7)0.0051 (6)0.0388 (6)0.0072 (5)
N10.055 (2)0.049 (2)0.052 (2)0.0054 (19)0.0357 (19)0.0002 (18)
N20.076 (3)0.047 (2)0.108 (4)0.001 (2)0.050 (3)0.006 (3)
N30.039 (3)0.075 (3)0.069 (3)0.005 (2)0.013 (2)0.004 (3)
N40.054 (4)0.045 (4)0.156 (8)0.0000.047 (4)0.000
C10.051 (3)0.046 (3)0.047 (3)0.004 (2)0.021 (2)0.004 (2)
C20.060 (3)0.056 (3)0.068 (3)0.017 (3)0.031 (3)0.000 (3)
C30.061 (3)0.079 (4)0.070 (4)0.013 (3)0.043 (3)0.000 (3)
C40.068 (4)0.068 (4)0.076 (4)0.004 (3)0.046 (3)0.009 (3)
C50.074 (4)0.047 (3)0.069 (3)0.003 (3)0.044 (3)0.000 (3)
C60.043 (4)0.044 (4)0.065 (4)0.0000.030 (3)0.000
C70.039 (3)0.075 (3)0.069 (3)0.005 (2)0.013 (2)0.004 (3)
C80.086 (5)0.086 (5)0.120 (6)0.033 (4)0.020 (5)0.042 (5)
C90.122 (11)0.065 (6)0.155 (12)0.0000.043 (9)0.000
Geometric parameters (Å, º) top
In1—Cl1i2.5121 (11)N4—H4A0.8600
In1—Cl12.5121 (11)C1—C21.395 (7)
In1—Cl2i2.5406 (11)C2—C31.344 (7)
In1—Cl22.5406 (11)C2—H20.9300
In1—Cl3i2.5120 (12)C3—C41.386 (8)
In1—Cl32.5120 (12)C3—H3A0.9300
N1—C11.336 (6)C4—C51.339 (7)
N1—C51.344 (6)C4—H40.9300
N1—H10.8600C5—H50.9300
N2—C11.330 (6)C6—C7ii1.351 (6)
N2—H2A0.8600C6—N3ii1.351 (6)
N2—H2B0.8600C8—C91.307 (10)
N3—C61.351 (6)C8—H80.9300
N3—C81.387 (9)C9—C8ii1.307 (10)
N3—H30.8600C9—H90.9300
N4—C61.322 (9)
Cl3i—In1—Cl3180.00 (4)N2—C1—C2123.9 (5)
Cl3i—In1—Cl1i91.47 (4)N1—C1—C2117.1 (5)
Cl3—In1—Cl1i88.53 (4)C3—C2—C1119.6 (5)
Cl3i—In1—Cl188.53 (4)C3—C2—H2120.2
Cl3—In1—Cl191.47 (4)C1—C2—H2120.2
Cl1i—In1—Cl1180.0C2—C3—C4121.3 (5)
Cl3i—In1—Cl2i88.97 (4)C2—C3—H3A119.3
Cl3—In1—Cl2i91.03 (4)C4—C3—H3A119.3
Cl1i—In1—Cl2i88.44 (4)C5—C4—C3118.3 (6)
Cl1—In1—Cl2i91.56 (4)C5—C4—H4120.9
Cl3i—In1—Cl291.03 (4)C3—C4—H4120.9
Cl3—In1—Cl288.97 (4)C4—C5—N1120.1 (5)
Cl1i—In1—Cl291.56 (4)C4—C5—H5120.0
Cl1—In1—Cl288.44 (4)N1—C5—H5120.0
Cl2i—In1—Cl2180.00 (4)N4—C6—C7ii120.7 (3)
C1—N1—C5123.6 (4)N4—C6—N3ii120.7 (3)
C1—N1—H1118.2C7ii—C6—N3ii0.0 (7)
C5—N1—H1118.2N4—C6—N3120.7 (3)
C1—N2—H2A120.0C7ii—C6—N3118.7 (6)
C1—N2—H2B120.0N3ii—C6—N3118.7 (6)
H2A—N2—H2B120.0C9—C8—N3120.9 (7)
C6—N3—C8119.6 (5)C9—C8—H8119.6
C6—N3—H3120.2N3—C8—H8119.6
C8—N3—H3120.2C8—C9—C8ii120.5 (11)
C6—N4—H4A120.0C8—C9—H9119.8
N2—C1—N1118.9 (5)C8ii—C9—H9119.8
C5—N1—C1—N2177.8 (5)C1—N1—C5—C41.0 (8)
C5—N1—C1—C20.9 (7)C8—N3—C6—N4179.8 (5)
N2—C1—C2—C3178.1 (5)C8—N3—C6—C7ii0.2 (5)
N1—C1—C2—C30.5 (8)C8—N3—C6—N3ii0.2 (5)
C1—C2—C3—C40.3 (9)C6—N3—C8—C90.4 (11)
C2—C3—C4—C50.3 (9)N3—C8—C9—C8ii0.2 (5)
C3—C4—C5—N10.6 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2iii0.862.433.242158
N2—H2A···Cl2iii0.862.583.354150
N2—H2B···Cl1iv0.862.753.558157
N2—H2B···Cl3iv0.862.823.359122
N3—H3a···Cl3i0.862.703.549169
N3—H3a···Cl2i0.862.913.337112
N4—H4A···Cl10.862.563.358154
Symmetry codes: (i) x+1/2, y+1/2, z+1; (iii) x, y+1, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)3[InCl6]
Mr612.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.6491 (17), 16.2454 (14), 8.4004 (5)
β (°) 112.214 (1)
V3)2356.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.46 × 0.43 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.509, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
5734, 2053, 1672
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.08
No. of reflections2053
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.79

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Selected bond lengths (Å) top
In1—Cl12.5121 (11)In1—Cl32.5120 (12)
In1—Cl22.5406 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.8602.4313.242157.62
N2—H2A···Cl2i0.8602.5823.354149.92
N2—H2B···Cl1ii0.8602.7503.558157.00
N2—H2B···Cl3ii0.8602.8243.359121.95
N3—H3a···Cl3iii0.8602.7023.549168.53
N3—H3a···Cl2iii0.8602.9143.337112.30
N4—H4A···Cl10.8602.5643.358154.02
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was financially supported by the Foundation of Liaoning Educational Committee (grant No. 2008T065), the Science and Technology Foundation of Liaoning Province (grant No. 20071027) and the Scientific Research Foundation for Returned Overseas Chinese Scholars (grant No. 2005546).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlova, A. S., Uraeva, A. I. & Ikorskiib, V. N. (2008). Russ. J. Gen. Chem. 7, 1230–1235.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds