organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­benzo­nitrile–3,5-di­nitro­benzoic acid (1/1)

aJiangsu Key Laboratory of Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamswang@njupt.edu.cn

(Received 21 September 2011; accepted 28 September 2011; online 5 October 2011)

The asymmetric unit of the title co-crystal, C7H6N2·C7H4N2O6, contains two formula units of both components. The crystal structure is stabilized by inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, generating a two-dimensional wave-like network. ππ stacking inter­actions [centroid–centroid distances = 3.702 (2), 3.660 (2)and 3.671 (2) Å] stabilize the crystal packing.

Related literature

For general background to hydrogen bonding, see: Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Prins et al. (2001[Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382-2426.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For background to the applications of co-crystals, see: Bhatt & Desiraju (2008[Bhatt, P. M. & Desiraju, G. R. (2008). CrystEngComm, 10, 1747-1749.]); Etter & Baures (1988[Etter, M. C. & Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639-640.]); Gao et al. (2004[Gao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]); Hori et al. (2009[Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567-569.]); Weyna et al. (2009[Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]). For the synthesis of co-crystals by complementary functional groups, see: Li et al. (2006[Li, C., Robinson, P. D. & Dyer, D. J. (2006). Acta Cryst. C62, o336-o338.]); Roy et al. (2009[Roy, S., Mahata, G. & Biradha, K. (2009). Cryst. Growth Des. 9, 5006-5008.]); Wei (2007[Wei, L.-H. (2007). Acta Cryst. E63, o4174.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2·C7H4N2O6

  • Mr = 330.26

  • Triclinic, [P \overline 1]

  • a = 7.4547 (15) Å

  • b = 14.260 (3) Å

  • c = 14.845 (3) Å

  • α = 108.01 (3)°

  • β = 91.90 (3)°

  • γ = 93.37 (3)°

  • V = 1496.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.35 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.977

  • 15550 measured reflections

  • 6830 independent reflections

  • 3195 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.159

  • S = 0.99

  • 6830 reflections

  • 461 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 1.18 (4) 1.41 (4) 2.590 (2) 173 (3)
N6—H6A⋯N7ii 0.92 (3) 2.32 (4) 3.232 (5) 169 (3)
N6—H6B⋯O12iii 0.90 (3) 2.57 (3) 2.953 (4) 107 (2)
N8—H8A⋯N5iv 0.91 (3) 2.37 (3) 3.262 (5) 170 (3)
N8—H8B⋯O5iii 0.85 (3) 2.48 (4) 3.286 (4) 157 (3)
O7—H9A⋯O8iv 1.23 (5) 1.38 (5) 2.608 (2) 174 (4)
C5—H5A⋯O4v 0.93 2.44 3.321 (3) 158
C12—H12A⋯O11ii 0.93 2.50 3.352 (3) 153
C18—H18A⋯O2vi 0.96 (3) 2.58 (3) 3.421 (4) 147 (2)
C21—H21A⋯O10vii 0.93 2.60 3.451 (3) 153
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) -x, -y, -z+1; (vi) x-1, y, z; (vii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The self-assembly of two or more different types of molecules to form a multi-component crystal is greatly fascinating to chemists, known as cocrystals. The considerable effort has been devoted to cocrystal formation over decades, due to its extensive applications in construction of organic solid-state materials, such as in the pharmaceutical industry (Weyna et al., 2009), in organic synthesis (Gao et al., 2004), for promoting crystal growth (Etter & Baures, 1988), as luminescent materials (Hori et al., 2009), and for absolute structure determination (Bhatt & Desiraju, 2008). One of the important ways is the utilisation of self-assembly of small molecules through intermolecular interactions to construct cocrystals, which are one-, two- or three-dimensional networks. In the study of intermolecular interactions the central role is the hydrogen bond. The simple way of preparation of cocrystals is to employ the components containing functional groups with hydrogen bonding capability (Li et al., 2006; Roy et al., 2009; Wei, 2007), such as –COOH and –NH2, which can easily result in O—H···N and N—H···O hydrogen bonds.

In this report we have established unambiguously the structure of the cocrystal 3,5-dinitrobenzoic acid with 3-aminobenzonitrile in the solid state by X-ray diffraction analysis. An asymmetric unit of the title compound contains two 3,5-dinitrobenzoic acid and two 3-aminobenzonitrile (Fig. 1). Intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds are observed (Fig. 2, Table 1). The hydrogen bonds O—H···O between carboxyl groups results in the dimerization of 3,5-dinitrobenzoic acid. Extensive hydrogen-bonding interactions generate a two-dimensional wave-like network (Fig. 3).

Additionally, the crystal packing is stabilised by aromatic ππ stacking interactions involving the rings of the asymmetric unit with separation distances between their centroids: Cg1(C2 C7)···Cg3 (C16 C21) of 3.702 (2) Å, Cg2(C9 C14)··· Cg3(C16 C21) of 3.660 (2)Å, and Cg2(C9 C14)···Cg4(C23 C28) of 3.671 (2) Å.

Related literature top

For general background to hydrogen bonding, see: Desiraju (2002); Prins et al. (2001); Steiner (2002). For background to the applications of co-crystals, see: Bhatt & Desiraju (2008); Etter & Baures (1988); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009). For the synthesis of co-crystals by complementary functional groups, see: Li et al. (2006); Roy et al. (2009); Wei (2007).

Experimental top

The cocrystals were prepared from stoichiometric amounts of components in water mixed with metanol (in volume ratio 1:1) and left to evaporate slowly at room temperature.

Refinement top

Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). H atoms involved in hydrogen bonds were located from differential Fourier maps and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title cocrystal with the numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the molecules viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the molecules. Hydrogen bonds are drawn as dashed lines.
3-Aminobenzonitrile–3,5-dinitrobenzoic acid (1/1) top
Crystal data top
C7H6N2·C7H4N2O6Z = 4
Mr = 330.26F(000) = 680
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4547 (15) ÅCell parameters from 6830 reflections
b = 14.260 (3) Åθ = 3.0–27.5°
c = 14.845 (3) ŵ = 0.12 mm1
α = 108.01 (3)°T = 293 K
β = 91.90 (3)°Block, colorless
γ = 93.37 (3)°0.35 × 0.22 × 0.20 mm
V = 1496.0 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6830 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1818
Tmin = 0.969, Tmax = 0.977l = 1919
15550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0591P)2]
where P = (Fo2 + 2Fc2)/3
6830 reflections(Δ/σ)max < 0.001
461 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C7H6N2·C7H4N2O6γ = 93.37 (3)°
Mr = 330.26V = 1496.0 (5) Å3
Triclinic, P1Z = 4
a = 7.4547 (15) ÅMo Kα radiation
b = 14.260 (3) ŵ = 0.12 mm1
c = 14.845 (3) ÅT = 293 K
α = 108.01 (3)°0.35 × 0.22 × 0.20 mm
β = 91.90 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3195 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.977Rint = 0.056
15550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.16 e Å3
6830 reflectionsΔρmin = 0.19 e Å3
461 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4080 (3)0.01643 (18)0.11993 (16)0.0553 (6)
C20.3392 (3)0.02905 (17)0.21487 (15)0.0490 (6)
C30.1637 (3)0.00114 (17)0.22396 (15)0.0490 (6)
H3A0.08620.02910.17070.059*
C40.1058 (3)0.01088 (17)0.31324 (16)0.0506 (6)
C50.2159 (3)0.05067 (18)0.39350 (16)0.0578 (6)
H5A0.17510.05690.45340.069*
C60.3888 (3)0.08091 (18)0.38155 (16)0.0544 (6)
C70.4516 (3)0.07230 (17)0.29418 (16)0.0555 (6)
H7A0.56860.09530.28840.067*
O10.3036 (2)0.03099 (14)0.04900 (12)0.0726 (6)
H1A0.363 (5)0.035 (3)0.025 (3)0.160 (14)*
O20.5615 (2)0.05235 (14)0.11410 (11)0.0736 (5)
N10.0818 (3)0.01956 (18)0.32279 (18)0.0721 (6)
O30.1815 (2)0.04676 (16)0.25263 (16)0.0915 (7)
O40.1288 (3)0.0171 (2)0.40020 (16)0.1302 (10)
N20.5102 (3)0.12590 (18)0.46559 (15)0.0768 (7)
O50.4669 (3)0.11480 (19)0.53961 (14)0.1112 (8)
O60.6490 (3)0.16961 (19)0.45609 (15)0.1188 (9)
C80.3501 (3)0.50842 (18)0.10190 (17)0.0544 (6)
C90.2362 (3)0.50677 (16)0.18160 (15)0.0488 (6)
C100.0604 (3)0.46720 (17)0.16271 (16)0.0536 (6)
H10A0.01170.44310.10070.064*
C110.0412 (3)0.46423 (18)0.23756 (17)0.0527 (6)
C120.0242 (3)0.49980 (17)0.33016 (16)0.0544 (6)
H12A0.04700.49790.38000.065*
C130.1991 (3)0.53816 (17)0.34579 (15)0.0527 (6)
C140.3074 (3)0.54240 (17)0.27369 (16)0.0517 (6)
H14A0.42600.56870.28680.062*
N30.2260 (3)0.41929 (18)0.21744 (18)0.0714 (6)
O70.2803 (2)0.47150 (15)0.01875 (13)0.0800 (6)
H9A0.379 (6)0.469 (3)0.047 (3)0.203 (18)*
O80.5087 (2)0.54478 (14)0.12114 (12)0.0714 (5)
O90.2761 (2)0.37659 (17)0.13605 (16)0.0941 (7)
O100.3199 (2)0.42753 (18)0.28450 (15)0.1015 (7)
O110.1742 (3)0.58417 (17)0.50753 (13)0.1032 (7)
O120.4324 (3)0.6007 (2)0.45542 (14)0.1205 (9)
N40.2750 (3)0.57692 (17)0.44339 (15)0.0744 (6)
N50.3740 (4)0.2057 (2)0.0240 (2)0.1150 (10)
C150.2997 (4)0.2144 (2)0.0436 (2)0.0796 (9)
C160.2076 (3)0.22522 (19)0.12900 (18)0.0599 (7)
C170.0298 (4)0.1905 (2)0.1228 (2)0.0735 (8)
H17A0.03020.16030.06410.088*
C180.0566 (4)0.2014 (2)0.2050 (2)0.0765 (8)
H18A0.180 (4)0.1780 (19)0.2036 (17)0.086 (9)*
C190.0298 (4)0.24544 (19)0.2909 (2)0.0685 (7)
H19A0.03230.25210.34560.082*
C200.2079 (3)0.28052 (17)0.29893 (18)0.0596 (7)
C210.2961 (3)0.27005 (18)0.21579 (18)0.0610 (7)
H21A0.41590.29360.21890.073*
N60.2934 (5)0.3273 (2)0.3859 (2)0.0891 (8)
H6A0.240 (5)0.317 (3)0.437 (3)0.127 (14)*
H6B0.410 (4)0.341 (2)0.378 (2)0.109 (13)*
N70.1478 (4)0.7302 (2)0.4340 (2)0.1190 (11)
C220.0799 (4)0.7346 (2)0.3675 (2)0.0822 (9)
C230.0139 (3)0.73855 (18)0.28564 (19)0.0606 (7)
C240.0753 (4)0.7084 (2)0.1977 (2)0.0732 (8)
H24A0.19660.68690.19060.088*
C250.0187 (4)0.7110 (2)0.1210 (2)0.0771 (8)
H25A0.04030.69210.06130.093*
C260.1980 (4)0.74096 (19)0.13031 (18)0.0664 (7)
H26A0.25960.74030.07670.080*
C270.2891 (3)0.77223 (18)0.21843 (18)0.0584 (6)
C280.1939 (3)0.76999 (17)0.29630 (17)0.0588 (6)
H28A0.25190.78990.35630.071*
N80.4678 (4)0.8027 (2)0.2284 (3)0.0883 (8)
H8A0.524 (4)0.806 (2)0.176 (2)0.103 (12)*
H8B0.517 (5)0.825 (3)0.284 (3)0.126 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (14)0.0662 (17)0.0432 (14)0.0022 (12)0.0060 (12)0.0104 (13)
C20.0527 (14)0.0535 (15)0.0398 (13)0.0060 (11)0.0078 (11)0.0119 (11)
C30.0552 (14)0.0509 (14)0.0424 (13)0.0036 (11)0.0047 (10)0.0165 (11)
C40.0527 (13)0.0536 (15)0.0512 (15)0.0053 (11)0.0119 (11)0.0233 (12)
C50.0707 (17)0.0647 (17)0.0426 (14)0.0115 (13)0.0127 (12)0.0215 (13)
C60.0657 (15)0.0574 (16)0.0389 (13)0.0058 (12)0.0027 (11)0.0129 (12)
C70.0528 (14)0.0614 (16)0.0509 (15)0.0007 (12)0.0048 (12)0.0158 (13)
O10.0636 (10)0.1044 (15)0.0372 (10)0.0161 (10)0.0058 (8)0.0072 (10)
O20.0595 (11)0.1067 (15)0.0433 (10)0.0163 (10)0.0104 (8)0.0101 (10)
N10.0651 (15)0.0872 (17)0.0704 (17)0.0002 (12)0.0185 (13)0.0335 (14)
O30.0583 (11)0.1231 (18)0.0878 (15)0.0115 (11)0.0058 (11)0.0283 (14)
O40.0954 (16)0.225 (3)0.0855 (16)0.0204 (16)0.0314 (13)0.0746 (18)
N20.0839 (17)0.0953 (19)0.0439 (14)0.0009 (14)0.0024 (12)0.0128 (13)
O50.1111 (17)0.174 (2)0.0451 (12)0.0154 (15)0.0068 (11)0.0355 (14)
O60.1040 (17)0.166 (2)0.0704 (14)0.0510 (17)0.0168 (12)0.0260 (15)
C80.0540 (15)0.0601 (16)0.0460 (15)0.0010 (12)0.0094 (12)0.0121 (12)
C90.0539 (14)0.0493 (14)0.0433 (13)0.0032 (11)0.0108 (11)0.0140 (11)
C100.0548 (14)0.0584 (16)0.0475 (14)0.0034 (12)0.0030 (11)0.0163 (12)
C110.0449 (13)0.0606 (16)0.0584 (16)0.0046 (11)0.0109 (11)0.0260 (13)
C120.0607 (15)0.0575 (16)0.0506 (15)0.0067 (12)0.0184 (12)0.0231 (13)
C130.0616 (15)0.0559 (15)0.0408 (14)0.0003 (12)0.0070 (11)0.0157 (12)
C140.0508 (13)0.0543 (15)0.0487 (14)0.0002 (11)0.0077 (11)0.0143 (12)
N30.0505 (13)0.0916 (18)0.0756 (17)0.0002 (12)0.0066 (13)0.0320 (15)
O70.0728 (12)0.1110 (16)0.0450 (11)0.0172 (10)0.0127 (9)0.0115 (11)
O80.0577 (11)0.0959 (14)0.0535 (11)0.0099 (10)0.0156 (8)0.0143 (10)
O90.0639 (12)0.1283 (19)0.0836 (15)0.0143 (11)0.0095 (11)0.0288 (14)
O100.0590 (12)0.158 (2)0.0921 (16)0.0105 (12)0.0214 (11)0.0475 (15)
O110.1285 (17)0.132 (2)0.0450 (11)0.0182 (14)0.0226 (12)0.0245 (12)
O120.0902 (15)0.187 (3)0.0614 (13)0.0423 (16)0.0114 (11)0.0159 (14)
N40.0881 (17)0.0858 (18)0.0440 (13)0.0099 (14)0.0041 (13)0.0154 (12)
N50.121 (2)0.157 (3)0.080 (2)0.017 (2)0.0235 (18)0.053 (2)
C150.085 (2)0.091 (2)0.070 (2)0.0088 (17)0.0048 (17)0.0367 (19)
C160.0650 (16)0.0612 (17)0.0546 (16)0.0017 (13)0.0008 (13)0.0205 (14)
C170.0744 (18)0.0696 (19)0.0684 (19)0.0075 (15)0.0126 (15)0.0137 (15)
C180.0634 (18)0.075 (2)0.087 (2)0.0125 (15)0.0020 (17)0.0222 (18)
C190.0726 (18)0.0608 (18)0.0721 (19)0.0004 (14)0.0124 (15)0.0207 (15)
C200.0746 (17)0.0462 (15)0.0561 (17)0.0016 (13)0.0079 (13)0.0148 (13)
C210.0554 (14)0.0606 (17)0.0694 (18)0.0029 (12)0.0033 (13)0.0258 (14)
N60.107 (2)0.093 (2)0.0613 (18)0.0088 (18)0.0128 (17)0.0202 (15)
N70.146 (3)0.112 (3)0.107 (2)0.0211 (19)0.064 (2)0.039 (2)
C220.091 (2)0.071 (2)0.087 (2)0.0170 (16)0.0310 (18)0.0229 (18)
C230.0673 (16)0.0535 (16)0.0616 (17)0.0104 (13)0.0117 (14)0.0168 (13)
C240.0606 (16)0.0712 (19)0.083 (2)0.0050 (14)0.0036 (15)0.0177 (17)
C250.090 (2)0.076 (2)0.0602 (18)0.0097 (16)0.0166 (16)0.0141 (16)
C260.0819 (19)0.0663 (18)0.0503 (16)0.0071 (15)0.0052 (14)0.0169 (14)
C270.0653 (16)0.0498 (15)0.0593 (17)0.0047 (12)0.0038 (13)0.0156 (13)
C280.0711 (17)0.0541 (16)0.0477 (15)0.0046 (13)0.0056 (12)0.0117 (13)
N80.0720 (18)0.102 (2)0.084 (2)0.0103 (15)0.0072 (17)0.0221 (19)
Geometric parameters (Å, º) top
C1—O21.243 (3)N3—O101.216 (3)
C1—O11.271 (3)O7—H9A1.23 (5)
C1—C21.478 (3)O11—N41.216 (3)
C2—C71.376 (3)O12—N41.194 (3)
C2—C31.377 (3)N5—C151.139 (3)
C3—C41.371 (3)C15—C161.433 (4)
C3—H3A0.9300C16—C211.374 (3)
C4—C51.370 (3)C16—C171.377 (3)
C4—N11.464 (3)C17—C181.370 (4)
C5—C61.369 (3)C17—H17A0.9300
C5—H5A0.9300C18—C191.356 (4)
C6—C71.366 (3)C18—H18A0.96 (3)
C6—N21.466 (3)C19—C201.379 (3)
C7—H7A0.9300C19—H19A0.9300
O1—H1A1.18 (4)C20—N61.371 (3)
N1—O41.203 (3)C20—C211.389 (3)
N1—O31.206 (3)C21—H21A0.9300
N2—O51.209 (3)N6—H6A0.92 (3)
N2—O61.211 (3)N6—H6B0.90 (3)
C8—O81.250 (3)N7—C221.140 (3)
C8—O71.263 (3)C22—C231.437 (4)
C8—C91.484 (3)C23—C241.376 (4)
C9—C141.378 (3)C23—C281.377 (3)
C9—C101.380 (3)C24—C251.365 (4)
C10—C111.375 (3)C24—H24A0.9300
C10—H10A0.9300C25—C261.369 (4)
C11—C121.371 (3)C25—H25A0.9300
C11—N31.466 (3)C26—C271.384 (3)
C12—C131.368 (3)C26—H26A0.9300
C12—H12A0.9300C27—N81.365 (3)
C13—C141.376 (3)C27—C281.384 (3)
C13—N41.462 (3)C28—H28A0.9300
C14—H14A0.9300N8—H8A0.91 (3)
N3—O91.208 (3)N8—H8B0.85 (3)
O2—C1—O1124.3 (2)O9—N3—C11118.6 (2)
O2—C1—C2118.9 (2)O10—N3—C11117.5 (2)
O1—C1—C2116.8 (2)C8—O7—H9A116.9 (18)
C7—C2—C3120.3 (2)O12—N4—O11123.8 (2)
C7—C2—C1119.4 (2)O12—N4—C13118.0 (2)
C3—C2—C1120.3 (2)O11—N4—C13118.3 (2)
C4—C3—C2118.5 (2)N5—C15—C16179.5 (3)
C4—C3—H3A120.8C21—C16—C17120.7 (2)
C2—C3—H3A120.8C21—C16—C15120.2 (2)
C5—C4—C3122.7 (2)C17—C16—C15119.1 (3)
C5—C4—N1119.0 (2)C18—C17—C16118.5 (3)
C3—C4—N1118.4 (2)C18—C17—H17A120.7
C6—C5—C4117.1 (2)C16—C17—H17A120.7
C6—C5—H5A121.5C19—C18—C17121.1 (3)
C4—C5—H5A121.5C19—C18—H18A118.0 (15)
C7—C6—C5122.4 (2)C17—C18—H18A120.9 (15)
C7—C6—N2118.6 (2)C18—C19—C20121.4 (3)
C5—C6—N2118.9 (2)C18—C19—H19A119.3
C6—C7—C2119.0 (2)C20—C19—H19A119.3
C6—C7—H7A120.5N6—C20—C19121.1 (3)
C2—C7—H7A120.5N6—C20—C21121.1 (3)
C1—O1—H1A113.5 (16)C19—C20—C21117.7 (2)
O4—N1—O3123.0 (2)C16—C21—C20120.5 (2)
O4—N1—C4118.5 (3)C16—C21—H21A119.7
O3—N1—C4118.5 (2)C20—C21—H21A119.7
O5—N2—O6124.3 (2)C20—N6—H6A116 (2)
O5—N2—C6117.6 (2)C20—N6—H6B109 (2)
O6—N2—C6118.1 (2)H6A—N6—H6B129 (3)
O8—C8—O7124.3 (2)N7—C22—C23177.1 (4)
O8—C8—C9118.2 (2)C24—C23—C28121.0 (2)
O7—C8—C9117.5 (2)C24—C23—C22119.8 (3)
C14—C9—C10120.4 (2)C28—C23—C22119.2 (3)
C14—C9—C8120.0 (2)C25—C24—C23118.4 (3)
C10—C9—C8119.6 (2)C25—C24—H24A120.8
C11—C10—C9118.6 (2)C23—C24—H24A120.8
C11—C10—H10A120.7C24—C25—C26121.3 (3)
C9—C10—H10A120.7C24—C25—H25A119.3
C12—C11—C10122.8 (2)C26—C25—H25A119.3
C12—C11—N3118.6 (2)C25—C26—C27120.9 (3)
C10—C11—N3118.6 (2)C25—C26—H26A119.5
C13—C12—C11116.8 (2)C27—C26—H26A119.5
C13—C12—H12A121.6N8—C27—C26121.3 (3)
C11—C12—H12A121.6N8—C27—C28120.8 (3)
C12—C13—C14122.9 (2)C26—C27—C28117.8 (2)
C12—C13—N4118.8 (2)C23—C28—C27120.6 (2)
C14—C13—N4118.2 (2)C23—C28—H28A119.7
C13—C14—C9118.5 (2)C27—C28—H28A119.7
C13—C14—H14A120.7C27—N8—H8A118 (2)
C9—C14—H14A120.7C27—N8—H8B118 (2)
O9—N3—O10123.9 (2)H8A—N8—H8B123 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i1.18 (4)1.41 (4)2.590 (2)173 (3)
N6—H6A···N7ii0.92 (3)2.32 (4)3.232 (5)169 (3)
N6—H6B···O12iii0.90 (3)2.57 (3)2.953 (4)107 (2)
N8—H8A···N5iv0.91 (3)2.37 (3)3.262 (5)170 (3)
N8—H8B···O5iii0.85 (3)2.48 (4)3.286 (4)157 (3)
O7—H9A···O8iv1.23 (5)1.38 (5)2.608 (2)174 (4)
C5—H5A···O4v0.932.443.321 (3)158
C12—H12A···O11ii0.932.503.352 (3)153
C18—H18A···O2vi0.96 (3)2.58 (3)3.421 (4)147 (2)
C21—H21A···O10vii0.932.603.451 (3)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x1, y, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H6N2·C7H4N2O6
Mr330.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4547 (15), 14.260 (3), 14.845 (3)
α, β, γ (°)108.01 (3), 91.90 (3), 93.37 (3)
V3)1496.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15550, 6830, 3195
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.159, 0.99
No. of reflections6830
No. of parameters461
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i1.18 (4)1.41 (4)2.590 (2)173 (3)
N6—H6A···N7ii0.92 (3)2.32 (4)3.232 (5)169 (3)
N6—H6B···O12iii0.90 (3)2.57 (3)2.953 (4)107 (2)
N8—H8A···N5iv0.91 (3)2.37 (3)3.262 (5)170 (3)
N8—H8B···O5iii0.85 (3)2.48 (4)3.286 (4)157 (3)
O7—H9A···O8iv1.23 (5)1.38 (5)2.608 (2)174 (4)
C5—H5A···O4v0.932.443.321 (3)158.4
C12—H12A···O11ii0.932.503.352 (3)152.7
C18—H18A···O2vi0.96 (3)2.58 (3)3.421 (4)147 (2)
C21—H21A···O10vii0.932.603.451 (3)152.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x1, y, z; (vii) x+1, y, z.
 

Acknowledgements

This work was supported by NJ210003, BJ211008 and in part by the National Basic Research Program of China (2009CB930601).

References

First citationBhatt, P. M. & Desiraju, G. R. (2008). CrystEngComm, 10, 1747–1749.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. & Baures, P. W. (1988). J. Am. Chem. Soc. 110, 639–640.  CSD CrossRef CAS Web of Science Google Scholar
First citationGao, X. C., Friscic, T. & Macgillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationHori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567–569.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, C., Robinson, P. D. & Dyer, D. J. (2006). Acta Cryst. C62, o336–o338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426.  Web of Science CrossRef CAS Google Scholar
First citationRoy, S., Mahata, G. & Biradha, K. (2009). Cryst. Growth Des. 9, 5006–5008.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationWei, L.-H. (2007). Acta Cryst. E63, o4174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds