organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-(Ethane-1,2-diyldi-o-phenyl­ene)bis­­(pyridine-2-carboxamide)

aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea
*Correspondence e-mail: leehi@knu.ac.kr

(Received 27 September 2011; accepted 13 October 2011; online 22 October 2011)

The title mol­ecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intra­molecular hydrogen bonds, viz. amide–pyridine N—H⋯N and phen­yl–amide C—H⋯O, stabilize the trans conformation of the (pyridine-2-carboxamido)­phenyl group about the amide plane. In the crystal, the presence of weak inter­molecular C—H⋯O hydrogen bonds results in the formation of a three-dimensional network.

Related literature

For a related structure, see: Meghdadi et al. (2006[Meghdadi, S., Khavasi, H. R. & Nalchigar, S. (2006). Acta Cryst. E62, o5492-o5493.]). For applications of the pyridine-bearing carboxamides, see: Song et al. (2010[Song, Y. J., Lee, J. H., Koo, H. G., Lee, T. G., Myoung, S.-H., Kim, C., Kim, S.-J. & Kim, Y. (2010). Inorg. Chem. Commun. 13, 753-756.]); Piguet et al. (1997[Piguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005-2062.]); Lessmann & Horrocks (2000[Lessmann, J. J. & Horrocks, W. D. (2000). Inorg. Chem. 39, 3114-3124.]); Singh et al. (2008[Singh, A. K., Jacob, W., Boudalis, A. K., Tuchagues, J.-P. & Mukherjee, R. (2008). Eur. J. Inorg. Chem. pp. 2820-2829.]). For the synthesis of the ligand, see: Jain et al. (2004[Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862-871.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N4O2

  • Mr = 422.48

  • Monoclinic, P 21 /n

  • a = 5.9548 (5) Å

  • b = 11.9548 (10) Å

  • c = 14.8133 (12) Å

  • β = 91.429 (2)°

  • V = 1054.21 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 K

  • 0.25 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 7762 measured reflections

  • 2616 independent reflections

  • 1118 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.090

  • S = 0.84

  • 2616 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H14⋯N1 0.93 (2) 2.11 (3) 2.632 (2) 114.7 (18)
C13—H13⋯O1 0.95 2.33 2.941 (3) 122
C12—H12⋯O1i 0.95 2.48 3.352 (3) 152
C9—H9B⋯O1ii 0.99 2.61 3.299 (2) 127
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and CrystalMaker (CrystalMaker, 2007[CrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyridine-bearing carboxamide, a biologically ubiquitous functional group, is an important ligand-construction unit for coordination chemistry (Song et al., 2010). This burgeoning class of ligands can be readily obtained from the condensation reaction between pyridyl carboxylic acid and amine (Jain et al., 2004) and have been used to obtain a wide diversity of consequential structural motifs such as helicates (Piguet et al., 1997; Lessmann & Horrocks, 2000), dinuclear and polynuclear complexes (Singh et al., 2008). In order to explore coordination chemistry of bis(pyridineamide) ligands, we have synthesised the title compound (I) and report here its crystal structure.

The molecule contains two N-phenylene(pyridine-2-carboxiamide) moieties linked by an ethylene bridge. The crystal of (I) adopts an anti conformation (Fig. 1). Only a half of the molecule constitutes the asymmetric unit and the other half is centrosymmetrically related. The bond distances observed in (I) do not deviate significantly from the mean values of those in N,N'-(methylenedi-p-phenylene)bis(pyridine-2-carboxamide) (Meghdadi et al., 2006). The angle between the phenylenyl and pyridyl rings is about 10°. Two intramolecular hydrogen bonds of Namide—H···Npy and CphH···Oamide stabilise trans conformation of the N-phenylene(pyridine-2-carboxiamide) moiety about the amide plane (Table 1 and Fig. 1). Two relatively weak intermolecular hydrogen bonds of C12—H12···Oamide and C9—H9b···Oamide present to form overall three-dimensional netowork in the crystal (Table 1 and Fig. 2).

Related literature top

For a related structure, see: Meghdadi et al. (2006). For applications of the pyridine-bearing carboxamides, see: Song et al. (2010); Piguet et al. (1997); Lessmann & Horrocks (2000); Singh et al. (2008). For the synthesis of the ligand, see: Jain et al. (2004).

Experimental top

A solution of 2,2'-ethylenedianiline (1.09 g, 5 mmol) in pyridine (5 mL) was added to a solution of pyridine-2-carboxylic acid (1.25 g, 10 mmol) in pyridine (10 mL). After the resulting solution was stirred at 313 K for 10 min, triphenyl phosphate (3.21 g,10 mmol) was added dropwise and the reaction mixture was stirred at 373 K for 4 h. The reaction mixture was cooled to room temperature and stirred for 10 h. The volume of the solution was reduced to 10 mL and kept over night in a hood. The remaining solution was filtered, thoroughly washed four times with 100 mL solvent of water and acetone (1:1), and dried in vacuum. X-ray quality crystals were obtained by slow diffusion of diethyl ether into a dichloromethane solution at room temperature (yield 90%; m.p. about 473 K).

Refinement top

H-atom of N—H was refined isotropically. All H-atoms at C atoms were placed in geometrically ideallized positions and constrained to ride their parent atoms with the bond lengths of 0.95 Å and 0.99 Å for aryl and methylene H atoms, repectively, and with the isotropic displacement paprameteres of Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing 30% probability displacement ellipsoids and the atomic numbering scheme. Dotted lines represent the intramolecular hydrogen bonds. Atomic-numberings for H atoms are omitted for clarity. Symmetry code to generate the molecule: (i) -x + 1, -y + 2, -z + 1.
[Figure 2] Fig. 2. Perspective view of crystal packing along a axis. Green dotted lines represent the intermolecular hydrogen bonds. C, N, and H atoms are coloured in black, blue, and pink, respectively. All H atoms except for those related to the intermolecular hydrogen bonds are omitted for clarity.
N,N'-(Ethane-1,2-diyldi-o-phenylene)bis(pyridine- 2-carboxamide) top
Crystal data top
C26H22N4O2F(000) = 444
Mr = 422.48Dx = 1.331 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1330 reflections
a = 5.9548 (5) Åθ = 2.8–25.8°
b = 11.9548 (10) ŵ = 0.09 mm1
c = 14.8133 (12) ÅT = 200 K
β = 91.429 (2)°Block, colourless
V = 1054.21 (15) Å30.25 × 0.16 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
phi and ω scansh = 77
7762 measured reflectionsk = 1511
2616 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.0126P)2]
where P = (Fo2 + 2Fc2)/3
2616 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C26H22N4O2V = 1054.21 (15) Å3
Mr = 422.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.9548 (5) ŵ = 0.09 mm1
b = 11.9548 (10) ÅT = 200 K
c = 14.8133 (12) Å0.25 × 0.16 × 0.12 mm
β = 91.429 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1118 reflections with I > 2σ(I)
7762 measured reflectionsRint = 0.074
2616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.19 e Å3
2616 reflectionsΔρmin = 0.21 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8708 (3)0.71472 (14)0.45440 (12)0.0405 (5)
C10.8708 (4)0.64611 (19)0.38332 (15)0.0499 (7)
H10.74660.64850.34180.060*
C21.0440 (5)0.57144 (19)0.36728 (17)0.0516 (8)
H21.03820.52370.31600.062*
C31.2230 (5)0.5680 (2)0.42681 (17)0.0545 (8)
H31.34350.51760.41740.065*
C41.2270 (4)0.63841 (18)0.50077 (15)0.0452 (7)
H41.35010.63780.54280.054*
C51.0471 (4)0.70976 (17)0.51194 (14)0.0321 (6)
C61.0488 (4)0.78986 (18)0.59027 (14)0.0316 (6)
O11.1900 (3)0.78453 (12)0.65163 (10)0.0425 (4)
N20.8816 (3)0.86669 (15)0.58299 (12)0.0333 (5)
H140.789 (4)0.8555 (18)0.5327 (15)0.073 (9)*
C70.8427 (4)0.96392 (17)0.63478 (13)0.0282 (5)
C80.6431 (4)1.02237 (17)0.61789 (13)0.0282 (5)
C90.4708 (4)0.98304 (17)0.54855 (12)0.0308 (5)
H9A0.32261.01490.56320.037*
H9B0.45870.90060.55180.037*
C100.6084 (4)1.12198 (18)0.66456 (14)0.0379 (6)
H100.47341.16270.65390.046*
C110.7673 (4)1.16257 (18)0.72620 (15)0.0425 (7)
H110.74121.23080.75710.051*
C120.9627 (4)1.10390 (19)0.74251 (14)0.0421 (7)
H121.07201.13180.78450.051*
C131.0005 (4)1.00386 (18)0.69758 (13)0.0352 (6)
H131.13430.96270.70980.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0473 (15)0.0353 (12)0.0385 (12)0.0060 (10)0.0035 (10)0.0072 (10)
C10.059 (2)0.0470 (17)0.0437 (16)0.0059 (14)0.0067 (14)0.0121 (13)
C20.074 (2)0.0395 (17)0.0413 (16)0.0124 (14)0.0094 (15)0.0059 (13)
C30.068 (2)0.0478 (18)0.0481 (17)0.0240 (15)0.0113 (16)0.0006 (14)
C40.0487 (19)0.0428 (16)0.0442 (16)0.0168 (13)0.0035 (13)0.0024 (13)
C50.0394 (16)0.0260 (13)0.0314 (13)0.0055 (10)0.0068 (11)0.0065 (10)
C60.0353 (16)0.0290 (14)0.0306 (13)0.0010 (11)0.0038 (11)0.0084 (11)
O10.0430 (12)0.0442 (10)0.0399 (10)0.0075 (8)0.0103 (8)0.0046 (8)
N20.0355 (14)0.0330 (12)0.0311 (12)0.0081 (9)0.0053 (10)0.0056 (9)
C70.0318 (15)0.0292 (13)0.0239 (12)0.0006 (10)0.0034 (10)0.0018 (10)
C80.0305 (15)0.0296 (13)0.0249 (12)0.0001 (10)0.0053 (10)0.0028 (10)
C90.0291 (14)0.0310 (13)0.0324 (13)0.0025 (10)0.0043 (11)0.0031 (10)
C100.0444 (18)0.0344 (15)0.0354 (14)0.0044 (11)0.0102 (13)0.0012 (11)
C110.059 (2)0.0331 (15)0.0365 (14)0.0052 (13)0.0141 (14)0.0064 (11)
C120.0527 (19)0.0460 (17)0.0278 (13)0.0140 (13)0.0034 (13)0.0024 (12)
C130.0375 (16)0.0404 (15)0.0278 (13)0.0035 (11)0.0026 (11)0.0015 (11)
Geometric parameters (Å, º) top
N1—C11.335 (3)C7—C131.390 (3)
N1—C51.337 (3)C7—C81.396 (3)
C1—C21.389 (3)C8—C101.395 (3)
C1—H10.9500C8—C91.509 (3)
C2—C31.367 (3)C9—C9i1.543 (3)
C2—H20.9500C9—H9A0.9900
C3—C41.381 (3)C9—H9B0.9900
C3—H30.9500C10—C111.386 (3)
C4—C51.382 (3)C10—H100.9500
C4—H40.9500C11—C121.375 (3)
C5—C61.504 (3)C11—H110.9500
C6—O11.224 (2)C12—C131.390 (3)
C6—N21.357 (3)C12—H120.9500
N2—C71.415 (2)C13—H130.9500
N2—H140.93 (2)
C1—N1—C5117.4 (2)C13—C7—N2121.9 (2)
N1—C1—C2123.0 (2)C8—C7—N2117.7 (2)
N1—C1—H1118.5C10—C8—C7118.3 (2)
C2—C1—H1118.5C10—C8—C9119.8 (2)
C3—C2—C1118.6 (2)C7—C8—C9121.84 (19)
C3—C2—H2120.7C8—C9—C9i112.8 (2)
C1—C2—H2120.7C8—C9—H9A109.0
C2—C3—C4119.4 (2)C9i—C9—H9A109.0
C2—C3—H3120.3C8—C9—H9B109.0
C4—C3—H3120.3C9i—C9—H9B109.0
C3—C4—C5118.2 (2)H9A—C9—H9B107.8
C3—C4—H4120.9C11—C10—C8121.2 (2)
C5—C4—H4120.9C11—C10—H10119.4
N1—C5—C4123.3 (2)C8—C10—H10119.4
N1—C5—C6116.96 (19)C12—C11—C10119.9 (2)
C4—C5—C6119.7 (2)C12—C11—H11120.1
O1—C6—N2125.7 (2)C10—C11—H11120.1
O1—C6—C5122.1 (2)C11—C12—C13120.1 (2)
N2—C6—C5112.3 (2)C11—C12—H12120.0
C6—N2—C7130.0 (2)C13—C12—H12120.0
C6—N2—H14112.8 (15)C12—C13—C7120.1 (2)
C7—N2—H14116.9 (15)C12—C13—H13120.0
C13—C7—C8120.4 (2)C7—C13—H13120.0
C5—N1—C1—C20.1 (4)C6—N2—C7—C8173.7 (2)
N1—C1—C2—C30.1 (4)C13—C7—C8—C100.9 (3)
C1—C2—C3—C40.1 (4)N2—C7—C8—C10176.24 (18)
C2—C3—C4—C50.4 (4)C13—C7—C8—C9178.45 (17)
C1—N1—C5—C40.5 (3)N2—C7—C8—C91.3 (3)
C1—N1—C5—C6178.20 (18)C10—C8—C9—C9i96.1 (3)
C3—C4—C5—N10.6 (4)C7—C8—C9—C9i81.4 (3)
C3—C4—C5—C6178.3 (2)C7—C8—C10—C110.1 (3)
N1—C5—C6—O1172.4 (2)C9—C8—C10—C11177.55 (19)
C4—C5—C6—O19.8 (3)C8—C10—C11—C120.4 (3)
N1—C5—C6—N28.7 (3)C10—C11—C12—C130.3 (3)
C4—C5—C6—N2169.2 (2)C11—C12—C13—C71.2 (3)
O1—C6—N2—C78.3 (4)C8—C7—C13—C121.5 (3)
C5—C6—N2—C7170.7 (2)N2—C7—C13—C12175.5 (2)
C6—N2—C7—C139.2 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14···N10.93 (2)2.11 (3)2.632 (2)114.7 (18)
C13—H13···O10.952.332.941 (3)122
C12—H12···O1ii0.952.483.352 (3)152
C9—H9B···O1iii0.992.613.299 (2)127
Symmetry codes: (ii) x+5/2, y+1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H22N4O2
Mr422.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)5.9548 (5), 11.9548 (10), 14.8133 (12)
β (°) 91.429 (2)
V3)1054.21 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7762, 2616, 1118
Rint0.074
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.090, 0.84
No. of reflections2616
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and CrystalMaker (CrystalMaker, 2007), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H14···N10.93 (2)2.11 (3)2.632 (2)114.7 (18)
C13—H13···O10.952.332.941 (3)122
C12—H12···O1i0.952.483.352 (3)152
C9—H9B···O1ii0.992.613.299 (2)127
Symmetry codes: (i) x+5/2, y+1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2009–0087304). The authors acknowledge Dr Ha-Jin Lee and the Korea Basic Science Institute for the data collection and refinement.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCrystalMaker (2007). CrystalMaker. CrystalMaker Software Ltd, Yarnton, England.  Google Scholar
First citationJain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). Dalton Trans. pp. 862–871.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLessmann, J. J. & Horrocks, W. D. (2000). Inorg. Chem. 39, 3114–3124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeghdadi, S., Khavasi, H. R. & Nalchigar, S. (2006). Acta Cryst. E62, o5492–o5493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPiguet, C., Bernardinelli, G. & Hopfgartner, G. (1997). Chem. Rev. 97, 2005–2062.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Jacob, W., Boudalis, A. K., Tuchagues, J.-P. & Mukherjee, R. (2008). Eur. J. Inorg. Chem. pp. 2820–2829.  Web of Science CSD CrossRef Google Scholar
First citationSong, Y. J., Lee, J. H., Koo, H. G., Lee, T. G., Myoung, S.-H., Kim, C., Kim, S.-J. & Kim, Y. (2010). Inorg. Chem. Commun. 13, 753–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds