organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2958-o2959

1-[(4-{[(2-Oxo-1,2-di­hydro­naphthalen-1-yl­­idene)meth­yl]amino}­anilino)methyl­­idene]naphthalen-2(1H)-one dihydrate

aDepartment of Chemistry, J.J. Strossmayer University, Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia, and bLaboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10002 Zagreb, Croatia
*Correspondence e-mail: ablagus@kemija.unios.hr

(Received 29 September 2011; accepted 11 October 2011; online 12 October 2011)

The title compound, C28H20N2O2·2H2O, comprises a Schiff base mol­ecule with an imposed inversion centre in the middle of p-phenyl­enediamine unit and water mol­ecules of crystallization. In the structure, the Schiff base mol­ecule is present as the keto–amino tautomer with a strong intra­molecular N—H⋯O hydrogen bond. The Schiff base mol­ecules and water mol­ecules of crystallization create infinite [010] columns through O—H⋯O hydrogen bonds. Inter­molecular attractions within columns are through additional ππ inter­actions [centroid–centroid distance = 3.352 (1) Å] between parallel Schiff base mol­ecules. The columns are joined into infinite (011) layers through weak C—H⋯O hydrogen bonds. The layers pack in an assembly by van der Waals attractions, only being effective between bordering non-polar naphthalene ring systems.

Related literature

For general background to Schiff bases, see: Blagus et al. (2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]). The stereochemistry of intrinsic Schiff bases differs significantly, see: Inabe et al. (1994[Inabe, T., Luneau, I., Mitani, T., Maruyama, Y. & Takeda, S. (1994). Bull. Chem. Soc. Jpn, 67, 612-621.]). For the quinoid effect in 2-oxy-naphthaldimine Schiff base derivatives, see: Gavranić et al. (1996[Gavranić, M., Kaitner, B. & Meštrović, E. (1996). J. Chem. Crystallogr. 26, 23-28.]); Friščić et al. (1998[Friščić, T., Kaitner, B. & Meštrović, E. (1998). Croat. Chem. Acta, 71, 87-98.]). For the herringbone packing motif in fused aromatic systems, see: Desiraju & Gavezzotti (1989[Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473-482.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20N2O2·2H2O

  • Mr = 452.49

  • Monoclinic, P 21 /c

  • a = 17.4222 (11) Å

  • b = 4.4686 (5) Å

  • c = 15.9374 (10) Å

  • β = 116.30 (1)°

  • V = 1112.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.5 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • 14006 measured reflections

  • 2423 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.190

  • S = 1.05

  • 2423 reflections

  • 160 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.86 2.560 (3) 138
O1W—H1B⋯O1 0.83 2.27 3.090 (4) 169
O1W—H1A⋯O1i 0.84 2.01 2.826 (4) 165
C13—H13⋯O1Wii 0.93 2.33 3.247 (5) 170
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

Desiraju and Gavezzotti presented classification of packing arrangements for polynuclear aromatic hydrocarbons depending on the number and positions of C and H atoms in molecules (Desiraju & Gavezzotti, 1989). As a result of significant planarity, Schiff bases derived from p-phenylenediamine have significant aromatic-aromatic C···C interactions compared to the number of intermolecular C–H hydrogen bonds and usually show a herringbone motif of intermolecular assembly (Blagus et al., 2010).

We report here the crystal structure of the title compound (I) as a crystal hydrate. The stereochemistry of intrinsic 1,4-bis(2-hydroxy-1-naphthylmethylideneamino)benzene was earlier determined and reported (Inabe et al., 1994). Distinctively planar Schiff base molecule possesses crystallographic inversion centre in the middle of p-phenylenediamine moiety with anti arrangements of chelate rings (Fig. 1). Interplanar angle between naphthalene moiety and the central aromatic ring is 1.7 (2)°. Schiff base molecule does not deviate significantly from planarity in contrast to the structure by Inabe et al. with corresponding interplanar angle being 22.3°.In both structures molecules possess internal (molecular) symmetry with inversion centre in the middle of p-phenylenediamine moiety.

Bond distances C2–O1 [1.277 (4) Å] and C11–N1 [1.322 (4) Å] indicate keto-amino tautomeric form of (I). This is confirmed by a formation of strong intramolecular hydrogen bond N–H···O [N···O = 2.560 (3) Å]. Short C3-to-C4 bond distance [1.345 (5) Å] with O1 oxygen atom at C2 position of naphthalene core indicates the presence of quinoid effect (Gavranić et al., 1996; Friščić et al., 1998). Water molecules play crucial role in crystal packing: a) as bridging media pilling up Schiff base molecules at the separation characteristic for graphite in the form of infinite [010] columns and b) as bridging molecule connecting neighboring [010] columns into infinite (011) layers. Hydrogen bonds effective for columns formation are: a) O1W–H1A···O1i 2.826 (4) Å [(i): x, y + 1, z] and O1W–H1B···O1 3.090 (4) Å while for layers formation is effective b) C13–H13···OW1ii 3.247 (5) Å [(ii): x, – y + 3/2, z] (Fig. 2 and Table 1).

Along with intermolecular contacts via hydrogen bonds the linking between molecules amplifies through ππ interactions with offset (Fig. 2). Schiff base molecules arrange parallel to each other with their middle p-phenylenediamine moiety being separated at distances characteristic for layer separation in graphite. The shortest separations corresponding to the sum of van der Waals radii are: C12···C12iii 3.362 (3) Å [(iii): -x, -y + 1, -z] and C11···C13iv 3.374 (3) Å [(iv): x, y - 1, z]. π··· π interactions are also characterised by perpendicular Cgiii···Cgv distance 3.352 (1) Å [(v): -x, 3 - y, -z] and slippage of 2.955 Å. There is a space between each pair of neighboring columns large enough to accommodate water molecules (Fig. 3). Connection between neighboring parallel layers is accomplished through bordering non-polar naphthalene core by the standard van der Walls attractions. The rather planar Schiff base molecules of (I) reveal characteristic herringbone motif of packing arrangement (Fig. 4).

Related literature top

For general background to Schiff bases, see: Blagus et al. (2010). The stereochemistry of intrinsic Schiff base differs sigificantly, see: Inabe et al. (1994). For the quinoid effect in 2-oxy-naphthaldimine Schiff base derivatives, see: Gavranić et al. (1996); Friščić et al. (1998). For the herringbone packing motif in fused aromatic systems, see: Desiraju & Gavezzotti (1989).

Experimental top

The crystals of (I), (1,4-bis(2-hydroxy-1-naphthylmethylideneamino)benzene as crystal hydrate were obtained during an unsuccessful attempt to synthesise the nickel complex of corresponding Schiff base. Schiff base itself was prepared separately in standard way by condensation of 2-hydroxy-naphtaldehyde and p-phenylenediamine in ethanol solution in molar ratio 2:1 and used as a ligand in metal complex synthesis. The 1:1 mixture of 0.1 mmol DMSO solutions of Schiff base and 0.2 mmol nickel salt, NiCl2. 6H2O was stirred under reflux for two h at 373 K. Preparation of nickel complex failed. The crystals of title compound crystallised from mother liquor after cooling to RT and mechanically separated from nickel salt.

Refinement top

Hydrogen atoms were refined in two different ways.

For hydrogen atoms bonded to C and N atoms benzene type riding mode was used with C-to-H and N-to-H bond distances taken as 0.93 and 0.86 Å, respectively.

Due to somewhat higher values of anisotropic thermal parameters of O1W oxygen atom, implying to certain disorder of water molecule, bond distances O1W to H1A and H1B, respectively, as well as bond distance H1A–H1B were restrained to the values accepted for water molecule. Bond distances O1W to H1A and H1B, respectively were fixed to 0.82 (1) Å and H1A to H1B to 1.30 (1) Å and the position of hydrogen atoms were re-calculated in consecutive refinement cycles. Isotropic thermal parameters for hydrogen atoms were estimated as 1.2 times of equivalent isotropic thermal parameter of corresponding C, N and O atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A general overview of (I) showing numbering scheme with anisotropic thermal ellipsoids pictured at 30% probability level. Thin lines display intra N–H···O, and the two intermolecular hydrogen bonds O–H···O and C–H···O. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The display of three intermolecular contacts of water molecule with nearby Schiff base molecules. Two Schiff base molecules connected by ππ interactions are additionally bridged with a water molecule through two strong hydrogen bonds O1W–H1A···O1i [(i): x, y + 1, z] and O1W–H1B···O1, respectively. The third intermolecular contact of water molecule is via C13–H13···OW1ii 3.247 (5) Å [(ii): x, - y + 3/2, z] interaction.
[Figure 3] Fig. 3. Water molecules of crystallisation occupy the cylindrical voids formed by assembling Schiff base molecules into the [010] columns.
[Figure 4] Fig. 4. The display of herringbone packing arrangement of Schiff base molecules viewed down c-axes. Water molecules and all hydrogen atoms were omitted for clarity.
1-[(4-{[(2-Oxo-1,2-dihydronaphthalen-1- ylidene)methyl]amino}anilino)methylidene]naphthalen-2(1H)-one dihydrate top
Crystal data top
C28H20N2O2·2H2OF(000) = 476
Mr = 452.49Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2423 reflections
a = 17.4222 (11) Åθ = 4–27°
b = 4.4686 (5) ŵ = 0.09 mm1
c = 15.9374 (10) ÅT = 298 K
β = 116.30 (1)°Prism, green
V = 1112.3 (2) Å30.5 × 0.2 × 0.1 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.0°, θmin = 3.9°
ω scansh = 2221
14006 measured reflectionsk = 55
2423 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0914P)2 + 0.2128P]
where P = (Fo2 + 2Fc2)/3
2423 reflections(Δ/σ)max = 0.009
160 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C28H20N2O2·2H2OV = 1112.3 (2) Å3
Mr = 452.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 17.4222 (11) ŵ = 0.09 mm1
b = 4.4686 (5) ÅT = 298 K
c = 15.9374 (10) Å0.5 × 0.2 × 0.1 mm
β = 116.30 (1)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1351 reflections with I > 2σ(I)
14006 measured reflectionsRint = 0.054
2423 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0613 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2423 reflectionsΔρmin = 0.27 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19806 (12)0.2820 (4)0.25053 (12)0.0537 (6)
N10.12888 (13)0.5855 (4)0.09888 (14)0.0420 (5)
H10.13210.53490.15240.050*
C10.24546 (15)0.2518 (5)0.13184 (17)0.0383 (6)
C20.25000 (16)0.1743 (5)0.22164 (17)0.0416 (6)
C30.31492 (17)0.0329 (6)0.27967 (18)0.0486 (7)
H30.31860.08530.33780.058*
C40.37040 (18)0.1525 (6)0.25139 (19)0.0495 (7)
H40.41160.28550.29100.059*
C50.36876 (15)0.0839 (5)0.16289 (18)0.0427 (6)
C60.42800 (18)0.2111 (6)0.1358 (2)0.0527 (7)
H60.46960.34100.17640.063*
C70.42563 (19)0.1479 (7)0.0517 (2)0.0583 (8)
H70.46540.23260.03450.070*
C80.36356 (19)0.0436 (6)0.0084 (2)0.0568 (8)
H80.36160.08500.06650.068*
C90.30524 (18)0.1733 (6)0.01493 (19)0.0498 (7)
H90.26430.30140.02740.060*
C100.30542 (15)0.1174 (5)0.10235 (17)0.0387 (6)
C110.18466 (15)0.4573 (5)0.07490 (17)0.0399 (6)
H110.18320.50660.01750.048*
C120.06465 (15)0.7953 (5)0.04716 (18)0.0396 (6)
C130.05037 (17)0.8940 (6)0.04079 (19)0.0466 (7)
H130.08380.82270.06850.056*
C140.01402 (16)1.0993 (6)0.08723 (18)0.0450 (6)
H140.02331.16730.14610.054*
O1W0.1500 (2)0.8211 (6)0.3392 (2)0.0919 (9)
H1A0.160 (3)0.978 (4)0.317 (3)0.110*
H1B0.170 (3)0.687 (5)0.318 (3)0.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (12)0.0580 (12)0.0539 (12)0.0074 (10)0.0306 (10)0.0081 (9)
N10.0396 (12)0.0385 (11)0.0463 (12)0.0040 (10)0.0177 (10)0.0037 (10)
C10.0330 (13)0.0333 (12)0.0435 (14)0.0026 (11)0.0122 (11)0.0004 (11)
C20.0396 (14)0.0392 (14)0.0462 (15)0.0029 (12)0.0193 (13)0.0003 (12)
C30.0490 (16)0.0481 (15)0.0434 (15)0.0008 (13)0.0156 (13)0.0080 (12)
C40.0414 (15)0.0442 (15)0.0511 (16)0.0031 (13)0.0097 (13)0.0079 (13)
C50.0323 (13)0.0402 (13)0.0495 (15)0.0007 (11)0.0124 (12)0.0009 (12)
C60.0394 (15)0.0461 (16)0.0653 (19)0.0066 (12)0.0166 (14)0.0016 (14)
C70.0535 (18)0.0555 (17)0.074 (2)0.0034 (15)0.0361 (17)0.0068 (16)
C80.0609 (19)0.0574 (18)0.0573 (18)0.0021 (15)0.0309 (16)0.0027 (14)
C90.0511 (17)0.0498 (16)0.0480 (16)0.0090 (13)0.0214 (14)0.0045 (12)
C100.0345 (13)0.0333 (12)0.0442 (14)0.0025 (11)0.0138 (11)0.0025 (11)
C110.0373 (14)0.0352 (13)0.0449 (14)0.0005 (11)0.0162 (12)0.0029 (11)
C120.0365 (14)0.0328 (13)0.0451 (14)0.0008 (11)0.0142 (12)0.0017 (11)
C130.0433 (15)0.0454 (14)0.0536 (16)0.0058 (13)0.0238 (13)0.0002 (13)
C140.0454 (15)0.0457 (14)0.0427 (14)0.0052 (13)0.0185 (13)0.0039 (12)
O1W0.113 (2)0.0952 (18)0.0958 (19)0.0004 (18)0.0719 (17)0.0129 (17)
Geometric parameters (Å, º) top
O1—C21.277 (3)C6—H60.9300
N1—C111.322 (3)C7—C81.378 (4)
N1—C121.412 (3)C7—H70.9300
N1—H10.8600C8—C91.357 (4)
C1—C111.392 (3)C8—H80.9300
C1—C21.440 (3)C9—C101.414 (4)
C1—C101.452 (3)C9—H90.9300
C2—C31.437 (3)C11—H110.9300
C3—C41.345 (4)C12—C131.383 (4)
C3—H30.9300C13—C141.383 (4)
C4—C51.431 (4)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.404 (4)O1W—H1A0.836 (10)
C5—C101.419 (3)O1W—H1B0.831 (10)
C6—C71.353 (4)
C11—N1—C12127.8 (2)C6—C7—C8119.2 (3)
C11—N1—H1116.1C6—C7—H7120.4
C12—N1—H1116.1C8—C7—H7120.4
C11—C1—C2119.8 (2)C9—C8—C7121.9 (3)
C11—C1—C10120.7 (2)C9—C8—H8119.1
C2—C1—C10119.5 (2)C7—C8—H8119.1
O1—C2—C3119.5 (2)C8—C9—C10121.3 (3)
O1—C2—C1122.1 (2)C8—C9—H9119.4
C3—C2—C1118.4 (2)C10—C9—H9119.4
C4—C3—C2121.2 (2)C9—C10—C5116.3 (2)
C4—C3—H3119.4C9—C10—C1123.9 (2)
C2—C3—H3119.4C5—C10—C1119.8 (2)
C3—C4—C5122.8 (2)N1—C11—C1122.8 (2)
C3—C4—H4118.6N1—C11—H11118.6
C5—C4—H4118.6C1—C11—H11118.6
C6—C5—C10120.3 (2)C13—C12—N1122.9 (2)
C6—C5—C4121.3 (2)C12—C13—C14119.5 (2)
C10—C5—C4118.4 (2)C12—C13—H13120.2
C7—C6—C5121.1 (3)C14—C13—H13120.2
C7—C6—H6119.4C13—C14—H14119.6
C5—C6—H6119.4H1A—O1W—H1B103 (2)
C11—C1—C2—O12.0 (4)C8—C9—C10—C1179.3 (2)
C10—C1—C2—O1178.9 (2)C6—C5—C10—C91.3 (4)
C11—C1—C2—C3178.5 (2)C4—C5—C10—C9178.7 (2)
C10—C1—C2—C30.6 (3)C6—C5—C10—C1178.9 (2)
O1—C2—C3—C4179.6 (2)C4—C5—C10—C11.1 (3)
C1—C2—C3—C40.0 (4)C11—C1—C10—C92.3 (4)
C2—C3—C4—C50.1 (4)C2—C1—C10—C9178.6 (2)
C3—C4—C5—C6179.6 (3)C11—C1—C10—C5177.9 (2)
C3—C4—C5—C100.5 (4)C2—C1—C10—C51.2 (3)
C10—C5—C6—C70.7 (4)C12—N1—C11—C1179.9 (2)
C4—C5—C6—C7179.3 (3)C2—C1—C11—N10.9 (3)
C5—C6—C7—C80.3 (4)C10—C1—C11—N1179.9 (2)
C6—C7—C8—C90.7 (4)C11—N1—C12—C131.3 (4)
C7—C8—C9—C100.1 (4)N1—C12—C13—C14179.8 (2)
C8—C9—C10—C50.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.862.560 (3)138
O1W—H1B···O10.832.273.090 (4)169
O1W—H1A···O1i0.842.012.826 (4)165
C13—H13···O1Wii0.932.333.247 (5)170
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H20N2O2·2H2O
Mr452.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.4222 (11), 4.4686 (5), 15.9374 (10)
β (°) 116.30 (1)
V3)1112.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.5 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14006, 2423, 1351
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.190, 1.05
No. of reflections2423
No. of parameters160
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.862.560 (3)138
O1W—H1B···O10.832.273.090 (4)169
O1W—H1A···O1i0.842.012.826 (4)165
C13—H13···O1Wii0.932.333.247 (5)170
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Financial support by the Ministry of Science, Education and Sport of the Republic of Croatia is gratefully acknowledged (grant No. 119–1193079–3069).

References

First citationBlagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.  CAS Google Scholar
First citationDesiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriščić, T., Kaitner, B. & Meštrović, E. (1998). Croat. Chem. Acta, 71, 87–98.  Google Scholar
First citationGavranić, M., Kaitner, B. & Meštrović, E. (1996). J. Chem. Crystallogr. 26, 23–28.  CSD CrossRef CAS Web of Science Google Scholar
First citationInabe, T., Luneau, I., Mitani, T., Maruyama, Y. & Takeda, S. (1994). Bull. Chem. Soc. Jpn, 67, 612–621.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2958-o2959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds