organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­methyl 2-(tert-butyl­amino)-5-oxo-4,5-di­hydro­pyrano[3,2-c]chromene-3,4-di­carboxyl­ate

aPhysics Department, Sri Ram Engineering College, Chennai 602 024, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 13 September 2011; accepted 8 October 2011; online 12 October 2011)

The title compound, C20H21NO7, is asymmetric with a chiral centre located in the pyran ring and crystallizes as a racemate. The mol­ecular framework is somewhat bent; the coumarin moiety and the pyran ring are inclined by 7.85 (5)°. The mol­ecular structure is characterized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif, and the crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds. The 3-carboxyl­ate O atom is involved in both of them, having a bifurcated character.

Related literature

For the biological and pharmacological activity of coumarin and its derivatives, see: Borges et al. (2005[Borges, F., Roleria, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]); Gursoy & Karali (2003[Gursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545-552.]); Moffett (1964[Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Sripisut, T., Laphookhieo, S. & Chantrapromma, S. (2011). Acta Cryst. E67, o422-o423.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21NO7

  • Mr = 387.38

  • Monoclinic, P 21 /n

  • a = 10.0907 (2) Å

  • b = 16.3943 (4) Å

  • c = 11.8266 (2) Å

  • β = 107.941 (1)°

  • V = 1861.34 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.979

  • 27295 measured reflections

  • 6688 independent reflections

  • 4069 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.158

  • S = 1.00

  • 6688 reflections

  • 258 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 1.97 2.6602 (16) 136
C19—H19B⋯O5i 0.96 2.49 3.4469 (19) 174
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The coumarin and its derivatives, comprising many of the plant-derived compounds, display a wide range of biological activities such as antiviral, anti-inflammatory, anti-bacterial (Gursoy & Karali et al., 2003), anti-fungal (Moffett et al. 1964), anticoagulant, and anti-proliferative. Some coumarin derivatives have been shown to be potential anti-HIV agents, antibiotics and antioxidants as well as flavour compounds(Borges et al., 2005).

The title compound C20H21NO7 consists of a coumarin ring system fused with a pyran ring. The coumarin ring system is almost planar, with the C9 atom having a maximum deviation of only 0.0495 (15) Å. The coumarin ring system (O1/C1—C9) makes dihedral angles of 81.43 (7)° and 7.67 (5)° with the methyl carboxylates(C13/O3/O4/C14) and (C15/C16/O5/O6), respectively. The pyran ring forms dihedral angles of 88.77 (7)° and 2.95 (6)° with these two methyl carboxylates.

The X-ray crystal structure determination shows that the compound crystallizes as a racemate - the molecule has an asymmetric carbon atom C10. The title compound exhibits structural similarities with a previously reported related structure (Fun et al., 2011).

The molecular structure is stabilized by an intramolecular N—H···O (Table 1) hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. The carboxylate atom O5 is a bifurcated hydrogen acceptor - from the neighbouring tert-butyl group and from the amino group.

Related literature top

For the biological and pharmacological activity of coumarin and its derivatives, see: Borges et al. (2005); Gursoy & Karali (2003); Moffett (1964). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of 4-hydroxy coumarin (0.162 g, 1.0 mmol) and dimethyl acetylenedicarboxylate (0.142 g, 1.0 mmol) in CH3CN (10 ml), a solution of tert-butyl isocynaide (0.083 g, 1.0 mmol) was added at room temperature over 5 min. The mixture was then stirred for 24 h. After completion of the reaction, the solvent was removed under vacuum and the solid residue was washed with n-hexane and re-crystallized from CH2Cl2/n-hexane(1:2) to give product as colourless crystals (0.337 g, 87%).

Refinement top

The positions of the hydrogen atoms bound to the N and C atoms were identified from the difference electron density maps and their distances were geometrically optimized. The hydrogen atoms bound to the C and N atoms were treated as riding atoms, with d(N—H)=0.86 and Uiso(H) = 1.2Ueq(N) for amine group, d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H)=0.98 and Uiso(H)=1.2Ueq(C) for methine and d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl groups. Conformations of Me groups were rotationally optimized.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down c axis, showing formation of hydrogen bond. Dashed lines indicate the intramolecular N—H···O and intermolecular C—H···O interactions.
rac-Dimethyl 2-(tert-butylamino)-5-oxo-4,5- dihydropyrano[3,2-c]chromene-3,4-dicarboxylate top
Crystal data top
C20H21NO7F(000) = 816
Mr = 387.38Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6688 reflections
a = 10.0907 (2) Åθ = 2.2–32.5°
b = 16.3943 (4) ŵ = 0.11 mm1
c = 11.8266 (2) ÅT = 293 K
β = 107.941 (1)°Block, colourless
V = 1861.34 (7) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6688 independent reflections
Radiation source: fine-focus sealed tube4069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 32.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.969, Tmax = 0.979k = 2424
27295 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.294P]
where P = (Fo2 + 2Fc2)/3
6688 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H21NO7V = 1861.34 (7) Å3
Mr = 387.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0907 (2) ŵ = 0.11 mm1
b = 16.3943 (4) ÅT = 293 K
c = 11.8266 (2) Å0.30 × 0.25 × 0.20 mm
β = 107.941 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6688 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4069 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.030
27295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
6688 reflectionsΔρmin = 0.21 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60272 (14)0.10657 (9)0.40846 (13)0.0459 (3)
C20.68858 (16)0.12542 (11)0.52188 (14)0.0574 (4)
H20.70550.17940.54620.069*
C30.74773 (16)0.06267 (13)0.59709 (15)0.0632 (5)
H30.80490.07450.67350.076*
C40.72413 (16)0.01784 (12)0.56175 (14)0.0593 (4)
H40.76470.05950.61430.071*
C50.64022 (15)0.03630 (10)0.44824 (13)0.0489 (3)
H50.62530.09040.42410.059*
C60.57782 (13)0.02628 (8)0.36981 (12)0.0405 (3)
C70.48651 (12)0.01446 (7)0.25070 (11)0.0371 (3)
C80.42265 (13)0.07696 (7)0.18224 (11)0.0373 (3)
C90.44864 (15)0.15958 (8)0.22674 (13)0.0458 (3)
C100.32265 (12)0.06565 (7)0.06042 (11)0.0364 (2)
H100.34680.10370.00600.044*
C110.33327 (13)0.02048 (7)0.01863 (11)0.0364 (3)
C120.40362 (13)0.08012 (7)0.09507 (11)0.0376 (3)
C130.17418 (13)0.08403 (7)0.06189 (12)0.0385 (3)
C140.03365 (16)0.15297 (11)0.03895 (17)0.0615 (4)
H14A0.08250.10190.05300.092*
H14B0.06950.18780.10670.092*
H14C0.04640.17860.02990.092*
C150.26488 (14)0.04112 (8)0.10362 (12)0.0416 (3)
C160.11252 (17)0.00960 (12)0.28374 (14)0.0625 (4)
H16A0.16040.02030.32910.094*
H16B0.08110.06080.32210.094*
H16C0.03390.02140.27850.094*
C170.48307 (18)0.22850 (8)0.13618 (14)0.0519 (4)
C180.4116 (3)0.24776 (12)0.2283 (2)0.0821 (6)
H18A0.43050.20510.28670.123*
H18B0.44600.29860.26620.123*
H18C0.31290.25170.19040.123*
C190.6380 (2)0.21543 (11)0.19263 (19)0.0730 (5)
H19A0.68090.20640.13160.109*
H19B0.67830.26280.23800.109*
H19C0.65320.16880.24410.109*
C200.4601 (3)0.29789 (10)0.04631 (19)0.0820 (6)
H20A0.36210.30740.01170.123*
H20B0.50410.34650.08570.123*
H20C0.49980.28340.01500.123*
O10.54122 (11)0.17100 (6)0.33794 (10)0.0537 (3)
O20.39422 (14)0.21939 (6)0.17376 (11)0.0651 (3)
O30.12113 (11)0.05152 (7)0.12744 (10)0.0568 (3)
O40.11235 (10)0.13887 (6)0.01951 (10)0.0539 (3)
O50.25835 (12)0.10881 (7)0.14909 (9)0.0559 (3)
O60.20492 (12)0.02410 (6)0.16718 (9)0.0545 (3)
O70.47008 (10)0.06485 (5)0.21316 (8)0.0433 (2)
N10.41676 (14)0.15701 (7)0.06458 (11)0.0503 (3)
H10.38030.16700.01000.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (6)0.0521 (8)0.0470 (7)0.0020 (5)0.0088 (5)0.0071 (6)
C20.0439 (7)0.0686 (10)0.0542 (9)0.0058 (7)0.0069 (7)0.0172 (8)
C30.0413 (7)0.0934 (13)0.0470 (8)0.0027 (8)0.0019 (6)0.0133 (9)
C40.0445 (8)0.0835 (12)0.0447 (8)0.0112 (8)0.0060 (6)0.0050 (8)
C50.0423 (7)0.0580 (8)0.0429 (7)0.0057 (6)0.0080 (6)0.0036 (6)
C60.0318 (5)0.0473 (7)0.0406 (7)0.0012 (5)0.0087 (5)0.0000 (5)
C70.0345 (6)0.0359 (6)0.0396 (6)0.0013 (5)0.0094 (5)0.0007 (5)
C80.0356 (6)0.0333 (6)0.0412 (6)0.0016 (5)0.0090 (5)0.0004 (5)
C90.0456 (7)0.0386 (6)0.0497 (8)0.0015 (5)0.0096 (6)0.0031 (6)
C100.0377 (6)0.0314 (5)0.0384 (6)0.0020 (4)0.0092 (5)0.0047 (5)
C110.0375 (6)0.0330 (5)0.0381 (6)0.0017 (4)0.0108 (5)0.0002 (5)
C120.0398 (6)0.0333 (6)0.0400 (6)0.0025 (5)0.0127 (5)0.0004 (5)
C130.0383 (6)0.0323 (6)0.0417 (7)0.0004 (5)0.0074 (5)0.0020 (5)
C140.0401 (7)0.0598 (9)0.0757 (11)0.0082 (7)0.0047 (7)0.0113 (8)
C150.0404 (6)0.0427 (7)0.0416 (7)0.0055 (5)0.0126 (5)0.0008 (5)
C160.0517 (8)0.0845 (12)0.0422 (8)0.0023 (8)0.0013 (6)0.0040 (8)
C170.0706 (9)0.0321 (6)0.0569 (9)0.0052 (6)0.0255 (7)0.0088 (6)
C180.1131 (17)0.0600 (10)0.0932 (15)0.0014 (11)0.0612 (14)0.0179 (10)
C190.0713 (11)0.0536 (9)0.0914 (14)0.0189 (8)0.0212 (10)0.0255 (9)
C200.1286 (19)0.0364 (8)0.0855 (14)0.0102 (10)0.0396 (13)0.0010 (8)
O10.0546 (6)0.0424 (5)0.0553 (6)0.0035 (4)0.0039 (5)0.0106 (5)
O20.0781 (8)0.0363 (5)0.0692 (8)0.0051 (5)0.0054 (6)0.0007 (5)
O30.0503 (6)0.0632 (7)0.0625 (7)0.0087 (5)0.0255 (5)0.0193 (5)
O40.0411 (5)0.0509 (6)0.0659 (7)0.0077 (4)0.0108 (5)0.0225 (5)
O50.0677 (7)0.0489 (6)0.0474 (6)0.0022 (5)0.0121 (5)0.0104 (5)
O60.0598 (6)0.0511 (6)0.0417 (5)0.0015 (5)0.0002 (5)0.0038 (4)
O70.0514 (5)0.0332 (4)0.0405 (5)0.0023 (4)0.0074 (4)0.0026 (4)
N10.0667 (8)0.0336 (5)0.0473 (7)0.0054 (5)0.0127 (6)0.0004 (5)
Geometric parameters (Å, º) top
C1—O11.3703 (18)C13—O41.3245 (15)
C1—C21.389 (2)C14—O41.4380 (18)
C1—C61.3905 (19)C14—H14A0.9600
C2—C31.371 (3)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.383 (3)C15—O51.2261 (16)
C3—H30.9300C15—O61.3395 (17)
C4—C51.382 (2)C16—O61.4262 (18)
C4—H40.9300C16—H16A0.9600
C5—C61.3962 (19)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.4392 (18)C17—N11.4797 (18)
C7—C81.3415 (17)C17—C181.514 (2)
C7—O71.3674 (15)C17—C191.514 (3)
C8—C91.4474 (18)C17—C201.525 (2)
C8—C101.4942 (17)C18—H18A0.9600
C9—O21.2016 (17)C18—H18B0.9600
C9—O11.3714 (18)C18—H18C0.9600
C10—C111.5107 (17)C19—H19A0.9600
C10—C131.5335 (17)C19—H19B0.9600
C10—H100.9800C19—H19C0.9600
C11—C121.3719 (17)C20—H20A0.9600
C11—C151.4375 (18)C20—H20B0.9600
C12—N11.3288 (16)C20—H20C0.9600
C12—O71.3733 (16)N1—H10.8600
C13—O31.1948 (16)
O1—C1—C2116.55 (14)H14A—C14—H14B109.5
O1—C1—C6121.84 (12)O4—C14—H14C109.5
C2—C1—C6121.59 (14)H14A—C14—H14C109.5
C3—C2—C1118.49 (16)H14B—C14—H14C109.5
C3—C2—H2120.8O5—C15—O6121.50 (13)
C1—C2—H2120.8O5—C15—C11126.77 (13)
C2—C3—C4121.35 (15)O6—C15—C11111.74 (11)
C2—C3—H3119.3O6—C16—H16A109.5
C4—C3—H3119.3O6—C16—H16B109.5
C5—C4—C3119.97 (16)H16A—C16—H16B109.5
C5—C4—H4120.0O6—C16—H16C109.5
C3—C4—H4120.0H16A—C16—H16C109.5
C4—C5—C6120.02 (15)H16B—C16—H16C109.5
C4—C5—H5120.0N1—C17—C18110.21 (14)
C6—C5—H5120.0N1—C17—C19111.32 (12)
C1—C6—C5118.57 (13)C18—C17—C19111.62 (16)
C1—C6—C7116.46 (12)N1—C17—C20104.32 (13)
C5—C6—C7124.96 (13)C18—C17—C20110.02 (15)
C8—C7—O7122.87 (11)C19—C17—C20109.10 (16)
C8—C7—C6122.11 (12)C17—C18—H18A109.5
O7—C7—C6115.02 (11)C17—C18—H18B109.5
C7—C8—C9119.72 (12)H18A—C18—H18B109.5
C7—C8—C10122.91 (11)C17—C18—H18C109.5
C9—C8—C10117.36 (11)H18A—C18—H18C109.5
O2—C9—O1117.10 (12)H18B—C18—H18C109.5
O2—C9—C8124.86 (13)C17—C19—H19A109.5
O1—C9—C8118.04 (12)C17—C19—H19B109.5
C8—C10—C11109.67 (10)H19A—C19—H19B109.5
C8—C10—C13109.67 (10)C17—C19—H19C109.5
C11—C10—C13110.81 (10)H19A—C19—H19C109.5
C8—C10—H10108.9H19B—C19—H19C109.5
C11—C10—H10108.9C17—C20—H20A109.5
C13—C10—H10108.9C17—C20—H20B109.5
C12—C11—C15119.05 (11)H20A—C20—H20B109.5
C12—C11—C10121.68 (11)C17—C20—H20C109.5
C15—C11—C10119.25 (11)H20A—C20—H20C109.5
N1—C12—C11124.89 (12)H20B—C20—H20C109.5
N1—C12—O7112.99 (11)C1—O1—C9121.69 (11)
C11—C12—O7122.12 (11)C13—O4—C14117.09 (12)
O3—C13—O4124.71 (12)C15—O6—C16117.20 (12)
O3—C13—C10123.67 (11)C7—O7—C12118.42 (10)
O4—C13—C10111.61 (11)C12—N1—C17131.41 (13)
O4—C14—H14A109.5C12—N1—H1114.3
O4—C14—H14B109.5C17—N1—H1114.3
O1—C1—C2—C3177.39 (13)C13—C10—C11—C1569.62 (14)
C6—C1—C2—C31.0 (2)C15—C11—C12—N11.5 (2)
C1—C2—C3—C40.4 (2)C10—C11—C12—N1179.80 (12)
C2—C3—C4—C50.5 (3)C15—C11—C12—O7179.35 (11)
C3—C4—C5—C60.8 (2)C10—C11—C12—O71.03 (18)
O1—C1—C6—C5177.67 (12)C8—C10—C13—O354.74 (16)
C2—C1—C6—C50.6 (2)C11—C10—C13—O366.48 (17)
O1—C1—C6—C71.41 (19)C8—C10—C13—O4126.41 (12)
C2—C1—C6—C7179.72 (13)C11—C10—C13—O4112.38 (12)
C4—C5—C6—C10.3 (2)C12—C11—C15—O52.2 (2)
C4—C5—C6—C7178.70 (13)C10—C11—C15—O5176.18 (13)
C1—C6—C7—C83.39 (18)C12—C11—C15—O6178.03 (11)
C5—C6—C7—C8175.63 (13)C10—C11—C15—O63.61 (16)
C1—C6—C7—O7176.64 (11)C2—C1—O1—C9176.45 (13)
C5—C6—C7—O74.34 (18)C6—C1—O1—C91.9 (2)
O7—C7—C8—C9178.01 (11)O2—C9—O1—C1176.14 (13)
C6—C7—C8—C92.02 (19)C8—C9—O1—C13.3 (2)
O7—C7—C8—C102.75 (19)O3—C13—O4—C147.5 (2)
C6—C7—C8—C10177.22 (11)C10—C13—O4—C14171.38 (12)
C7—C8—C9—O2178.08 (14)O5—C15—O6—C1611.0 (2)
C10—C8—C9—O21.2 (2)C11—C15—O6—C16168.79 (12)
C7—C8—C9—O11.36 (19)C8—C7—O7—C1210.56 (18)
C10—C8—C9—O1179.36 (11)C6—C7—O7—C12169.47 (10)
C7—C8—C10—C1113.49 (16)N1—C12—O7—C7167.98 (11)
C9—C8—C10—C11167.26 (11)C11—C12—O7—C711.28 (17)
C7—C8—C10—C13108.41 (13)C11—C12—N1—C17177.04 (14)
C9—C8—C10—C1370.84 (14)O7—C12—N1—C173.7 (2)
C8—C10—C11—C1212.52 (16)C18—C17—N1—C1261.5 (2)
C13—C10—C11—C12108.70 (13)C19—C17—N1—C1262.9 (2)
C8—C10—C11—C15169.16 (10)C20—C17—N1—C12179.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.972.6602 (16)136
C19—H19B···O5i0.962.493.4469 (19)174
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H21NO7
Mr387.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0907 (2), 16.3943 (4), 11.8266 (2)
β (°) 107.941 (1)
V3)1861.34 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
27295, 6688, 4069
Rint0.030
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.158, 1.00
No. of reflections6688
No. of parameters258
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.861.972.6602 (16)136
C19—H19B···O5i0.962.493.4469 (19)174.2
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

SAIB and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Physics Department, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorges, F., Roleria, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Sripisut, T., Laphookhieo, S. & Chantrapromma, S. (2011). Acta Cryst. E67, o422–o423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545–552.  Google Scholar
First citationMoffett, R. B. (1964). J. Med. Chem. 7, 446–449.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds