organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,1′′-{[4-(3,4-Ethyl­ene­di­oxy­thio­phen-2-yl)phen­yl]methane­tri­yl}tris­­(1H-pyra­zole)

aDepartment of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 8 August 2011; accepted 14 October 2011; online 22 October 2011)

In the title complex, C22H18N6O2S, two of the pyrazole rings are disordered over two sets of sites with ratios of refined occupancies of 0.58 (2):0.42 (2) and 0.517 (12):0.483 (12). The dioxane ring is in a half-chair conformation and the two –CH2– groups of this ring are disordered over two sets of sites, the ratio of refined occupancies being 0.855 (19):0.145 (19). The essentially planar thio­phene ring [largest deviation = 0.0444 (2) Å] forms a dihedral angle of 19.59 (3)° with the benzene ring.

Related literature

For the preparation and coordination chemistry of tris­(pyrazol­yl)borates and tris­(pyrazol­yl)methanes, see: Trofimenko (1999[Trofimenko, S. (1999). In Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.]); Pettinari & Pettinari (2005[Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525-543.]); Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For the chemistry of tris­(pyrazol­yl)methane derivatives, see: Humphrey et al. (1999[Humphrey, E. R., Mann, K. L. V., Reeves, Z. R., Behrendt, A., Jeffery, J. C., Maher, J. P., McCleverty, J. A. & Ward, M. D. (1999). New J. Chem. 23, 417-423.]). For a general Stille coupling procedure, see: Sankaran et al. (2001[Sankaran, B., Alexander, M. D. Jr & Tan, L. (2001). Synth. Met. 123, 425-433.]). For similar structures, see: Liddle & Gardinier (2007[Liddle, B. & Gardinier, J. R. (2007). J. Org. Chem. 72, 9794-9797.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N6O2S

  • Mr = 430.48

  • Triclinic, [P \overline 1]

  • a = 7.2356 (14) Å

  • b = 8.1104 (16) Å

  • c = 18.626 (4) Å

  • α = 95.05 (3)°

  • β = 99.20 (2)°

  • γ = 112.14 (3)°

  • V = 986.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 153 K

  • 0.16 × 0.15 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.969, Tmax = 0.979

  • 5461 measured reflections

  • 3466 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.12

  • 3466 reflections

  • 294 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997)[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision, 2004[Persistence of Vision (2004). POVRAY. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/ .]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The coordination chemistry of tris(pyrazolyl)borates has been investigated for decades, with variations on the ligand having been widely studied (Trofimenko, 1999; Pettinari & Pettinari, 2005; Reger et al., 2000). However, the isoelectronic tris(pyrazolyl)methanes (Humphrey et al., 1999) have received less attention and there exists a disparity in the chemistry of certain third generation scorpionates (ligands functionalized at the back methine position). Herein, we demonstrate the preparation of a new tris-(pyrazolyl)methane derivative, 1,1',1''-((4-(3,4-(ethylenedioxy)thien-2-yl)phenyl)methanetriyl) tris(1H-pyrazole), via a Stille coupling (Sankaran et al., 2001). The molecular structure of the title compound is shown in Figure 1. The thiophene ring is essentially planar, with the largest deviation measured as 0.0444 (2) Å. The six-membered dioxane ring exists in a half-chair conformation. The dihedral angle between the benzene and thiophene rings is 19.59 (3) °. This geometry is similar to other scorpionates reported in literature (Liddle & Gardinier, 2007).

Related literature top

For the preparation and coordination chemistry of tris(pyrazolyl)borates and tris(pyrazolyl)methanes, see: Trofimenko (1999); Pettinari & Pettinari (2005); Reger et al. (2000). For the chemistry of tris(pyrazolyl)methane derivatives, see: Humphrey et al. (1999). For a general Stille coupling procedure, see: Sankaran et al. (2001). For similar structures, see: Liddle & Gardinier (2007).

Experimental top

The title compound was synthesized from the Stille coupling of 4-(tri(1H-pyrazol-1-yl)methyl)phenyl trifluoromethanesulfonate and 2-(tributylstannyl)-3,4-(ethylenedioxy)thiophene. The starting compound, 4-(tri(1Hpyrazol- 1-yl)methyl)phenol, was prepared by the condensation of 4-(trifluoromethyl)phenol and sodium pyrazol-1-ide in a yield of 58%. Treatment of 4-(tri(1H-pyrazol-1-yl)methyl)phenol with trifluoromethane sulfonic acid anhydride in pyridine at 273 K under argon resulted in 4-(tri(1H-pyrazol-1-yl)methyl)phenyl trifluoromethanesulfonate in a yield of 97%. The resulting aryl trifluoromethanesulfonate was subsequently coupled with 2-(tributylstannyl)- 3,4-(ethylenedioxy)thiophene in the presence of tetrakis(triphenylphosphine)palladium(0) in 1,4-dioxane to produce the desired compound in a yield of 54%. X-ray quality crystals were grown by slow evaporation of a methanol solution of the title compound.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

The pyrazole ring containing N3/N4 was disordered by a partial rotation about the C13—N3 bond. The disorder was modeled by assinging the variable x to the site occupancy factor of the atoms in one orientation, N3, N4, C19, C18, C17, and (1 - x) to the site occupancy factor of the alternate orientation composed of N3A, N4, C19A, C18A, C17A. A common isotropic displacement parameter was refined for the atoms of the ring while geometric restraints were applied throughout the refinement. In this way, the site occupancy factor for atoms N3, N4, C19, C18, C17 refined to 48 (2)%. The pyrazole ring containing N1/N2 was refined in a similar manner. The disordered atoms of the two pyrazole rings remain isotropic.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing 30% probability ellipsoids. Hydrogen atoms are omitted for clarity. The disorder is not shown but disordered atoms can been seen as isotropic spheres.
1-[bis(1H-imidazol-1-yl)(4-{2H,3H- thieno[3,4-b][1,4]dioxin-5-yl}phenyl)methyl]-1H-imidazole top
Crystal data top
C22H18N6O2SZ = 2
Mr = 430.48F(000) = 448
Triclinic, P1Dx = 1.450 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2356 (14) ÅCell parameters from 3640 reflections
b = 8.1104 (16) Åθ = 2.9–30.5°
c = 18.626 (4) ŵ = 0.20 mm1
α = 95.05 (3)°T = 153 K
β = 99.20 (2)°Block, colourless
γ = 112.14 (3)°0.16 × 0.15 × 0.11 mm
V = 986.2 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3466 independent reflections
Radiation source: fine-focus sealed tube2749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
h = 88
Tmin = 0.969, Tmax = 0.979k = 89
5461 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0645P)2 + 1.0306P]
where P = (Fo2 + 2Fc2)/3
3466 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.43 e Å3
9 restraintsΔρmin = 0.46 e Å3
Crystal data top
C22H18N6O2Sγ = 112.14 (3)°
Mr = 430.48V = 986.2 (3) Å3
Triclinic, P1Z = 2
a = 7.2356 (14) ÅMo Kα radiation
b = 8.1104 (16) ŵ = 0.20 mm1
c = 18.626 (4) ÅT = 153 K
α = 95.05 (3)°0.16 × 0.15 × 0.11 mm
β = 99.20 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3466 independent reflections
Absorption correction: gaussian
(SHELXTL; Sheldrick, 2008)
2749 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.025
5461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.12Δρmax = 0.43 e Å3
3466 reflectionsΔρmin = 0.46 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.70254 (12)0.81579 (11)0.44453 (4)0.0321 (2)
O10.5573 (3)0.7026 (3)0.63060 (11)0.0330 (5)
O20.2139 (3)0.6959 (3)0.52420 (11)0.0270 (5)
N40.3420 (4)0.5741 (3)0.20905 (14)0.0304 (6)
N50.1013 (3)0.9898 (3)0.19286 (12)0.0211 (5)
N60.2521 (4)1.0130 (4)0.14646 (14)0.0353 (7)
C10.7421 (5)0.7770 (4)0.53348 (17)0.0316 (7)
H10.86820.78280.56040.038*
C20.5699 (5)0.7370 (4)0.56037 (15)0.0243 (7)
C30.3742 (8)0.7069 (13)0.6507 (3)0.0310 (15)0.855 (19)
H3A0.39210.83390.66350.037*0.855 (19)
H3B0.35110.64840.69480.037*0.855 (19)
C40.1914 (9)0.6121 (11)0.5890 (3)0.0289 (15)0.855 (19)
H4A0.17210.48460.57680.035*0.855 (19)
H4B0.06820.61370.60520.035*0.855 (19)
C3A0.359 (5)0.615 (6)0.6379 (19)0.039 (9)0.145 (19)
H3C0.35540.61290.69070.047*0.145 (19)
H3D0.30400.48900.61220.047*0.145 (19)
C4A0.232 (5)0.709 (7)0.6058 (15)0.032 (8)0.145 (19)
H4C0.29370.83810.62880.038*0.145 (19)
H4D0.09380.65490.61680.038*0.145 (19)
C50.4023 (4)0.7346 (3)0.50830 (15)0.0195 (6)
C60.4478 (4)0.7732 (4)0.44105 (15)0.0210 (6)
C70.3179 (4)0.7824 (3)0.37400 (15)0.0208 (6)
C80.3706 (5)0.7717 (4)0.30513 (16)0.0265 (7)
H8A0.49190.75480.30150.032*
C90.2494 (5)0.7853 (4)0.24205 (15)0.0250 (7)
H9A0.28960.77970.19610.030*
C100.0697 (4)0.8068 (3)0.24590 (15)0.0213 (6)
C110.0162 (4)0.8172 (4)0.31440 (15)0.0236 (6)
H11A0.10640.83210.31780.028*
C120.1377 (4)0.8061 (4)0.37725 (15)0.0224 (6)
H120.09850.81470.42330.027*
C130.0677 (4)0.8237 (4)0.17826 (15)0.0234 (7)
C140.1425 (4)0.9858 (4)0.09120 (15)0.0242 (7)
H14A0.15591.10450.10820.029*
N10.0423 (14)0.8309 (8)0.1170 (4)0.012 (3)*0.42 (2)
N20.0684 (18)0.6899 (7)0.0800 (3)0.018 (2)*0.42 (2)
C150.180 (2)0.7485 (7)0.0295 (4)0.028 (3)*0.42 (2)
H15A0.22290.67930.00280.033*0.42 (2)
N1A0.0096 (11)0.8381 (6)0.1101 (3)0.019 (2)*0.58 (2)
N2A0.0119 (14)0.6789 (6)0.0712 (3)0.0246 (17)*0.58 (2)
C15A0.1144 (15)0.7421 (5)0.0252 (3)0.0270 (19)*0.58 (2)
H15B0.13130.66330.01160.032*0.58 (2)
C160.2206 (5)0.9305 (4)0.03417 (16)0.0307 (7)
H16A0.29151.00690.00300.037*
N30.2502 (8)0.6548 (7)0.1554 (3)0.0144 (16)*0.483 (12)
C170.3761 (10)0.6025 (8)0.0880 (3)0.0231 (19)*0.483 (12)
H17A0.34400.64600.04390.028*0.483 (12)
C180.5556 (11)0.4771 (9)0.0952 (4)0.030 (2)*0.483 (12)
H18A0.66940.40600.05680.036*0.483 (12)
C190.5387 (17)0.4739 (15)0.1706 (5)0.029 (4)*0.483 (12)
H19A0.64900.41070.19270.035*0.483 (12)
N3A0.2799 (7)0.6848 (8)0.1619 (3)0.0165 (16)*0.517 (12)
C17A0.4363 (10)0.6444 (9)0.1030 (4)0.036 (2)*0.517 (12)
H17B0.43360.70650.06200.043*0.517 (12)
C18A0.5959 (10)0.5005 (7)0.1130 (4)0.0243 (17)*0.517 (12)
H18B0.72790.44240.08210.029*0.517 (12)
C19A0.5217 (15)0.4570 (14)0.1794 (4)0.026 (3)*0.517 (12)
H19B0.59450.35450.19990.032*0.517 (12)
C200.0224 (4)1.1452 (4)0.24024 (15)0.0228 (6)
H20A0.13861.16180.27670.027*
C210.2231 (6)1.1819 (5)0.16671 (19)0.0413 (9)
H21A0.30721.23730.14450.050*
C220.0533 (5)1.2711 (4)0.22500 (18)0.0331 (8)
H22A0.00251.39300.24860.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0269 (4)0.0472 (5)0.0283 (4)0.0194 (4)0.0107 (3)0.0060 (3)
O10.0304 (12)0.0432 (13)0.0218 (11)0.0125 (10)0.0015 (9)0.0090 (9)
O20.0222 (11)0.0382 (12)0.0208 (11)0.0095 (9)0.0063 (8)0.0138 (9)
N40.0240 (14)0.0293 (14)0.0288 (14)0.0008 (11)0.0073 (11)0.0075 (11)
N50.0183 (12)0.0281 (13)0.0142 (12)0.0065 (10)0.0032 (10)0.0032 (10)
N60.0291 (15)0.0603 (19)0.0214 (14)0.0252 (14)0.0003 (11)0.0054 (13)
C10.0266 (17)0.0429 (18)0.0266 (17)0.0178 (14)0.0005 (13)0.0041 (14)
C20.0296 (17)0.0216 (14)0.0192 (15)0.0102 (12)0.0007 (12)0.0010 (11)
C30.031 (3)0.036 (4)0.022 (2)0.009 (3)0.006 (2)0.010 (2)
C40.030 (3)0.035 (3)0.021 (3)0.011 (3)0.005 (2)0.012 (3)
C3A0.045 (17)0.014 (16)0.042 (17)0.007 (14)0.013 (12)0.007 (13)
C4A0.025 (14)0.04 (2)0.020 (14)0.005 (14)0.002 (11)0.004 (13)
C50.0222 (15)0.0149 (13)0.0209 (15)0.0073 (11)0.0035 (12)0.0021 (11)
C60.0219 (15)0.0197 (13)0.0239 (15)0.0102 (11)0.0077 (12)0.0023 (11)
C70.0262 (16)0.0152 (13)0.0196 (14)0.0067 (12)0.0049 (12)0.0032 (11)
C80.0320 (17)0.0284 (15)0.0236 (15)0.0157 (13)0.0100 (13)0.0026 (12)
C90.0371 (18)0.0235 (15)0.0154 (14)0.0113 (13)0.0106 (13)0.0023 (11)
C100.0267 (16)0.0151 (13)0.0180 (14)0.0033 (11)0.0055 (12)0.0035 (11)
C110.0236 (15)0.0301 (15)0.0195 (15)0.0107 (12)0.0085 (12)0.0088 (12)
C120.0256 (16)0.0262 (15)0.0161 (14)0.0082 (12)0.0093 (12)0.0073 (11)
C130.0281 (16)0.0201 (14)0.0134 (14)0.0005 (12)0.0032 (12)0.0030 (11)
C140.0272 (16)0.0226 (14)0.0236 (15)0.0090 (12)0.0089 (12)0.0065 (12)
C160.0335 (18)0.0406 (18)0.0229 (16)0.0177 (15)0.0096 (14)0.0099 (13)
C200.0225 (15)0.0240 (15)0.0204 (14)0.0068 (12)0.0058 (12)0.0045 (11)
C210.047 (2)0.065 (2)0.0311 (18)0.0402 (19)0.0115 (16)0.0143 (17)
C220.043 (2)0.0348 (17)0.0298 (17)0.0202 (15)0.0160 (15)0.0096 (14)
Geometric parameters (Å, º) top
S1—C11.713 (3)C10—C131.526 (4)
S1—C61.732 (3)C11—C121.378 (4)
O1—C21.371 (4)C11—H11A0.9500
O1—C3A1.37 (3)C12—H120.9500
O1—C31.445 (5)C13—N1A1.463 (4)
O2—C51.366 (3)C13—N31.468 (4)
O2—C41.439 (4)C13—N3A1.485 (4)
O2—C4A1.50 (3)C13—N11.486 (5)
N4—C19A1.283 (10)C14—N1A1.341 (5)
N4—N3A1.320 (5)C14—N11.366 (6)
N4—N31.366 (6)C14—C161.396 (3)
N4—C191.378 (11)C14—H14A0.9500
N5—N61.362 (3)N1—N21.372 (5)
N5—C201.367 (4)N2—C151.340 (6)
N5—C131.466 (4)C15—C161.385 (5)
N6—C211.316 (5)C15—H15A0.9500
C1—C21.354 (4)N1A—N2A1.366 (5)
C1—H10.9500N2A—C15A1.344 (6)
C2—C51.420 (4)C15A—C161.408 (5)
C3—C41.501 (11)C15A—H15B0.9500
C3—H3A0.9900C16—H16A0.9500
C3—H3B0.9900N3—C171.355 (5)
C4—H4A0.9900C17—C181.350 (7)
C4—H4B0.9900C17—H17A0.9500
C3A—C4A1.49 (7)C18—C191.394 (7)
C3A—H3C0.9900C18—H18A0.9500
C3A—H3D0.9900C19—H19A0.9500
C4A—H4C0.9900N3A—C17A1.361 (5)
C4A—H4D0.9900C17A—C18A1.350 (6)
C5—C61.378 (4)C17A—H17B0.9500
C6—C71.463 (4)C18A—C19A1.396 (7)
C7—C121.398 (4)C18A—H18B0.9500
C7—C81.400 (4)C19A—H19B0.9500
C8—C91.388 (4)C20—C221.359 (4)
C8—H8A0.9500C20—H20A0.9500
C9—C101.387 (4)C21—C221.406 (5)
C9—H9A0.9500C21—H21A0.9500
C10—C111.396 (4)C22—H22A0.9500
C1—S1—C693.25 (15)N1A—C13—N3100.5 (4)
C2—O1—C3A112.4 (13)N5—C13—N3116.8 (4)
C2—O1—C3112.3 (3)N1A—C13—N3A108.9 (4)
C5—O2—C4112.3 (3)N5—C13—N3A101.5 (4)
C5—O2—C4A109.3 (11)N5—C13—N1110.7 (4)
C19A—N4—N3A108.0 (4)N3—C13—N1104.0 (4)
C19A—N4—N3109.2 (4)N3A—C13—N1114.7 (4)
N3A—N4—C1998.7 (5)N1A—C13—C10117.0 (4)
N3—N4—C19101.9 (4)N5—C13—C10109.3 (2)
N6—N5—C20111.7 (2)N3—C13—C10109.2 (3)
N6—N5—C13118.9 (2)N3A—C13—C10114.4 (3)
C20—N5—C13128.3 (2)N1—C13—C10106.2 (5)
C21—N6—N5104.4 (3)N1A—C14—C16108.1 (3)
C2—C1—S1111.0 (2)N1—C14—C16104.5 (3)
C2—C1—H1124.5N1A—C14—H14A123.1
S1—C1—H1124.5N1—C14—H14A127.8
C1—C2—O1123.9 (3)C16—C14—H14A127.8
C1—C2—C5113.0 (3)C14—N1—N2109.4 (4)
O1—C2—C5123.1 (3)C14—N1—C13123.8 (4)
O1—C3—C4111.5 (6)N2—N1—C13126.8 (6)
O1—C3—H3A109.3C15—N2—N1109.8 (5)
C4—C3—H3A109.3N2—C15—C16105.8 (5)
O1—C3—H3B109.3N2—C15—H15A127.1
C4—C3—H3B109.3C16—C15—H15A127.1
H3A—C3—H3B108.0C14—N1A—N2A114.6 (3)
O2—C4—C3111.7 (6)C14—N1A—C13127.5 (4)
O2—C4—H4A109.3N2A—N1A—C13115.4 (4)
C3—C4—H4A109.3C15A—N2A—N1A99.8 (4)
O2—C4—H4B109.3N2A—C15A—C16116.9 (5)
C3—C4—H4B109.3N2A—C15A—H15B121.5
H4A—C4—H4B108.0C16—C15A—H15B121.5
O1—C3A—C4A110 (3)C15—C16—C14110.3 (4)
O1—C3A—H3C109.7C14—C16—C15A100.5 (4)
C4A—C3A—H3C109.7C14—C16—H16A124.9
O1—C3A—H3D109.7C15A—C16—H16A132.0
C4A—C3A—H3D109.7C17—N3—N4113.1 (4)
H3C—C3A—H3D108.2C17—N3—C13125.0 (4)
C3A—C4A—O2111 (4)N4—N3—C13118.0 (4)
C3A—C4A—H4C109.4C18—C17—N3107.2 (5)
O2—C4A—H4C109.4C18—C17—H17A126.4
C3A—C4A—H4D109.4N3—C17—H17A126.4
O2—C4A—H4D109.4C17—C18—C19105.6 (7)
H4C—C4A—H4D108.0C17—C18—H18A127.2
O2—C5—C6123.9 (3)C19—C18—H18A127.2
O2—C5—C2122.4 (2)N4—C19—C18111.4 (8)
C6—C5—C2113.7 (3)N4—C19—H19A124.3
C5—C6—C7130.1 (3)C18—C19—H19A124.3
C5—C6—S1109.0 (2)N4—N3A—C17A108.9 (4)
C7—C6—S1120.9 (2)N4—N3A—C13120.0 (3)
C12—C7—C8117.7 (3)C17A—N3A—C13131.1 (4)
C12—C7—C6120.5 (2)C18A—C17A—N3A108.0 (5)
C8—C7—C6121.8 (3)C18A—C17A—H17B126.0
C9—C8—C7121.5 (3)N3A—C17A—H17B126.0
C9—C8—H8A119.3C17A—C18A—C19A103.9 (6)
C7—C8—H8A119.3C17A—C18A—H18B128.1
C10—C9—C8120.2 (3)C19A—C18A—H18B128.1
C10—C9—H9A119.9N4—C19A—C18A110.8 (7)
C8—C9—H9A119.9N4—C19A—H19B124.6
C9—C10—C11118.6 (3)C18A—C19A—H19B124.6
C9—C10—C13122.2 (2)C22—C20—N5106.7 (3)
C11—C10—C13119.2 (3)C22—C20—H20A126.7
C12—C11—C10121.3 (3)N5—C20—H20A126.7
C12—C11—H11A119.4N6—C21—C22112.3 (3)
C10—C11—H11A119.4N6—C21—H21A123.9
C11—C12—C7120.7 (3)C22—C21—H21A123.9
C11—C12—H12119.6C20—C22—C21105.0 (3)
C7—C12—H12119.6C20—C22—H22A127.5
N1A—C13—N5104.1 (3)C21—C22—H22A127.5
C20—N5—N6—C211.4 (3)C10—C13—N1—N273.6 (8)
C13—N5—N6—C21170.4 (2)C14—N1—N2—C151.1 (10)
C6—S1—C1—C21.3 (3)C13—N1—N2—C15178.4 (8)
S1—C1—C2—O1178.9 (2)N1—N2—C15—C161.5 (10)
S1—C1—C2—C50.9 (3)N1—C14—N1A—N2A73.0 (14)
C3A—O1—C2—C1162 (2)C16—C14—N1A—N2A0.8 (6)
C3—O1—C2—C1166.0 (5)N1—C14—N1A—C1388.3 (16)
C3A—O1—C2—C518 (2)C16—C14—N1A—C13162.1 (6)
C3—O1—C2—C513.8 (5)N5—C13—N1A—C1440.3 (8)
C2—O1—C3—C442.9 (8)N3—C13—N1A—C14161.6 (7)
C3A—O1—C3—C454 (3)N3A—C13—N1A—C14147.9 (7)
C5—O2—C4—C345.3 (8)N1—C13—N1A—C1488 (2)
C4A—O2—C4—C345 (2)C10—C13—N1A—C1480.5 (8)
O1—C3—C4—O261.0 (9)N5—C13—N1A—N2A158.6 (5)
C2—O1—C3A—C4A49 (4)N3—C13—N1A—N2A37.3 (6)
C3—O1—C3A—C4A47 (4)N3A—C13—N1A—N2A50.9 (7)
O1—C3A—C4A—O266 (5)N1—C13—N1A—N2A72.8 (19)
C5—O2—C4A—C3A46 (4)C10—C13—N1A—N2A80.7 (6)
C4—O2—C4A—C3A55 (4)C14—N1A—N2A—C15A1.9 (7)
C4—O2—C5—C6163.5 (4)C13—N1A—N2A—C15A165.5 (6)
C4A—O2—C5—C6165 (2)N1A—N2A—C15A—C162.3 (7)
C4—O2—C5—C216.0 (5)N2—C15—C16—C143.5 (8)
C4A—O2—C5—C215 (2)N2—C15—C16—C15A57.3 (11)
C1—C2—C5—O2179.5 (3)N1A—C14—C16—C1515.9 (6)
O1—C2—C5—O20.7 (4)N1—C14—C16—C154.1 (7)
C1—C2—C5—C60.0 (4)N1A—C14—C16—C15A0.6 (5)
O1—C2—C5—C6179.8 (2)N1—C14—C16—C15A12.3 (5)
O2—C5—C6—C70.0 (5)N2A—C15A—C16—C15121.7 (15)
C2—C5—C6—C7179.4 (3)N2A—C15A—C16—C141.9 (7)
O2—C5—C6—S1179.5 (2)C19A—N4—N3—C175.3 (8)
C2—C5—C6—S11.0 (3)N3A—N4—N3—C1783.7 (10)
C1—S1—C6—C51.3 (2)C19—N4—N3—C173.0 (8)
C1—S1—C6—C7179.1 (2)C19A—N4—N3—C13164.3 (7)
C5—C6—C7—C1220.3 (4)N3A—N4—N3—C1375.3 (8)
S1—C6—C7—C12159.3 (2)C19—N4—N3—C13156.0 (7)
C5—C6—C7—C8161.1 (3)N1A—C13—N3—C1737.6 (8)
S1—C6—C7—C819.4 (4)N5—C13—N3—C1774.2 (7)
C12—C7—C8—C90.4 (4)N3A—C13—N3—C1786.6 (13)
C6—C7—C8—C9178.3 (2)N1—C13—N3—C1748.1 (8)
C7—C8—C9—C101.1 (4)C10—C13—N3—C17161.2 (6)
C8—C9—C10—C110.9 (4)N1A—C13—N3—N4166.1 (6)
C8—C9—C10—C13179.5 (2)N5—C13—N3—N482.1 (6)
C9—C10—C11—C120.1 (4)N3A—C13—N3—N469.7 (12)
C13—C10—C11—C12178.7 (2)N1—C13—N3—N4155.6 (6)
C10—C11—C12—C70.6 (4)C10—C13—N3—N442.6 (7)
C8—C7—C12—C110.5 (4)N4—N3—C17—C182.7 (9)
C6—C7—C12—C11179.2 (3)C13—N3—C17—C18159.9 (7)
N6—N5—C13—N1A67.9 (4)N3—C17—C18—C197.0 (10)
C20—N5—C13—N1A99.1 (4)C19A—N4—C19—C18126 (4)
N6—N5—C13—N341.8 (4)N3A—N4—C19—C1824.6 (9)
C20—N5—C13—N3151.2 (3)N3—N4—C19—C187.5 (9)
N6—N5—C13—N3A45.2 (3)C17—C18—C19—N49.4 (11)
C20—N5—C13—N3A147.8 (3)C19A—N4—N3A—C17A5.9 (8)
N6—N5—C13—N176.9 (5)N3—N4—N3A—C17A102.7 (10)
C20—N5—C13—N190.1 (5)C19—N4—N3A—C17A0.4 (7)
N6—N5—C13—C10166.4 (2)C19A—N4—N3A—C13173.8 (7)
C20—N5—C13—C1026.6 (4)N3—N4—N3A—C1377.0 (8)
C9—C10—C13—N1A7.2 (4)C19—N4—N3A—C13179.3 (7)
C11—C10—C13—N1A171.4 (3)N1A—C13—N3A—N4141.0 (6)
C9—C10—C13—N5125.1 (3)N5—C13—N3A—N4109.6 (6)
C11—C10—C13—N553.5 (3)N3—C13—N3A—N481.7 (13)
C9—C10—C13—N3106.0 (4)N1—C13—N3A—N4131.0 (7)
C11—C10—C13—N375.4 (4)C10—C13—N3A—N48.0 (8)
C9—C10—C13—N3A121.9 (4)N1A—C13—N3A—C17A38.7 (9)
C11—C10—C13—N3A59.5 (5)N5—C13—N3A—C17A70.8 (8)
C9—C10—C13—N15.6 (4)N3—C13—N3A—C17A98.0 (14)
C11—C10—C13—N1173.0 (3)N1—C13—N3A—C17A48.6 (9)
N1A—C14—N1—N2112.6 (17)C10—C13—N3A—C17A171.6 (6)
C16—C14—N1—N23.2 (7)N4—N3A—C17A—C18A2.4 (8)
N1A—C14—N1—C1370.0 (13)C13—N3A—C17A—C18A177.2 (7)
C16—C14—N1—C13179.4 (7)N3A—C17A—C18A—C19A1.7 (9)
N1A—C13—N1—C1469.4 (19)N3A—N4—C19A—C18A7.1 (9)
N5—C13—N1—C1415.3 (10)N3—N4—C19A—C18A25.2 (9)
N3—C13—N1—C14141.6 (8)C19—N4—C19A—C18A23 (3)
N3A—C13—N1—C14129.4 (8)C17A—C18A—C19A—N45.5 (10)
C10—C13—N1—C14103.3 (8)N6—N5—C20—C221.3 (3)
N1A—C13—N1—N2114 (2)C13—N5—C20—C22169.0 (3)
N5—C13—N1—N2167.8 (7)N5—N6—C21—C221.0 (4)
N3—C13—N1—N241.5 (9)N5—C20—C22—C210.6 (3)
N3A—C13—N1—N253.7 (10)N6—C21—C22—C200.2 (4)

Experimental details

Crystal data
Chemical formulaC22H18N6O2S
Mr430.48
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.2356 (14), 8.1104 (16), 18.626 (4)
α, β, γ (°)95.05 (3), 99.20 (2), 112.14 (3)
V3)986.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.16 × 0.15 × 0.11
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5461, 3466, 2749
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.12
No. of reflections3466
No. of parameters294
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.46

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999) within WinGX (Farrugia, 1999), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision, 2004), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge the Robert A. Welch Foundation (F-1631), the National Science Foundation (CHE-0741973 and CHE-0847763), the Advanced Research Program of the Texas Higher Education Coordinating Board (01916–090-2010) and UT-Austin for financial support of this research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHumphrey, E. R., Mann, K. L. V., Reeves, Z. R., Behrendt, A., Jeffery, J. C., Maher, J. P., McCleverty, J. A. & Ward, M. D. (1999). New J. Chem. 23, 417–423.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddle, B. & Gardinier, J. R. (2007). J. Org. Chem. 72, 9794–9797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPersistence of Vision (2004). POVRAY. Persistence of Vision Pty. Ltd, Williamstown, Victoria, Australia. URL: http://www.povray.org/Google Scholar
First citationPettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525–543.  CAS Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationSankaran, B., Alexander, M. D. Jr & Tan, L. (2001). Synth. Met. 123, 425–433.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1999). In Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds