metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1547-m1548

Poly[[di­aqua[μ5-(R,S)-2-({2-[(1,2-di­carboxyl­atoeth­yl)amino]­eth­yl}amino)­butane­dioato]cobaltate(III)sodium] di­hydrate]

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: trunova@ionc.kiev.ua

(Received 29 August 2011; accepted 29 September 2011; online 22 October 2011)

In the asymmetric unit of the title coordination polymer, {[CoNa(C10H12N2O8)(H2O)2]·2H2O}n, the CoII ion is coord­inated in a distorted octa­hedral environment, defined by two N atoms and four carboxyl­ate O atoms. Two CoII ions and two 2-({2-[(1,2-dicarboxyl­atoeth­yl)amino]­eth­yl}amino)­butane­dio­ate (EDDS) ligands form a dimeric complex dianion [Co2(EDDS)2]. These dimeric units are connected via Na+ ions, forming a three-dimensional polymeric structure. In the crystal, the ligand N—H groups and the coordinated and solvent water mol­ecules are involved in inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, reinforcing the three-dimensional polymeric structure.

Related literature

For the synthesis and applications of EDDS and its complexes, see: Jones & Williams (2001[Jones, P. & Williams, D. R. (2001). Int. J. Environ. Anal. Chem. 81, 73-88.]); Kos & Leštan (2003[Kos, B. & Leštan, D. (2003). Plant Soil, 253, 403-411.]); Mazurenko & Trunova (2001[Mazurenko, E. A. & Trunova, O. K. (2001). Ukr. J. Chem. 67, 24-32.]); Meers et al. (2005[Meers, E., Ruttens, A., Hopgood, M. J., Samson, D. & Tack, F. M. G. (2005). Chemosphere, 58, 1011-1022.]); Shadchina et al. (2008[Shadchina, T. M., Pryadkina, G. O. & Trunova, O. K. (2008). Physiology Biochem. Cultivated Plants, 40, 435-440.]); Tandy et al. (2004[Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B. (2004). Environ. Sci. Technol. 38, 937-944.], 2006[Tandy, S., Ammann, A., Schulin, R. & Nowack, B. (2006). Environ. Pollut. 142, 191-199.]); Vandevivere et al. (2001[Vandevivere, P. C., Hammes, F., Verstraete, W., Feijtel, T. C. & Schowanek, D. R. (2001). J. Environ. Eng. 127, 802-811.]). For related structures, see: Horn et al. (1993[Horn, E., Snow, M. R. & Tiekink, E. R. T. (1993). Z. Kristallogr. 205, 140-142.]); Pavelčík et al. (1980[Pavelčík, F., Garaj, J. & Majer, J. (1980). Acta Cryst. B36, 2152-2154.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [CoNa(C10H12N2O8)(H2O)2]·2H2O

  • Mr = 442.20

  • Orthorhombic, P b c a

  • a = 10.0207 (2) Å

  • b = 15.6475 (2) Å

  • c = 20.3837 (4) Å

  • V = 3196.14 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 100 K

  • 0.32 × 0.28 × 0.13 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.706, Tmax = 0.863

  • 11219 measured reflections

  • 3161 independent reflections

  • 2549 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.065

  • S = 0.97

  • 3161 reflections

  • 265 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O7i 0.84 (2) 2.21 (2) 2.830 (2) 130.6 (18)
N2—H2N⋯O6ii 0.82 (2) 2.16 (2) 2.809 (2) 137.0 (18)
O9—H91⋯O11 0.84 (2) 1.92 (2) 2.741 (2) 166 (2)
O9—H92⋯O2iii 0.80 (3) 2.08 (3) 2.853 (2) 162 (3)
O10—H101⋯O8 0.83 (2) 2.18 (3) 2.972 (2) 160 (2)
O10—H102⋯O2iv 0.82 (3) 2.04 (3) 2.853 (2) 175 (3)
O11—H111⋯O1 0.79 (3) 2.26 (3) 3.004 (2) 158 (3)
O11—H112⋯O12iii 0.96 (3) 1.77 (3) 2.706 (3) 164 (2)
O12—H121⋯O1 0.77 (3) 2.05 (3) 2.793 (2) 161 (3)
O12—H122⋯O4v 0.76 (3) 2.04 (3) 2.788 (2) 167 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ethylenediamine-N,N'-disuccinic acid and its coordination compounds with different 3 d-metals have attracted much interest due to their potential and practical applications in biochemistry. EDDS can be applied for some technical purposes: for the extraction of heavy metals from soils as an efficient biodegradable chelating agents (Tandy et al., 2004; Tandy et al., 2006), in replacement of edta in soil washing and phytoextraction (Vandevivere et al., 2001; Kos & Leštan, 2003; Meers et al. 2005) or for radionuclide decontamination in the pulp and paper-making industry (Jones & Williams, 2001). Biologically active complexes are widely used in plant growing and animal industries (Mazurenko & Trunova 2001; Shadchina et al. 2008). The biodegradable strong transition metal chelant [S,S] stereoisomer of ethylenediamine disuccinate was investigated for its applicability for the washing extraction of heavy metals from soil, sewage sludge, and harbor sediment (Vandevivere et al., 2001).

In the course of our investigations the title compound was prepared and structurally characterized. The asymmetric unit of the title compound is shown in Fig. 1. The CoII ion forms a distorted octahedral [CoN2O4] environment defined by sets of three five-membered (Co1/O1/C1/C2/N1;/Co1/N1/C3/C4/N2; Co1/N2/C5/C6/O3) and a six-membered (Co1/N2/C5/C7/C8/O5) metallocycle. The sixth O donor from a centrosymmetrically related [Co(edds)]- complex ion forms a 12-membered macrocycle, as a result a dimeric unit is produced (Fig. 2). The Co-O, Co-N, Na-O bond lengths are in normal ranges and have a good correlation with literature data (Allen et al., 1987; Pavelčík et al., 1980; Horn et al., 1993). The Co1···Co1(-x, -y+1, -z) distance is 5.265 Å, which excludes the possibility of any interaction between the ions. In the crystal the compound exists as a polymeric structure, in which the monomers are interconnected by Na+ ions (Fig. 2). The Na+ ions are five-coordinate, with a distorted trigonal-bipyramidal coordination geometry formed by oxygen atoms, two of which belong to water molecules and the other three to oxygen atoms of the ligand which do not take part in the coordination of the Coii ion. Intermolecular N—H···O and O—H···O hydrogen bonds in the crystal structure form a three-dimensional supramolecular network which stabilizes the structure (Fig.3, Table 1).

Related literature top

For the synthesis and applications of EDDS and its complexes, see: Jones & Williams (2001); Kos & Leštan (2003); Mazurenko & Trunova (2001); Meers et al. (2005); Shadchina et al. (2008); Tandy et al. (2004, 2006); Vandevivere et al. (2001). For related structures, see: Horn et al. (1993); Pavelčík et al. (1980). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of CoCl2.6H2O (2.38 g, 10 mmol) and EDDS (2.92 g, 10 mmol) were dissolved in distilled water (10 ml). The pH was then adjusted to 4.5 by concentrated NaOH solution. Reaction mixture was refluxed with stirring for 24 h. After cooling to room temperature diethyl ether was added into the solution giving a powder crude product. Precipitate was filtered of and washed with methanol for several times (yield 86%). The resulting residue was dissolved in water and was stored in a dark place for slow evaporation. After 4 days suitable crystals for X-ray data collection were obtained.

Refinement top

H atoms bonded to O and N atoms were located in a difference Fourier map. Their positions were refined freely whereas thermal parameters were fixed to Uiso(H) = 1.5Ueq(N,O). To avoid short contacts between H91 and H112 they were refined with distance restraint (H···H= 2.3 ±0.02 Å). H atoms bonded to C were positioned geometrically and refined using a riding model with C—H = 0.99 Å for CH2 and C—H = 1.00 Å for CH with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the polymeric structure of the title compound formed by sodium ions.
[Figure 3] Fig. 3. Crystal packing of title compound, projected along the a axis. Dashed lines indicate hydrogen bonds.
Poly[[diaqua[µ5-(R,S)-2-({2-[(1,2- dicarboxylatoethyl)amino]ethyl}amino)butanedioate]cobaltate(III)sodium] dihydrate] top
Crystal data top
[CoNa(C10H12N2O8)(H2O)2]·2H2OF(000) = 1824
Mr = 442.20Dx = 1.838 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4049 reflections
a = 10.0207 (2) Åθ = 2.6–26.1°
b = 15.6475 (2) ŵ = 1.17 mm1
c = 20.3837 (4) ÅT = 100 K
V = 3196.14 (10) Å3Diamond, violet
Z = 80.32 × 0.28 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
3161 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
h = 712
Tmin = 0.706, Tmax = 0.863k = 1919
11219 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
[CoNa(C10H12N2O8)(H2O)2]·2H2OV = 3196.14 (10) Å3
Mr = 442.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0207 (2) ŵ = 1.17 mm1
b = 15.6475 (2) ÅT = 100 K
c = 20.3837 (4) Å0.32 × 0.28 × 0.13 mm
Data collection top
Bruker SMART APEXII
diffractometer
3161 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
2549 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.863Rint = 0.042
11219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.34 e Å3
3161 reflectionsΔρmin = 0.50 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.09689 (3)0.387117 (14)0.083088 (13)0.00826 (9)
Na10.39217 (9)0.53940 (5)0.21505 (4)0.0178 (2)
C10.1871 (2)0.38312 (11)0.04223 (10)0.0104 (4)
C20.0531 (2)0.33752 (11)0.04526 (9)0.0100 (4)
H20.07120.27490.04140.012*
C30.1234 (2)0.29948 (11)0.03843 (10)0.0120 (5)
H3A0.08300.24180.04000.014*
H3B0.20340.29750.00990.014*
C40.1601 (2)0.32957 (12)0.10675 (10)0.0130 (5)
H4A0.21920.38010.10380.016*
H4B0.20880.28380.13020.016*
C50.0280 (2)0.28136 (11)0.18052 (10)0.0111 (4)
H50.04120.24550.20270.013*
C60.1054 (2)0.22824 (12)0.13122 (10)0.0118 (4)
C70.1248 (2)0.31881 (11)0.23126 (10)0.0123 (5)
H7A0.07140.34830.26530.015*
H7B0.17140.27070.25290.015*
C80.2302 (2)0.38128 (11)0.20641 (10)0.0124 (5)
C90.0287 (2)0.55445 (11)0.13005 (10)0.0106 (4)
C100.0175 (2)0.64820 (11)0.11074 (10)0.0111 (4)
H10A0.10830.67290.10820.013*
H10B0.03170.67920.14550.013*
N10.02558 (17)0.36314 (9)0.01328 (8)0.0087 (4)
H1N0.065 (2)0.4093 (12)0.0043 (10)0.010*
N20.03629 (17)0.35219 (10)0.14370 (8)0.0102 (4)
H2N0.057 (2)0.3904 (12)0.1691 (11)0.012*
O10.22354 (14)0.41008 (8)0.01494 (6)0.0105 (3)
O20.25654 (16)0.39053 (8)0.09163 (7)0.0163 (3)
O30.15026 (14)0.27071 (7)0.08149 (6)0.0113 (3)
O40.12621 (15)0.15144 (8)0.14003 (7)0.0158 (3)
O50.22710 (14)0.41130 (8)0.14795 (7)0.0119 (3)
O60.31703 (15)0.40383 (8)0.24573 (7)0.0184 (4)
O70.04285 (14)0.50388 (7)0.08043 (6)0.0107 (3)
O80.02390 (15)0.53288 (8)0.18835 (7)0.0156 (3)
O90.56412 (18)0.49111 (10)0.15130 (8)0.0245 (4)
H910.537 (3)0.4471 (15)0.1319 (11)0.037*
H920.605 (3)0.5215 (16)0.1272 (14)0.037*
O100.22692 (18)0.62299 (10)0.26905 (8)0.0214 (4)
H1010.162 (3)0.5949 (15)0.2558 (12)0.032*
H1020.229 (3)0.6165 (15)0.3088 (13)0.032*
O110.49078 (18)0.36011 (9)0.06961 (9)0.0253 (4)
H1110.415 (3)0.3726 (17)0.0657 (14)0.038*
H1120.539 (3)0.3836 (15)0.0329 (11)0.038*
O120.33610 (19)0.57331 (10)0.01853 (8)0.0241 (4)
H1210.320 (3)0.5253 (16)0.0228 (13)0.036*
H1220.348 (3)0.5872 (17)0.0539 (14)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00957 (17)0.00764 (12)0.00757 (14)0.00002 (11)0.00016 (12)0.00084 (11)
Na10.0234 (5)0.0147 (4)0.0153 (4)0.0012 (4)0.0001 (4)0.0032 (3)
C10.0113 (12)0.0080 (8)0.0119 (10)0.0028 (8)0.0009 (9)0.0029 (8)
C20.0141 (12)0.0078 (8)0.0082 (10)0.0000 (8)0.0013 (9)0.0007 (8)
C30.0110 (12)0.0123 (8)0.0126 (11)0.0031 (8)0.0009 (9)0.0017 (8)
C40.0081 (12)0.0163 (9)0.0145 (11)0.0004 (9)0.0002 (9)0.0017 (8)
C50.0118 (12)0.0109 (8)0.0105 (10)0.0002 (8)0.0009 (9)0.0036 (8)
C60.0103 (12)0.0137 (9)0.0114 (10)0.0008 (9)0.0040 (9)0.0008 (8)
C70.0142 (13)0.0125 (9)0.0103 (10)0.0026 (9)0.0011 (9)0.0008 (8)
C80.0142 (13)0.0097 (8)0.0134 (11)0.0043 (8)0.0005 (10)0.0002 (8)
C90.0048 (12)0.0128 (9)0.0143 (11)0.0016 (8)0.0008 (9)0.0000 (8)
C100.0135 (13)0.0106 (9)0.0092 (10)0.0004 (8)0.0006 (9)0.0007 (8)
N10.0099 (10)0.0072 (7)0.0089 (9)0.0014 (7)0.0001 (7)0.0011 (7)
N20.0103 (10)0.0099 (7)0.0104 (9)0.0017 (7)0.0001 (8)0.0010 (7)
O10.0091 (8)0.0117 (6)0.0107 (7)0.0014 (6)0.0005 (6)0.0008 (6)
O20.0159 (9)0.0223 (7)0.0107 (8)0.0029 (6)0.0031 (7)0.0004 (6)
O30.0126 (8)0.0099 (6)0.0114 (7)0.0018 (6)0.0007 (6)0.0014 (6)
O40.0241 (10)0.0095 (6)0.0138 (8)0.0018 (6)0.0011 (7)0.0015 (6)
O50.0116 (9)0.0137 (6)0.0103 (7)0.0014 (6)0.0021 (6)0.0013 (6)
O60.0203 (9)0.0198 (7)0.0153 (8)0.0051 (6)0.0078 (7)0.0024 (6)
O70.0138 (8)0.0086 (6)0.0097 (7)0.0011 (6)0.0005 (6)0.0008 (6)
O80.0229 (10)0.0156 (6)0.0083 (7)0.0033 (6)0.0017 (7)0.0016 (6)
O90.0310 (12)0.0211 (8)0.0214 (9)0.0064 (7)0.0051 (8)0.0005 (7)
O100.0232 (10)0.0246 (8)0.0163 (8)0.0030 (7)0.0002 (8)0.0023 (7)
O110.0174 (10)0.0180 (7)0.0405 (11)0.0026 (7)0.0020 (9)0.0021 (7)
O120.0380 (12)0.0140 (7)0.0202 (9)0.0057 (7)0.0033 (9)0.0003 (7)
Geometric parameters (Å, º) top
Co1—O51.8957 (14)C5—C71.534 (3)
Co1—O31.8987 (12)C5—H51.0000
Co1—N21.8990 (17)C6—O41.233 (2)
Co1—O71.9064 (12)C6—O31.293 (2)
Co1—O11.9155 (13)C7—C81.526 (3)
Co1—N11.9161 (17)C7—H7A0.9900
Na1—O92.2866 (19)C7—H7B0.9900
Na1—O4i2.3336 (15)C8—O61.234 (2)
Na1—O62.3363 (15)C8—O51.281 (2)
Na1—O8ii2.3728 (16)C9—O81.236 (2)
Na1—O102.3800 (19)C9—O71.292 (2)
Na1—O52.9368 (15)C9—C101.523 (2)
Na1—H1012.60 (3)C10—C2iii1.527 (3)
C1—O21.229 (2)C10—H10A0.9900
C1—O11.292 (2)C10—H10B0.9900
C1—C21.522 (3)N1—H1N0.84 (2)
C2—N11.485 (2)N2—H2N0.82 (2)
C2—C10iii1.527 (3)O4—Na1iv2.3336 (15)
C2—H21.0000O8—Na1v2.3728 (16)
C3—N11.489 (2)O9—H910.84 (2)
C3—C41.515 (3)O9—H920.80 (3)
C3—H3A0.9900O10—H1010.83 (2)
C3—H3B0.9900O10—H1020.82 (3)
C4—N21.494 (3)O11—H1110.79 (3)
C4—H4A0.9900O11—H1120.96 (3)
C4—H4B0.9900O12—H1210.77 (3)
C5—N21.486 (2)O12—H1220.76 (3)
C5—C61.517 (3)
O5—Co1—O390.55 (6)N2—C5—C6107.20 (16)
O5—Co1—N295.02 (7)N2—C5—C7109.25 (15)
O3—Co1—N286.16 (6)C6—C5—C7109.43 (17)
O5—Co1—O791.37 (6)N2—C5—H5110.3
O3—Co1—O7177.39 (6)C6—C5—H5110.3
N2—Co1—O795.43 (6)C7—C5—H5110.3
O5—Co1—O190.70 (6)O4—C6—O3123.80 (19)
O3—Co1—O188.91 (6)O4—C6—C5121.60 (18)
N2—Co1—O1172.47 (6)O3—C6—C5114.56 (15)
O7—Co1—O189.30 (5)C8—C7—C5117.30 (17)
O5—Co1—N1176.22 (7)C8—C7—H7A108.0
O3—Co1—N188.84 (6)C5—C7—H7A108.0
N2—Co1—N188.66 (7)C8—C7—H7B108.0
O7—Co1—N189.12 (6)C5—C7—H7B108.0
O1—Co1—N185.56 (7)H7A—C7—H7B107.2
O9—Na1—O4i86.29 (6)O6—C8—O5121.08 (19)
O9—Na1—O695.44 (6)O6—C8—C7117.10 (18)
O4i—Na1—O6146.32 (6)O5—C8—C7121.79 (18)
O9—Na1—O8ii92.19 (6)O8—C9—O7126.13 (17)
O4i—Na1—O8ii128.32 (6)O8—C9—C10120.57 (17)
O6—Na1—O8ii85.30 (5)O7—C9—C10113.31 (16)
O9—Na1—O10165.64 (6)C9—C10—C2iii113.63 (15)
O4i—Na1—O1080.52 (6)C9—C10—H10A108.8
O6—Na1—O1098.69 (6)C2iii—C10—H10A108.8
O8ii—Na1—O1091.54 (6)C9—C10—H10B108.8
O9—Na1—O586.23 (5)C2iii—C10—H10B108.8
O4i—Na1—O599.39 (5)H10A—C10—H10B107.7
O6—Na1—O547.42 (5)C2—N1—C3116.47 (14)
O8ii—Na1—O5132.10 (5)C2—N1—Co1108.02 (12)
O10—Na1—O5101.46 (6)C3—N1—Co1107.29 (12)
O9—Na1—H101163.8 (6)C2—N1—H1N107.7 (15)
O4i—Na1—H10183.6 (5)C3—N1—H1N109.9 (14)
O6—Na1—H10186.1 (5)Co1—N1—H1N107.0 (14)
O8ii—Na1—H101104.0 (6)C5—N2—C4115.98 (15)
O10—Na1—H10118.5 (5)C5—N2—Co1103.81 (12)
O5—Na1—H10183.0 (6)C4—N2—Co1108.90 (13)
O2—C1—O1123.23 (19)C5—N2—H2N109.7 (15)
O2—C1—C2120.69 (18)C4—N2—H2N106.2 (16)
O1—C1—C2116.04 (17)Co1—N2—H2N112.4 (15)
N1—C2—C1108.02 (15)C1—O1—Co1113.93 (13)
N1—C2—C10iii114.61 (16)C6—O3—Co1112.44 (12)
C1—C2—C10iii112.07 (16)C6—O4—Na1iv144.52 (14)
N1—C2—H2107.3C8—O5—Co1126.31 (13)
C1—C2—H2107.3C8—O5—Na178.66 (11)
C10iii—C2—H2107.3Co1—O5—Na1148.08 (6)
N1—C3—C4105.57 (15)C8—O6—Na1108.23 (12)
N1—C3—H3A110.6C9—O7—Co1126.58 (12)
C4—C3—H3A110.6C9—O8—Na1v143.85 (14)
N1—C3—H3B110.6Na1—O9—H91107.0 (17)
C4—C3—H3B110.6Na1—O9—H92122.9 (19)
H3A—C3—H3B108.8H91—O9—H92111 (2)
N2—C4—C3109.59 (17)Na1—O10—H10195.7 (18)
N2—C4—H4A109.8Na1—O10—H102112.1 (18)
C3—C4—H4A109.8H101—O10—H102106 (3)
N2—C4—H4B109.8H111—O11—H112108 (3)
C3—C4—H4B109.8H121—O12—H122102 (3)
H4A—C4—H4B108.2
O2—C1—C2—N1161.41 (17)N1—Co1—O1—C114.24 (13)
O1—C1—C2—N120.9 (2)O4—C6—O3—Co1179.19 (16)
O2—C1—C2—C10iii34.2 (2)C5—C6—O3—Co13.1 (2)
O1—C1—C2—C10iii148.05 (16)O5—Co1—O3—C676.97 (13)
N1—C3—C4—N246.74 (19)N2—Co1—O3—C618.03 (14)
N2—C5—C6—O4152.14 (19)O1—Co1—O3—C6167.66 (13)
C7—C5—C6—O489.5 (2)N1—Co1—O3—C6106.76 (14)
N2—C5—C6—O330.1 (2)O3—C6—O4—Na1iv169.60 (14)
C7—C5—C6—O388.3 (2)C5—C6—O4—Na1iv7.9 (4)
N2—C5—C7—C853.7 (2)O6—C8—O5—Co1177.17 (13)
C6—C5—C7—C863.4 (2)C7—C8—O5—Co10.7 (3)
C5—C7—C8—O6172.07 (17)O6—C8—O5—Na119.22 (17)
C5—C7—C8—O510.0 (3)C7—C8—O5—Na1158.64 (18)
O8—C9—C10—C2iii146.6 (2)O3—Co1—O5—C864.38 (16)
O7—C9—C10—C2iii33.4 (2)N2—Co1—O5—C821.81 (16)
C1—C2—N1—C3150.78 (16)O7—Co1—O5—C8117.39 (15)
C10iii—C2—N1—C383.5 (2)O1—Co1—O5—C8153.29 (15)
C1—C2—N1—Co130.05 (16)O3—Co1—O5—Na1159.72 (13)
C10iii—C2—N1—Co1155.76 (12)N2—Co1—O5—Na1114.09 (13)
C4—C3—N1—C2164.59 (16)O7—Co1—O5—Na118.51 (13)
C4—C3—N1—Co143.47 (17)O1—Co1—O5—Na170.80 (13)
O3—Co1—N1—C264.06 (11)O9—Na1—O5—C8112.60 (12)
N2—Co1—N1—C2150.24 (12)O4i—Na1—O5—C8161.79 (12)
O7—Co1—N1—C2114.30 (11)O6—Na1—O5—C811.67 (11)
O1—Co1—N1—C224.94 (11)O8ii—Na1—O5—C823.07 (14)
O3—Co1—N1—C362.25 (12)O10—Na1—O5—C879.65 (12)
N2—Co1—N1—C323.93 (12)O9—Na1—O5—Co1102.28 (13)
O7—Co1—N1—C3119.39 (12)O4i—Na1—O5—Co116.67 (14)
O1—Co1—N1—C3151.24 (12)O6—Na1—O5—Co1156.79 (15)
C6—C5—N2—C478.7 (2)O8ii—Na1—O5—Co1168.18 (11)
C7—C5—N2—C4162.84 (17)O10—Na1—O5—Co165.47 (14)
C6—C5—N2—Co140.72 (17)O5—C8—O6—Na125.3 (2)
C7—C5—N2—Co177.76 (16)C7—C8—O6—Na1152.67 (13)
C3—C4—N2—C588.7 (2)O9—Na1—O6—C892.30 (14)
C3—C4—N2—Co127.91 (17)O4i—Na1—O6—C80.8 (2)
O5—Co1—N2—C557.29 (12)O8ii—Na1—O6—C8175.94 (14)
O3—Co1—N2—C532.93 (12)O10—Na1—O6—C885.10 (14)
O7—Co1—N2—C5149.15 (12)O5—Na1—O6—C812.52 (12)
N1—Co1—N2—C5121.86 (12)O8—C9—O7—Co114.0 (3)
O5—Co1—N2—C4178.59 (11)C10—C9—O7—Co1165.99 (13)
O3—Co1—N2—C491.20 (12)O5—Co1—O7—C940.90 (16)
O7—Co1—N2—C486.72 (12)N2—Co1—O7—C954.28 (17)
O2—C1—O1—Co1178.47 (14)O1—Co1—O7—C9131.58 (16)
C2—C1—O1—Co10.80 (19)N1—Co1—O7—C9142.85 (17)
O5—Co1—O1—C1165.23 (12)O7—C9—O8—Na1v123.2 (2)
O3—Co1—O1—C174.69 (13)C10—C9—O8—Na1v56.8 (3)
O7—Co1—O1—C1103.41 (13)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y1/2, z; (v) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7iii0.84 (2)2.21 (2)2.830 (2)130.6 (18)
N2—H2N···O6v0.82 (2)2.16 (2)2.809 (2)137.0 (18)
O9—H91···O110.84 (2)1.92 (2)2.741 (2)166 (2)
O9—H92···O2vi0.80 (3)2.08 (3)2.853 (2)162 (3)
O10—H101···O80.83 (2)2.18 (3)2.972 (2)160 (2)
O10—H102···O2vii0.82 (3)2.04 (3)2.853 (2)175 (3)
O11—H111···O10.79 (3)2.26 (3)3.004 (2)158 (3)
O11—H112···O12vi0.96 (3)1.77 (3)2.706 (3)164 (2)
O12—H121···O10.77 (3)2.05 (3)2.793 (2)161 (3)
O12—H122···O4i0.76 (3)2.04 (3)2.788 (2)167 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (iii) x, y+1, z; (v) x1/2, y, z+1/2; (vi) x+1, y+1, z; (vii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[CoNa(C10H12N2O8)(H2O)2]·2H2O
Mr442.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)10.0207 (2), 15.6475 (2), 20.3837 (4)
V3)3196.14 (10)
Z8
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.32 × 0.28 × 0.13
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.706, 0.863
No. of measured, independent and
observed [I > 2σ(I)] reflections
11219, 3161, 2549
Rint0.042
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 0.97
No. of reflections3161
No. of parameters265
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O7i0.84 (2)2.21 (2)2.830 (2)130.6 (18)
N2—H2N···O6ii0.82 (2)2.16 (2)2.809 (2)137.0 (18)
O9—H91···O110.84 (2)1.92 (2)2.741 (2)166 (2)
O9—H92···O2iii0.80 (3)2.08 (3)2.853 (2)162 (3)
O10—H101···O80.83 (2)2.18 (3)2.972 (2)160 (2)
O10—H102···O2iv0.82 (3)2.04 (3)2.853 (2)175 (3)
O11—H111···O10.79 (3)2.26 (3)3.004 (2)158 (3)
O11—H112···O12iii0.96 (3)1.77 (3)2.706 (3)164 (2)
O12—H121···O10.77 (3)2.05 (3)2.793 (2)161 (3)
O12—H122···O4v0.76 (3)2.04 (3)2.788 (2)167 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y, z+1/2; (iii) x+1, y+1, z; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y+1/2, z.
 

Acknowledgements

The authors gratefully acknowledge the support of this work by the Ukrainian National Academy of Sciences.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHorn, E., Snow, M. R. & Tiekink, E. R. T. (1993). Z. Kristallogr. 205, 140–142.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. & Williams, D. R. (2001). Int. J. Environ. Anal. Chem. 81, 73–88.  Web of Science CrossRef CAS Google Scholar
First citationKos, B. & Leštan, D. (2003). Plant Soil, 253, 403–411.  Web of Science CrossRef CAS Google Scholar
First citationMazurenko, E. A. & Trunova, O. K. (2001). Ukr. J. Chem. 67, 24–32.  Google Scholar
First citationMeers, E., Ruttens, A., Hopgood, M. J., Samson, D. & Tack, F. M. G. (2005). Chemosphere, 58, 1011–1022.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPavelčík, F., Garaj, J. & Majer, J. (1980). Acta Cryst. B36, 2152–2154.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationShadchina, T. M., Pryadkina, G. O. & Trunova, O. K. (2008). Physiology Biochem. Cultivated Plants, 40, 435–440.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTandy, S., Ammann, A., Schulin, R. & Nowack, B. (2006). Environ. Pollut. 142, 191–199.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B. (2004). Environ. Sci. Technol. 38, 937–944.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVandevivere, P. C., Hammes, F., Verstraete, W., Feijtel, T. C. & Schowanek, D. R. (2001). J. Environ. Eng. 127, 802–811.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1547-m1548
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds