organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Adamantylmeth­yl)-1H-benzimidazole

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic, and cPolymer Centre, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlín, 760 01, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 26 September 2011; accepted 5 October 2011; online 12 October 2011)

The asymmetric unit of the title compound, C18H22N2, contains two independent mol­ecules which differ slightly with respect to the torsion angles involving the atoms joining the adamantyl and benzimidazole groups. The bond angles in the adamantane cage vary within the range 108.27 (9)–110.55 (10)°. The benzimidazole ring system in both mol­ecules is essentially planar, the maximum deviations from the best planes being 0.0134 (15) and 0.0229 (14) Å. In the crystal, weak C—H⋯π inter­actions link the molecules.

Related literature

For the synthesis, spectroscopic characterization and biological activity of the title compound, see: Hille et al. (2011[Hille, U. E., Zimmer, C., Vock, C. A. & Hartmann, R. W. (2011). Med. Chem. Lett. 2, 2-6.]). For background to C(sp2)—H⋯π inter­actions, see: Takahashi et al. (2010[Takahashi, O., Kohno, Y. & Nishio, M. (2010). Chem. Rev. 110, 6049-6076.]). For two polymorphs of a related structure, see: Lei & Zhou (2009[Lei, G. & Zhou, L. (2009). Acta Cryst. E65, o2613.]); Zhang et al. (2010[Zhang, Y., Zhu, X., Qian, H., Yin, Z. & Zhang, C. (2010). Acta Cryst. E66, o1208.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2

  • Mr = 266.38

  • Monoclinic, P 21 /n

  • a = 22.0249 (9) Å

  • b = 6.4628 (1) Å

  • c = 22.2739 (8) Å

  • β = 118.694 (5)°

  • V = 2781.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.]) Tmin = 0.928, Tmax = 1.000

  • 32353 measured reflections

  • 4899 independent reflections

  • 3314 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.064

  • S = 0.83

  • 4899 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cg1i 0.95 3.07 3.9197 (16) 150
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Title compound has been prepared as a suitable building block for benzimidazolium-based carbene ligands synthesis and recently, the biological activity related to treatment of cortisole-dependent diseases has been studied (Hille et al., 2011). Two polymorphs of a related structure have already been published (Lei & Zhou, 2009; Zhang et al., 2010).

Both crystallographically independent molecules in the asymmetric unit (Fig. 1) contain essentially planar 1H-benzo[d]imidazole heterocycle with a maximum deviations from the best plane being 0.0134 (15) Å for C2 and 0.0229 (14) Å for C21, respectively. The torsion angles C7—N1—C8—C9 and N1—C8—C9—C16 describing the mutual orientation of benzimidazole and adamantane groups are 95.31 (15)° and -179.38 (10)°, respectively. The corresponding angles in the other molecule are -92.89 (15)° and -177.52 (10)°, respectively. The crystal packing is stabilized via weak C—H···π interactions (Fig. 2, Table 1).

Related literature top

For the synthesis, spectroscopic characterization and biological activity of the title compound, see: Hille et al. (2011). For background to C(sp2)—H···π interactions, see: Takahashi et al. (2010). For two polymorphs of a related structure, see: Lei & Zhou (2009); Zhang et al. (2010).

Experimental top

Benzimidazole (0.40 g, 3.39 mmol) was dissolved in 40 cm3 of dry DMF and sodium hydride (0.2 g, 8.46 mmol) was added portionwise at room temperature. Into this mixture, 1-adamantylbromomethane (1.16 g, 5.09 mmol) was added and the mixture was stirred under argon for 5 days at 373 K. The reaction mixture was poured onto 100 g of crushed ice, extracted with 4 × 25 cm3 of dichloromethane and the collected organic portions were washed several times with distilled water, brine and dried over Na2SO4. The solvent was distilled off under reduced pressure and residual DMF was removed via azeotropic distillation with trichloromethane. The crude material was purified by crystallization (petroleum ether:ethyl acetate, 1:1, v:v) to yield 850 mg (94%) of colorless powder with mp=483–488 K. The crystal used for data collection was grown by spontaneous evaporation of a trichloromethane:methanol solution of the title compound at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to 1.2Ueq of the respective carrier atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with 50% probability ellipsoids for non hydrogen atoms. H-atoms are shown as spheres at arbitrary radii.
[Figure 2] Fig. 2. Two pairs of molecules linked via weak C—H···π interactions (dotted lines) are colored by symmetry equivalence. H-atoms are omitted except for those participating in H-bonds. Cg1 is centre of gravity of C2–C7, Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) x - 1/2, -y + 1/2, y - 1/2.
1-(1-Adamantylmethyl)-1H-benzimidazole top
Crystal data top
C18H22N2F(000) = 1152
Mr = 266.38Dx = 1.272 Mg m3
Monoclinic, P21/nMelting point: 486 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 22.0249 (9) ÅCell parameters from 9351 reflections
b = 6.4628 (1) Åθ = 2.8–27.3°
c = 22.2739 (8) ŵ = 0.08 mm1
β = 118.694 (5)°T = 120 K
V = 2781.2 (2) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
4899 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 2617
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 77
Tmin = 0.928, Tmax = 1.000l = 2626
32353 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
4899 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H22N2V = 2781.2 (2) Å3
Mr = 266.38Z = 8
Monoclinic, P21/nMo Kα radiation
a = 22.0249 (9) ŵ = 0.08 mm1
b = 6.4628 (1) ÅT = 120 K
c = 22.2739 (8) Å0.30 × 0.20 × 0.20 mm
β = 118.694 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
4899 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3314 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 1.000Rint = 0.034
32353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.83Δρmax = 0.15 e Å3
4899 reflectionsΔρmin = 0.16 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.58857 (5)0.07364 (14)0.28113 (5)0.0206 (2)
N20.55730 (5)0.39787 (15)0.24104 (5)0.0258 (3)
C10.58788 (6)0.27873 (18)0.29503 (6)0.0238 (3)
H10.60800.33120.34040.029*
C20.53553 (6)0.26067 (18)0.18631 (6)0.0212 (3)
C30.49849 (6)0.2979 (2)0.11594 (6)0.0272 (3)
H30.48470.43400.09860.033*
C40.48257 (7)0.1313 (2)0.07262 (6)0.0297 (3)
H40.45740.15310.02460.036*
C50.50261 (6)0.0698 (2)0.09772 (6)0.0290 (3)
H50.49090.18110.06620.035*
C60.53897 (6)0.11098 (19)0.16698 (6)0.0249 (3)
H60.55260.24740.18400.030*
C70.55451 (6)0.05820 (18)0.21038 (6)0.0201 (3)
C80.62286 (6)0.09207 (18)0.33114 (6)0.0221 (3)
H8A0.60090.22550.31000.026*
H8B0.61500.06870.37080.026*
C90.70077 (6)0.10925 (17)0.35702 (5)0.0170 (3)
C100.73908 (6)0.08829 (17)0.39375 (6)0.0204 (3)
H10A0.72230.20610.36140.025*
H10B0.72930.11910.43180.025*
C110.81690 (6)0.06242 (18)0.42177 (6)0.0227 (3)
H110.84120.19210.44580.027*
C120.83131 (7)0.01928 (18)0.36233 (6)0.0248 (3)
H12A0.88170.00390.37980.030*
H12B0.81480.13680.32980.030*
C130.79412 (6)0.17918 (18)0.32558 (6)0.0222 (3)
H130.80350.20680.28660.027*
C140.82057 (7)0.36073 (18)0.37585 (6)0.0255 (3)
H14A0.87090.37860.39340.031*
H14B0.79700.48990.35220.031*
C150.80601 (7)0.31763 (18)0.43533 (6)0.0239 (3)
H150.82310.43600.46830.029*
C160.72824 (7)0.29034 (18)0.40795 (6)0.0229 (3)
H16A0.71890.26350.44650.027*
H16B0.70390.41920.38490.027*
C170.71637 (6)0.15487 (18)0.29825 (6)0.0210 (3)
H17A0.69240.28350.27460.025*
H17B0.69880.04030.26470.025*
C180.84322 (7)0.11922 (18)0.47179 (6)0.0276 (3)
H18A0.83470.09180.51080.033*
H18B0.89370.13560.48990.033*
N210.81236 (5)0.11037 (14)0.61146 (5)0.0206 (2)
N220.77666 (6)0.43222 (15)0.57082 (5)0.0266 (3)
C210.82934 (7)0.31252 (19)0.60867 (6)0.0247 (3)
H210.87560.36210.63230.030*
C220.71997 (7)0.29919 (18)0.54557 (6)0.0221 (3)
C230.65052 (7)0.3378 (2)0.50043 (6)0.0276 (3)
H230.63510.47280.48280.033*
C240.60493 (7)0.1751 (2)0.48206 (6)0.0297 (3)
H240.55720.19880.45160.036*
C250.62717 (7)0.0254 (2)0.50718 (6)0.0279 (3)
H250.59420.13440.49310.033*
C260.69569 (7)0.06793 (19)0.55175 (6)0.0231 (3)
H260.71090.20350.56890.028*
C270.74142 (7)0.09792 (18)0.57037 (6)0.0202 (3)
C280.86030 (6)0.05658 (18)0.65027 (6)0.0211 (3)
H28A0.90470.03290.65030.025*
H28B0.84110.18910.62640.025*
C290.87474 (6)0.07727 (17)0.72453 (6)0.0170 (3)
C300.90524 (6)0.12265 (17)0.76505 (6)0.0196 (3)
H30A0.94750.16110.76250.023*
H30B0.87130.23650.74470.023*
C310.92319 (6)0.09273 (18)0.83991 (6)0.0214 (3)
H310.94330.22370.86580.026*
C320.97601 (6)0.08287 (18)0.87178 (6)0.0252 (3)
H32A1.01890.04790.87000.030*
H32B0.98790.10140.92030.030*
C330.94509 (7)0.28301 (18)0.83216 (6)0.0227 (3)
H330.97940.39800.85280.027*
C340.87901 (7)0.33678 (18)0.83533 (6)0.0254 (3)
H34A0.85920.46720.81020.031*
H34B0.89000.35710.88350.031*
C350.82659 (6)0.16154 (18)0.80349 (6)0.0223 (3)
H350.78340.19670.80560.027*
C360.80937 (6)0.13371 (18)0.72869 (6)0.0208 (3)
H36A0.78950.26360.70320.025*
H36B0.77440.02280.70740.025*
C370.92803 (6)0.25205 (17)0.75754 (6)0.0210 (3)
H37A0.90920.38210.73170.025*
H37B0.97080.21710.75560.025*
C380.85747 (7)0.03925 (18)0.84316 (6)0.0239 (3)
H38A0.82350.15310.82300.029*
H38B0.86830.02170.89150.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0174 (6)0.0193 (6)0.0220 (5)0.0012 (5)0.0070 (5)0.0012 (4)
N20.0240 (7)0.0219 (6)0.0326 (6)0.0042 (5)0.0145 (5)0.0022 (5)
C10.0203 (8)0.0231 (7)0.0282 (7)0.0005 (6)0.0118 (6)0.0036 (6)
C20.0135 (8)0.0227 (7)0.0282 (7)0.0014 (6)0.0104 (6)0.0035 (5)
C30.0192 (8)0.0300 (7)0.0336 (7)0.0041 (6)0.0136 (6)0.0109 (6)
C40.0196 (8)0.0416 (9)0.0237 (7)0.0017 (7)0.0070 (6)0.0063 (6)
C50.0239 (9)0.0330 (8)0.0249 (7)0.0076 (7)0.0077 (6)0.0033 (6)
C60.0218 (8)0.0231 (7)0.0263 (7)0.0038 (6)0.0087 (6)0.0005 (6)
C70.0124 (8)0.0242 (7)0.0221 (7)0.0016 (6)0.0071 (6)0.0025 (5)
C80.0247 (8)0.0200 (7)0.0218 (7)0.0003 (6)0.0113 (6)0.0023 (5)
C90.0177 (8)0.0164 (6)0.0163 (6)0.0014 (5)0.0076 (6)0.0010 (5)
C100.0235 (8)0.0178 (6)0.0190 (6)0.0025 (6)0.0094 (6)0.0011 (5)
C110.0193 (8)0.0190 (7)0.0244 (7)0.0009 (6)0.0063 (6)0.0052 (5)
C120.0216 (8)0.0223 (7)0.0315 (7)0.0026 (6)0.0134 (7)0.0043 (6)
C130.0258 (9)0.0226 (7)0.0232 (6)0.0017 (6)0.0156 (6)0.0014 (5)
C140.0254 (8)0.0194 (7)0.0329 (7)0.0030 (6)0.0149 (7)0.0008 (6)
C150.0253 (9)0.0221 (7)0.0221 (7)0.0077 (6)0.0097 (6)0.0075 (5)
C160.0303 (9)0.0203 (7)0.0207 (6)0.0020 (6)0.0143 (6)0.0025 (5)
C170.0262 (8)0.0186 (6)0.0171 (6)0.0011 (6)0.0095 (6)0.0013 (5)
C180.0235 (8)0.0330 (8)0.0199 (7)0.0052 (6)0.0053 (6)0.0007 (6)
N210.0234 (7)0.0184 (6)0.0190 (5)0.0037 (5)0.0094 (5)0.0028 (4)
N220.0324 (7)0.0223 (6)0.0233 (6)0.0043 (6)0.0119 (5)0.0039 (5)
C210.0309 (9)0.0223 (7)0.0222 (7)0.0010 (6)0.0138 (6)0.0012 (6)
C220.0292 (9)0.0221 (7)0.0160 (6)0.0058 (6)0.0116 (6)0.0011 (5)
C230.0354 (9)0.0260 (7)0.0185 (7)0.0111 (7)0.0108 (7)0.0020 (6)
C240.0256 (9)0.0367 (8)0.0196 (7)0.0097 (7)0.0051 (6)0.0019 (6)
C250.0279 (9)0.0321 (8)0.0200 (7)0.0007 (7)0.0085 (7)0.0054 (6)
C260.0280 (9)0.0216 (7)0.0176 (6)0.0041 (6)0.0093 (6)0.0005 (5)
C270.0224 (8)0.0246 (7)0.0131 (6)0.0036 (6)0.0083 (6)0.0016 (5)
C280.0205 (8)0.0196 (6)0.0229 (7)0.0045 (6)0.0102 (6)0.0017 (5)
C290.0155 (7)0.0163 (6)0.0196 (6)0.0009 (5)0.0087 (6)0.0015 (5)
C300.0160 (8)0.0179 (6)0.0258 (7)0.0003 (5)0.0108 (6)0.0018 (5)
C310.0214 (8)0.0181 (6)0.0210 (6)0.0016 (6)0.0074 (6)0.0019 (5)
C320.0221 (8)0.0274 (7)0.0221 (7)0.0012 (6)0.0073 (6)0.0026 (6)
C330.0224 (8)0.0193 (6)0.0230 (7)0.0060 (6)0.0084 (6)0.0053 (5)
C340.0348 (9)0.0197 (7)0.0235 (7)0.0012 (6)0.0154 (6)0.0027 (5)
C350.0206 (8)0.0233 (7)0.0264 (7)0.0019 (6)0.0140 (6)0.0014 (5)
C360.0183 (8)0.0193 (6)0.0238 (6)0.0002 (6)0.0094 (6)0.0006 (5)
C370.0199 (8)0.0184 (6)0.0256 (7)0.0014 (6)0.0117 (6)0.0003 (5)
C380.0284 (9)0.0237 (7)0.0220 (7)0.0033 (6)0.0141 (6)0.0019 (5)
Geometric parameters (Å, º) top
N1—C11.3629 (14)N21—C211.3685 (14)
N1—C71.3860 (14)N21—C271.3829 (15)
N1—C81.4664 (13)N21—C281.4661 (14)
N2—C11.3096 (14)N22—C211.3100 (15)
N2—C21.3931 (15)N22—C221.3929 (15)
C1—H10.9500C21—H210.9500
C2—C31.3972 (16)C22—C231.3915 (17)
C2—C71.3997 (16)C22—C271.4035 (16)
C3—C41.3744 (17)C23—C241.3738 (18)
C3—H30.9500C23—H230.9500
C4—C51.4000 (17)C24—C251.4029 (17)
C4—H40.9500C24—H240.9500
C5—C61.3805 (16)C25—C261.3784 (17)
C5—H50.9500C25—H250.9500
C6—C71.3889 (16)C26—C271.3908 (16)
C6—H60.9500C26—H260.9500
C8—C91.5294 (16)C28—C291.5329 (15)
C8—H8A0.9900C28—H28A0.9900
C8—H8B0.9900C28—H28B0.9900
C9—C101.5324 (15)C29—C361.5306 (16)
C9—C171.5331 (15)C29—C301.5340 (15)
C9—C161.5374 (15)C29—C371.5380 (15)
C10—C111.5257 (16)C30—C311.5299 (15)
C10—H10A0.9900C30—H30A0.9900
C10—H10B0.9900C30—H30B0.9900
C11—C121.5280 (16)C31—C381.5234 (17)
C11—C181.5281 (16)C31—C321.5337 (15)
C11—H111.0000C31—H311.0000
C12—C131.5304 (16)C32—C331.5292 (16)
C12—H12A0.9900C32—H32A0.9900
C12—H12B0.9900C32—H32B0.9900
C13—C171.5253 (16)C33—C341.5305 (17)
C13—C141.5308 (16)C33—C371.5310 (15)
C13—H131.0000C33—H331.0000
C14—C151.5308 (16)C34—C351.5273 (16)
C14—H14A0.9900C34—H34A0.9900
C14—H14B0.9900C34—H34B0.9900
C15—C161.5277 (16)C35—C361.5314 (16)
C15—C181.5285 (16)C35—C381.5331 (16)
C15—H151.0000C35—H351.0000
C16—H16A0.9900C36—H36A0.9900
C16—H16B0.9900C36—H36B0.9900
C17—H17A0.9900C37—H37A0.9900
C17—H17B0.9900C37—H37B0.9900
C18—H18A0.9900C38—H38A0.9900
C18—H18B0.9900C38—H38B0.9900
C1—N1—C7105.63 (10)C21—N21—C27105.78 (10)
C1—N1—C8126.55 (10)C21—N21—C28126.46 (11)
C7—N1—C8127.68 (10)C27—N21—C28127.76 (10)
C1—N2—C2103.80 (10)C21—N22—C22103.92 (10)
N2—C1—N1114.83 (11)N22—C21—N21114.59 (12)
N2—C1—H1122.6N22—C21—H21122.7
N1—C1—H1122.6N21—C21—H21122.7
N2—C2—C3129.95 (11)C23—C22—N22129.96 (11)
N2—C2—C7110.23 (10)C23—C22—C27119.75 (12)
C3—C2—C7119.79 (11)N22—C22—C27110.24 (11)
C4—C3—C2117.86 (12)C24—C23—C22118.07 (12)
C4—C3—H3121.1C24—C23—H23121.0
C2—C3—H3121.1C22—C23—H23121.0
C3—C4—C5121.46 (12)C23—C24—C25121.53 (12)
C3—C4—H4119.3C23—C24—H24119.2
C5—C4—H4119.3C25—C24—H24119.2
C6—C5—C4121.84 (12)C26—C25—C24121.56 (13)
C6—C5—H5119.1C26—C25—H25119.2
C4—C5—H5119.1C24—C25—H25119.2
C5—C6—C7116.30 (12)C25—C26—C27116.53 (12)
C5—C6—H6121.9C25—C26—H26121.7
C7—C6—H6121.9C27—C26—H26121.7
N1—C7—C6131.75 (11)N21—C27—C26131.96 (11)
N1—C7—C2105.50 (10)N21—C27—C22105.45 (11)
C6—C7—C2122.74 (11)C26—C27—C22122.55 (12)
N1—C8—C9114.51 (9)N21—C28—C29114.71 (9)
N1—C8—H8A108.6N21—C28—H28A108.6
C9—C8—H8A108.6C29—C28—H28A108.6
N1—C8—H8B108.6N21—C28—H28B108.6
C9—C8—H8B108.6C29—C28—H28B108.6
H8A—C8—H8B107.6H28A—C28—H28B107.6
C8—C9—C10111.79 (9)C36—C29—C28111.85 (9)
C8—C9—C17111.28 (9)C36—C29—C30108.90 (9)
C10—C9—C17108.93 (9)C28—C29—C30111.52 (9)
C8—C9—C16107.83 (9)C36—C29—C37108.67 (9)
C10—C9—C16108.64 (9)C28—C29—C37107.17 (9)
C17—C9—C16108.27 (9)C30—C29—C37108.62 (9)
C11—C10—C9110.46 (9)C31—C30—C29110.23 (9)
C11—C10—H10A109.6C31—C30—H30A109.6
C9—C10—H10A109.6C29—C30—H30A109.6
C11—C10—H10B109.6C31—C30—H30B109.6
C9—C10—H10B109.6C29—C30—H30B109.6
H10A—C10—H10B108.1H30A—C30—H30B108.1
C10—C11—C12108.99 (10)C38—C31—C30109.04 (9)
C10—C11—C18109.93 (10)C38—C31—C32109.70 (10)
C12—C11—C18109.12 (10)C30—C31—C32109.85 (10)
C10—C11—H11109.6C38—C31—H31109.4
C12—C11—H11109.6C30—C31—H31109.4
C18—C11—H11109.6C32—C31—H31109.4
C11—C12—C13109.63 (10)C33—C32—C31109.28 (10)
C11—C12—H12A109.7C33—C32—H32A109.8
C13—C12—H12A109.7C31—C32—H32A109.8
C11—C12—H12B109.7C33—C32—H32B109.8
C13—C12—H12B109.7C31—C32—H32B109.8
H12A—C12—H12B108.2H32A—C32—H32B108.3
C17—C13—C12109.70 (10)C32—C33—C34109.59 (10)
C17—C13—C14109.32 (10)C32—C33—C37108.97 (9)
C12—C13—C14109.46 (10)C34—C33—C37109.67 (10)
C17—C13—H13109.4C32—C33—H33109.5
C12—C13—H13109.4C34—C33—H33109.5
C14—C13—H13109.4C37—C33—H33109.5
C13—C14—C15109.23 (10)C35—C34—C33109.50 (10)
C13—C14—H14A109.8C35—C34—H34A109.8
C15—C14—H14A109.8C33—C34—H34A109.8
C13—C14—H14B109.8C35—C34—H34B109.8
C15—C14—H14B109.8C33—C34—H34B109.8
H14A—C14—H14B108.3H34A—C34—H34B108.2
C16—C15—C18109.12 (10)C34—C35—C36109.23 (10)
C16—C15—C14109.64 (10)C34—C35—C38109.44 (10)
C18—C15—C14109.32 (10)C36—C35—C38109.71 (9)
C16—C15—H15109.6C34—C35—H35109.5
C18—C15—H15109.6C36—C35—H35109.5
C14—C15—H15109.6C38—C35—H35109.5
C15—C16—C9110.55 (10)C29—C36—C35110.19 (10)
C15—C16—H16A109.5C29—C36—H36A109.6
C9—C16—H16A109.5C35—C36—H36A109.6
C15—C16—H16B109.5C29—C36—H36B109.6
C9—C16—H16B109.5C35—C36—H36B109.6
H16A—C16—H16B108.1H36A—C36—H36B108.1
C13—C17—C9110.37 (9)C33—C37—C29110.37 (9)
C13—C17—H17A109.6C33—C37—H37A109.6
C9—C17—H17A109.6C29—C37—H37A109.6
C13—C17—H17B109.6C33—C37—H37B109.6
C9—C17—H17B109.6C29—C37—H37B109.6
H17A—C17—H17B108.1H37A—C37—H37B108.1
C11—C18—C15109.76 (10)C31—C38—C35109.47 (10)
C11—C18—H18A109.7C31—C38—H38A109.8
C15—C18—H18A109.7C35—C38—H38A109.8
C11—C18—H18B109.7C31—C38—H38B109.8
C15—C18—H18B109.7C35—C38—H38B109.8
H18A—C18—H18B108.2H38A—C38—H38B108.2
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.953.073.9197 (16)150
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H22N2
Mr266.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)22.0249 (9), 6.4628 (1), 22.2739 (8)
β (°) 118.694 (5)
V3)2781.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.928, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
32353, 4899, 3314
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.064, 0.83
No. of reflections4899
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cg1i0.953.073.9197 (16)149.5
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The financial support of this work by the Czech Ministry of Education (project No. MSM 7088352101), the Inter­nal Funding Agency of Tomas Bata University in Zlin, project No. IGA/6/FT/11/D and the Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of the Czech Republic, within the framework of project Centre of Polymer Systems (reg. number: CZ.1.05/2.1.00/03.0111) is gratefully acknowledged.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHille, U. E., Zimmer, C., Vock, C. A. & Hartmann, R. W. (2011). Med. Chem. Lett. 2, 2–6.  CrossRef CAS Google Scholar
First citationLei, G. & Zhou, L. (2009). Acta Cryst. E65, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y. & Nishio, M. (2010). Chem. Rev. 110, 6049–6076.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Zhu, X., Qian, H., Yin, Z. & Zhang, C. (2010). Acta Cryst. E66, o1208.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds