organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-4-nitro­benzoic acid–quinoline (1/1)

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 28 September 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C7H4ClNO4·C9H7N, the two components are connected by an O—H⋯N hydrogen bond. In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of benzoic acid is 3.15 (7)°. In the crystal, units are linked by inter­molecular C—H⋯O hydrogen bonds, forming a tape along the c axis. The tapes are stacked along the b axis through a C—H⋯O hydrogen bond into a layer parallel to the bc plane.

Related literature

For related structures, see: Gotoh & Ishida (2009[Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534-o538.]); Gotoh et al. (2010[Gotoh, K., Katagiri, K. & Ishida, H. (2010). Acta Cryst. E66, o3190.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N·C7H4ClNO4

  • Mr = 330.73

  • Orthorhombic, P c a 21

  • a = 31.125 (3) Å

  • b = 3.7560 (3) Å

  • c = 12.3615 (12) Å

  • V = 1445.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 185 K

  • 0.35 × 0.22 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.925, Tmax = 0.983

  • 17044 measured reflections

  • 4166 independent reflections

  • 3681 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.083

  • S = 1.06

  • 4166 reflections

  • 212 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1989 Friedel pairs

  • Flack parameter: 0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.95 (3) 1.65 (3) 2.595 (2) 177 (3)
C5—H5⋯O2i 0.95 2.44 3.251 (2) 143
C9—H9⋯O4ii 0.95 2.57 3.365 (3) 141
C14—H14⋯O3i 0.95 2.55 3.476 (3) 165
Symmetry codes: (i) [-x+1, -y+2, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in quinoline–substituted benzoic acid systems (Gotoh & Ishida, 2009; Gotoh et al., 2010).

In the crystal structure of the title compound, no acid-base interaction involving proton transfer is observed between the two components, which are linked by an O—H···N hydrogen bond (Table 1 and Fig. 1). In the hydrogen-bonded unit, the dihedral angle between the quinoline ring system and the benzene ring of the benzoic acid is 3.15 (7)°. The carboxyl plane makes dihedral angles of 43.0 (2) and 39.9 (2)°, respectively, with the quinoline ring system and the benzene ring. The two components are further linked by intermolecular C—H···O hydrogen bonds (Table 1), forming a tape along the c axis and the tapes are stacked along the b axis through an C—H···O hydrogen bond into a layer parallel to the bc plane (Fig. 2). No significant interaction is observed between the layers.

Related literature top

For related structures, see: Gotoh & Ishida (2009); Gotoh et al. (2010).

Experimental top

Single crystals were obtained by slow evaporation from an acetonitrile solution (30 ml) of 2-chloro-4-nitrobenzoic acid (233 mg) and quinoline (150 mg) at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The O-bound H atom was found in a difference Fourier map and refined freely. The refined O—H distance is 0.95 (3) Å. Flack and Hooft parameters are 0.01 (5) and 0.02 (3), respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. The dashed line indicates the O—H···N hydrogen bond.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed along the b axis, showing a layer parallel to the bc plane formed by O—H···N and C—H···O hydrogen bonds (dashed lines). [Symmetry codes: (i) -x + 1, -y + 2, z + 1/2; (iii) -x + 1, -y + 2, z - 1/2.]
2-Chloro-4-nitrobenzoic acid–quinoline (1/1) top
Crystal data top
C9H7N·C7H4ClNO4F(000) = 680.00
Mr = 330.73Dx = 1.520 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2c -2acCell parameters from 13096 reflections
a = 31.125 (3) Åθ = 3.1–29.9°
b = 3.7560 (3) ŵ = 0.29 mm1
c = 12.3615 (12) ÅT = 185 K
V = 1445.1 (2) Å3Platelet, colorless
Z = 40.35 × 0.22 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3681 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.053
ω scansθmax = 29.9°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 4243
Tmin = 0.925, Tmax = 0.983k = 45
17044 measured reflectionsl = 1717
4166 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.3405P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4166 reflectionsΔρmax = 0.23 e Å3
212 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1989 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C9H7N·C7H4ClNO4V = 1445.1 (2) Å3
Mr = 330.73Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 31.125 (3) ŵ = 0.29 mm1
b = 3.7560 (3) ÅT = 185 K
c = 12.3615 (12) Å0.35 × 0.22 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
4166 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3681 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.983Rint = 0.053
17044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.23 e Å3
S = 1.06Δρmin = 0.25 e Å3
4166 reflectionsAbsolute structure: Flack (1983), 1989 Friedel pairs
212 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.543417 (13)0.59426 (12)0.23410 (4)0.02675 (10)
O10.45038 (4)0.5860 (4)0.48865 (12)0.0318 (3)
O20.45582 (4)0.8025 (5)0.32051 (12)0.0388 (4)
O30.67381 (4)0.9928 (5)0.46192 (13)0.0456 (4)
O40.65022 (5)1.2634 (5)0.60477 (13)0.0426 (4)
N10.64473 (5)1.0872 (5)0.52256 (13)0.0292 (4)
N20.37038 (5)0.4475 (4)0.44710 (14)0.0263 (3)
C10.51745 (5)0.8089 (5)0.43578 (14)0.0201 (3)
C20.55126 (5)0.7634 (5)0.36266 (14)0.0193 (3)
C30.59320 (5)0.8484 (5)0.39161 (14)0.0215 (3)
H30.61630.81240.34270.026*
C40.60026 (5)0.9870 (5)0.49371 (15)0.0219 (3)
C50.56809 (6)1.0347 (5)0.56935 (14)0.0238 (4)
H50.57411.12940.63900.029*
C60.52678 (6)0.9388 (5)0.53943 (14)0.0230 (4)
H60.50420.96180.59060.028*
C70.47115 (6)0.7299 (5)0.40757 (15)0.0237 (4)
C80.36085 (7)0.3048 (5)0.35296 (17)0.0303 (4)
H80.38340.26720.30240.036*
C90.31878 (7)0.2050 (5)0.32333 (16)0.0312 (4)
H90.31320.10360.25430.037*
C100.28633 (6)0.2568 (5)0.39549 (16)0.0276 (4)
H100.25790.18740.37750.033*
C110.29493 (5)0.4134 (5)0.49705 (15)0.0223 (4)
C120.26293 (6)0.4842 (5)0.57556 (16)0.0280 (4)
H120.23380.42480.56100.034*
C130.27357 (7)0.6361 (5)0.67138 (17)0.0322 (4)
H130.25180.68300.72320.039*
C140.31654 (7)0.7255 (5)0.69516 (18)0.0325 (4)
H140.32350.82910.76310.039*
C150.34829 (6)0.6641 (5)0.62122 (16)0.0280 (4)
H150.37710.72740.63750.034*
C160.33828 (5)0.5067 (5)0.52058 (14)0.0216 (4)
H10.4212 (11)0.530 (9)0.475 (3)0.092 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03042 (19)0.0318 (2)0.01799 (17)0.00371 (18)0.00209 (19)0.00441 (19)
O10.0202 (6)0.0471 (9)0.0279 (7)0.0040 (6)0.0009 (5)0.0086 (7)
O20.0261 (6)0.0614 (10)0.0289 (8)0.0008 (7)0.0046 (6)0.0121 (8)
O30.0224 (6)0.0755 (12)0.0389 (9)0.0026 (7)0.0008 (6)0.0006 (8)
O40.0397 (8)0.0547 (10)0.0332 (8)0.0134 (8)0.0120 (7)0.0041 (7)
N10.0250 (7)0.0365 (10)0.0261 (8)0.0057 (7)0.0072 (6)0.0073 (7)
N20.0203 (7)0.0288 (8)0.0298 (8)0.0012 (6)0.0013 (6)0.0033 (7)
C10.0207 (8)0.0200 (8)0.0197 (8)0.0023 (6)0.0009 (6)0.0028 (7)
C20.0249 (8)0.0183 (8)0.0148 (7)0.0020 (7)0.0011 (6)0.0005 (6)
C30.0198 (7)0.0256 (9)0.0191 (8)0.0023 (7)0.0025 (6)0.0032 (7)
C40.0205 (7)0.0230 (8)0.0222 (8)0.0011 (7)0.0039 (6)0.0031 (7)
C50.0316 (9)0.0224 (9)0.0175 (8)0.0014 (7)0.0028 (7)0.0001 (7)
C60.0248 (8)0.0253 (10)0.0191 (8)0.0010 (7)0.0039 (6)0.0010 (7)
C70.0225 (8)0.0278 (10)0.0209 (9)0.0019 (7)0.0005 (7)0.0015 (7)
C80.0316 (9)0.0298 (10)0.0295 (10)0.0043 (8)0.0055 (8)0.0010 (8)
C90.0392 (10)0.0291 (10)0.0254 (10)0.0019 (8)0.0026 (8)0.0027 (8)
C100.0264 (9)0.0254 (9)0.0309 (10)0.0042 (8)0.0049 (8)0.0006 (8)
C110.0207 (7)0.0193 (9)0.0269 (9)0.0014 (6)0.0015 (7)0.0023 (7)
C120.0221 (8)0.0240 (9)0.0380 (11)0.0002 (7)0.0036 (7)0.0029 (9)
C130.0356 (10)0.0273 (10)0.0337 (11)0.0023 (8)0.0104 (8)0.0011 (8)
C140.0455 (11)0.0268 (10)0.0252 (9)0.0019 (9)0.0012 (9)0.0018 (8)
C150.0274 (9)0.0285 (10)0.0282 (10)0.0032 (8)0.0076 (7)0.0032 (8)
C160.0214 (7)0.0187 (8)0.0248 (9)0.0011 (6)0.0009 (6)0.0029 (7)
Geometric parameters (Å, º) top
Cl1—C21.7288 (18)C6—H60.9500
O1—C71.309 (2)C8—C91.411 (3)
O1—H10.95 (4)C8—H80.9500
O2—C71.208 (2)C9—C101.361 (3)
O3—N11.228 (2)C9—H90.9500
O4—N11.225 (2)C10—C111.412 (3)
N1—C41.478 (2)C10—H100.9500
N2—C81.315 (3)C11—C121.416 (2)
N2—C161.368 (2)C11—C161.424 (2)
C1—C21.398 (2)C12—C131.356 (3)
C1—C61.402 (2)C12—H120.9500
C1—C71.512 (2)C13—C141.410 (3)
C2—C31.391 (2)C13—H130.9500
C3—C41.383 (3)C14—C151.366 (3)
C3—H30.9500C14—H140.9500
C4—C51.382 (2)C15—C161.412 (3)
C5—C61.386 (3)C15—H150.9500
C5—H50.9500
C7—O1—H1115 (2)N2—C8—H8118.4
O4—N1—O3124.05 (16)C9—C8—H8118.4
O4—N1—C4117.93 (16)C10—C9—C8118.72 (19)
O3—N1—C4118.01 (17)C10—C9—H9120.6
C8—N2—C16119.27 (16)C8—C9—H9120.6
C2—C1—C6118.54 (16)C9—C10—C11120.10 (18)
C2—C1—C7122.99 (16)C9—C10—H10119.9
C6—C1—C7118.46 (15)C11—C10—H10119.9
C3—C2—C1120.81 (16)C10—C11—C12123.67 (16)
C3—C2—Cl1116.97 (13)C10—C11—C16117.62 (16)
C1—C2—Cl1122.21 (13)C12—C11—C16118.71 (17)
C4—C3—C2118.06 (16)C13—C12—C11120.40 (17)
C4—C3—H3121.0C13—C12—H12119.8
C2—C3—H3121.0C11—C12—H12119.8
C5—C4—C3123.47 (16)C12—C13—C14120.93 (19)
C5—C4—N1118.84 (16)C12—C13—H13119.5
C3—C4—N1117.70 (16)C14—C13—H13119.5
C4—C5—C6117.27 (16)C15—C14—C13120.44 (19)
C4—C5—H5121.4C15—C14—H14119.8
C6—C5—H5121.4C13—C14—H14119.8
C5—C6—C1121.79 (16)C14—C15—C16120.04 (18)
C5—C6—H6119.1C14—C15—H15120.0
C1—C6—H6119.1C16—C15—H15120.0
O2—C7—O1125.46 (17)N2—C16—C15119.44 (16)
O2—C7—C1122.49 (17)N2—C16—C11121.08 (16)
O1—C7—C1112.03 (15)C15—C16—C11119.48 (16)
N2—C8—C9123.19 (18)
C6—C1—C2—C30.6 (3)C6—C1—C7—O139.1 (2)
C7—C1—C2—C3178.35 (17)C16—N2—C8—C90.6 (3)
C6—C1—C2—Cl1178.32 (14)N2—C8—C9—C100.3 (3)
C7—C1—C2—Cl12.7 (2)C8—C9—C10—C111.1 (3)
C1—C2—C3—C41.5 (3)C9—C10—C11—C12178.46 (18)
Cl1—C2—C3—C4179.46 (13)C9—C10—C11—C161.1 (3)
C2—C3—C4—C52.1 (3)C10—C11—C12—C13179.86 (18)
C2—C3—C4—N1178.12 (16)C16—C11—C12—C130.3 (3)
O4—N1—C4—C512.2 (3)C11—C12—C13—C140.3 (3)
O3—N1—C4—C5168.76 (18)C12—C13—C14—C150.8 (3)
O4—N1—C4—C3168.02 (18)C13—C14—C15—C160.7 (3)
O3—N1—C4—C311.0 (3)C8—N2—C16—C15179.17 (18)
C3—C4—C5—C60.4 (3)C8—N2—C16—C110.6 (3)
N1—C4—C5—C6179.82 (17)C14—C15—C16—N2179.84 (18)
C4—C5—C6—C11.9 (3)C14—C15—C16—C110.1 (3)
C2—C1—C6—C52.4 (3)C10—C11—C16—N20.2 (3)
C7—C1—C6—C5176.60 (18)C12—C11—C16—N2179.33 (16)
C2—C1—C7—O239.8 (3)C10—C11—C16—C15179.98 (17)
C6—C1—C7—O2139.2 (2)C12—C11—C16—C150.4 (3)
C2—C1—C7—O1141.92 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.95 (3)1.65 (3)2.595 (2)177 (3)
C5—H5···O2i0.952.443.251 (2)143
C9—H9···O4ii0.952.573.365 (3)141
C14—H14···O3i0.952.553.476 (3)165
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC9H7N·C7H4ClNO4
Mr330.73
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)185
a, b, c (Å)31.125 (3), 3.7560 (3), 12.3615 (12)
V3)1445.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.22 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.925, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17044, 4166, 3681
Rint0.053
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.083, 1.06
No. of reflections4166
No. of parameters212
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.25
Absolute structureFlack (1983), 1989 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.95 (3)1.65 (3)2.595 (2)177 (3)
C5—H5···O2i0.952.443.251 (2)143
C9—H9···O4ii0.952.573.365 (3)141
C14—H14···O3i0.952.553.476 (3)165
Symmetry codes: (i) x+1, y+2, z+1/2; (ii) x+1, y+1, z1/2.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 22550013) from the Japan Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Katagiri, K. & Ishida, H. (2010). Acta Cryst. E66, o3190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds