metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[zinc-μ-[2-(2-{[2-(2-hy­dr­oxy­benzo­yl)hydrazinyl­­idene]meth­yl}phen­­oxy)acetato­(2–)]] monohydrate]

aDepartment of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, Sichuan 635000, People's Republic of China
*Correspondence e-mail: luofh2005@yahoo.com.cn

(Received 28 September 2011; accepted 20 October 2011; online 29 October 2011)

In the title compound, {[Zn(C16H12N2O5)]·H2O}n, the unique ZnII ion is coordinated in a distorted square-pyramidal environment by three O atoms and one N atom from a symmetry-unique ligand. A symmetry-related ligand provides an O atom from a carboxyl­ate group to complete the coordination in the apical site and generate a one-dimensional polymer parallel to [010]. In addition to an intra­molecular O—H⋯N hydrogen bond, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds are observed within the one-dimensional structure.

Related literature

For background information on zinc(II) carboxyl­ate compounds, see: Suen et al. (2002[Suen, M. C., Keng, T. C. & Wang, J. C. (2002). Polyhedron, 21, 2705-2710.]). For general information on the structures of carboxyl­ate and hydrazone compounds, see: Wu et al. (2007[Wu, L. M., Qiu, G. F. & Teng, H. B. (2007). Inorg. Chim. Acta, 360, 3069-3074.]); Luo et al. (2010[Luo, F. H., Hu, Z. Q. & Yang, L. (2010). Chin. J. Inorg. Chem. 26, 682-686.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C16H12N2O5)]·H2O

  • Mr = 395.66

  • Monoclinic, P 21 /c

  • a = 14.730 (2) Å

  • b = 5.4063 (8) Å

  • c = 20.983 (3) Å

  • β = 106.620 (2)°

  • V = 1601.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 9785 measured reflections

  • 3132 independent reflections

  • 2764 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.06

  • 3132 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H20⋯N1 0.75 (4) 1.92 (4) 2.583 (3) 148 (4)
O6—H60A⋯O1i 0.84 2.22 3.056 (4) 179
C8—H8⋯O2ii 0.93 2.41 3.316 (4) 164
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Zn(II) carboxylates, especially those with nitrogen donor ligands, have been the subject of numerous investigations (Suen et al., 2002). Different coordination modes of carboxylate groups can form mononuclear and polynuclear structures. Hydrazone with carboxylate groups can also form mononuclear and polynuclear structures in different conditions (Wu et al., 2007; Luo et al., 2010). Herein we report the synthesis and crystal structure of the title compound.

Part of the one-dimensional structure is shown in Fig. 1. The unique ZnII ion is coordinated in a distorted square-pyramidal environment by three O atoms and one N atom from a symmetry unique ligand. A symmetry related ligand provides an O atom from a carboxylate group to complete the coordination in the apical site and generate a one-dimensional polymer parallel to [010] (Fig 2). In addition to an intramolecular O—H···N hydrogen bond, intermolecular O—H···O and weak C—H···O hydrogen bonds are observed within the one

Related literature top

For background information on zinc(II) carboxylate compounds, see: Suen et al. (2002). For general information on the structures of carboxylate and hydrazone compounds, see: Wu et al. (2007); Luo et al. (2010).

Experimental top

The hydrazone ligand was synthesized according to the literature procedure (Luo et al., 2010). Zinc(II) acetate monohydrate (1 mmol) was dissolved in methanol (15 ml), to which a solution of the ligand (2.5 mmol) in dimethylformamide (15 ml) was added. The mixture was stirred for 3 h at room temperature. An light-yellow solution was obtained, the solution was filtered and allowed to stand at room temperature for three weeks, where upon colorless block-shaped crystals were obtained.

Refinement top

All H atoms, except for H2O were placed in idealized positions and allowed to ride on their parent atoms, with O—H = 0.84 Å (water), C—H = 0.93-0.97Å and Uiso=1.2–1.5 Ueq(C,O). The hydroxy H atom (H2O) was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (a) -x+1, y-1/2, -z+1/2; (b) -x+1, y+1/2, -z+1/2]. H atoms are not shown.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines. Only H atoms involved in hydrogen bonds are shown.
catena-Poly[[zinc-µ-[2-(2-{[2-(2- hydroxybenzoyl)hydrazinylidene]methyl}phenoxy)acetato(2-)]] monohydrate] top
Crystal data top
[Zn(C16H12N2O5)]·H2OF(000) = 808
Mr = 395.66Dx = 1.641 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3978 reflections
a = 14.730 (2) Åθ = 2.8–27.4°
b = 5.4063 (8) ŵ = 1.57 mm1
c = 20.983 (3) ÅT = 298 K
β = 106.620 (2)°Block, colorless
V = 1601.2 (4) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2764 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.092
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
ϕ and ω scansh = 1618
9785 measured reflectionsk = 66
3132 independent reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.0104P]
where P = (Fo2 + 2Fc2)/3
3132 reflections(Δ/σ)max = 0.001
230 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Zn(C16H12N2O5)]·H2OV = 1601.2 (4) Å3
Mr = 395.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.730 (2) ŵ = 1.57 mm1
b = 5.4063 (8) ÅT = 298 K
c = 20.983 (3) Å0.16 × 0.12 × 0.10 mm
β = 106.620 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2764 reflections with I > 2σ(I)
9785 measured reflectionsRint = 0.092
3132 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.48 e Å3
3132 reflectionsΔρmin = 0.51 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.37549 (2)0.04095 (6)0.273648 (16)0.03342 (14)
O10.33632 (13)0.1912 (4)0.33490 (10)0.0408 (5)
O20.04795 (17)0.1639 (6)0.32481 (16)0.0713 (8)
O30.35695 (13)0.1914 (4)0.16947 (9)0.0381 (5)
O40.45124 (12)0.1779 (3)0.23378 (9)0.0347 (4)
O50.54232 (13)0.2163 (4)0.16671 (9)0.0401 (5)
N10.18798 (16)0.0372 (4)0.28074 (13)0.0380 (6)
N20.23483 (15)0.1069 (4)0.24511 (11)0.0320 (5)
C10.2011 (2)0.3599 (5)0.35985 (14)0.0396 (7)
C20.1069 (2)0.3391 (7)0.35924 (17)0.0522 (8)
C30.0705 (3)0.5039 (8)0.3972 (2)0.0722 (12)
H30.00840.48600.39880.087*
C40.1252 (3)0.6905 (7)0.43192 (19)0.0711 (12)
H40.09980.80000.45640.085*
C50.2174 (3)0.7179 (6)0.43094 (17)0.0624 (10)
H50.25410.84710.45410.075*
C60.2553 (3)0.5528 (5)0.39543 (16)0.0475 (8)
H60.31810.57050.39520.057*
C70.24582 (19)0.1871 (5)0.32341 (13)0.0334 (6)
C80.1840 (2)0.2634 (5)0.20485 (14)0.0402 (7)
H80.12180.28320.20610.048*
C90.2143 (2)0.4136 (5)0.15722 (14)0.0364 (6)
C100.29665 (18)0.3766 (5)0.13731 (13)0.0317 (6)
C110.3143 (2)0.5182 (5)0.08720 (15)0.0384 (7)
H110.36890.49130.07430.046*
C120.2508 (2)0.6998 (5)0.05635 (15)0.0460 (7)
H120.26270.79400.02250.055*
C130.1696 (2)0.7423 (6)0.07554 (16)0.0536 (8)
H130.12750.86630.05520.064*
C140.1519 (2)0.5995 (6)0.12493 (17)0.0516 (8)
H140.09690.62740.13720.062*
C150.42785 (19)0.1002 (5)0.14144 (14)0.0343 (6)
H15A0.47310.22960.14060.041*
H15B0.39920.04410.09620.041*
C160.47695 (18)0.1127 (5)0.18446 (13)0.0332 (6)
O60.4589 (3)0.7641 (10)0.47903 (19)0.171 (2)
H60A0.42490.77870.43960.256*
H60B0.51640.73970.48230.256*
H200.074 (3)0.090 (7)0.305 (2)0.067 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0246 (2)0.0419 (2)0.0363 (2)0.00089 (12)0.01278 (15)0.00451 (13)
O10.0301 (10)0.0488 (12)0.0463 (12)0.0011 (9)0.0154 (9)0.0140 (9)
O20.0348 (13)0.093 (2)0.094 (2)0.0094 (14)0.0308 (14)0.0222 (17)
O30.0306 (10)0.0517 (12)0.0363 (11)0.0114 (9)0.0163 (8)0.0117 (9)
O40.0331 (10)0.0378 (10)0.0368 (10)0.0055 (8)0.0157 (8)0.0039 (8)
O50.0315 (10)0.0508 (11)0.0411 (11)0.0072 (9)0.0153 (9)0.0016 (9)
N10.0270 (12)0.0492 (14)0.0417 (14)0.0039 (10)0.0160 (11)0.0052 (11)
N20.0240 (11)0.0389 (12)0.0354 (13)0.0020 (9)0.0123 (10)0.0045 (10)
C10.0453 (17)0.0440 (16)0.0323 (15)0.0146 (14)0.0156 (13)0.0054 (12)
C20.0429 (18)0.061 (2)0.055 (2)0.0190 (17)0.0189 (16)0.0034 (17)
C30.067 (3)0.085 (3)0.076 (3)0.038 (2)0.038 (2)0.004 (2)
C40.100 (3)0.064 (2)0.058 (2)0.043 (2)0.037 (2)0.0004 (19)
C50.093 (3)0.052 (2)0.0418 (19)0.019 (2)0.0199 (19)0.0033 (15)
C60.059 (2)0.0452 (17)0.0401 (18)0.0089 (15)0.0163 (16)0.0020 (13)
C70.0319 (14)0.0365 (14)0.0339 (14)0.0066 (11)0.0130 (12)0.0046 (11)
C80.0257 (14)0.0531 (17)0.0448 (17)0.0032 (12)0.0147 (13)0.0049 (14)
C90.0345 (15)0.0409 (15)0.0342 (15)0.0071 (12)0.0104 (12)0.0046 (12)
C100.0282 (13)0.0345 (13)0.0308 (14)0.0006 (11)0.0056 (11)0.0004 (11)
C110.0381 (16)0.0416 (15)0.0359 (16)0.0031 (12)0.0112 (13)0.0004 (12)
C120.057 (2)0.0418 (16)0.0381 (16)0.0013 (14)0.0127 (15)0.0060 (13)
C130.063 (2)0.0492 (18)0.0487 (19)0.0229 (16)0.0155 (17)0.0140 (15)
C140.0488 (19)0.0548 (19)0.055 (2)0.0195 (16)0.0202 (16)0.0116 (16)
C150.0279 (14)0.0438 (15)0.0337 (15)0.0032 (12)0.0127 (12)0.0008 (12)
C160.0275 (14)0.0370 (14)0.0354 (15)0.0026 (11)0.0094 (12)0.0041 (12)
O60.097 (3)0.327 (7)0.087 (3)0.054 (4)0.023 (2)0.067 (4)
Geometric parameters (Å, º) top
Zn1—O41.9694 (17)C4—C51.372 (6)
Zn1—O5i1.9717 (19)C4—H40.9300
Zn1—O11.9958 (18)C5—C61.379 (4)
Zn1—N22.017 (2)C5—H50.9300
Zn1—O32.2743 (18)C6—H60.9300
O1—C71.285 (3)C8—C91.454 (4)
O2—C21.347 (4)C8—H80.9300
O2—H200.75 (4)C9—C141.400 (4)
O3—C101.380 (3)C9—C101.406 (4)
O3—C151.425 (3)C10—C111.385 (4)
O4—C161.250 (3)C11—C121.382 (4)
O5—C161.259 (3)C11—H110.9300
O5—Zn1ii1.9717 (19)C12—C131.387 (4)
N1—C71.322 (4)C12—H120.9300
N1—N21.392 (3)C13—C141.376 (4)
N2—C81.276 (3)C13—H130.9300
C1—C21.389 (4)C14—H140.9300
C1—C61.393 (4)C15—C161.513 (4)
C1—C71.476 (4)C15—H15A0.9700
C2—C31.400 (5)C15—H15B0.9700
C3—C41.365 (6)O6—H60A0.8400
C3—H30.9300O6—H60B0.8400
O4—Zn1—O5i110.48 (8)C5—C6—H6119.5
O4—Zn1—O1101.48 (8)C1—C6—H6119.5
O5i—Zn1—O1104.35 (8)O1—C7—N1124.8 (2)
O4—Zn1—N2129.69 (9)O1—C7—C1119.0 (2)
O5i—Zn1—N2117.57 (9)N1—C7—C1116.3 (2)
O1—Zn1—N280.84 (8)N2—C8—C9126.0 (2)
O4—Zn1—O374.54 (7)N2—C8—H8117.0
O5i—Zn1—O3104.79 (7)C9—C8—H8117.0
O1—Zn1—O3150.04 (8)C14—C9—C10117.5 (3)
N2—Zn1—O379.67 (8)C14—C9—C8116.5 (3)
C7—O1—Zn1110.12 (16)C10—C9—C8125.9 (2)
C2—O2—H20109 (3)O3—C10—C11122.6 (2)
C10—O3—C15119.63 (19)O3—C10—C9116.6 (2)
C10—O3—Zn1127.81 (15)C11—C10—C9120.9 (3)
C15—O3—Zn1111.85 (14)C12—C11—C10119.9 (3)
C16—O4—Zn1121.68 (17)C12—C11—H11120.0
C16—O5—Zn1ii119.40 (17)C10—C11—H11120.0
C7—N1—N2112.6 (2)C11—C12—C13120.4 (3)
C8—N2—N1116.1 (2)C11—C12—H12119.8
C8—N2—Zn1132.25 (18)C13—C12—H12119.8
N1—N2—Zn1111.50 (16)C14—C13—C12119.4 (3)
C2—C1—C6118.9 (3)C14—C13—H13120.3
C2—C1—C7122.5 (3)C12—C13—H13120.3
C6—C1—C7118.6 (3)C13—C14—C9121.9 (3)
O2—C2—C1123.4 (3)C13—C14—H14119.1
O2—C2—C3117.4 (3)C9—C14—H14119.1
C1—C2—C3119.2 (4)O3—C15—C16107.4 (2)
C4—C3—C2120.7 (4)O3—C15—H15A110.2
C4—C3—H3119.7C16—C15—H15A110.2
C2—C3—H3119.7O3—C15—H15B110.2
C3—C4—C5120.6 (3)C16—C15—H15B110.2
C3—C4—H4119.7H15A—C15—H15B108.5
C5—C4—H4119.7O4—C16—O5123.9 (3)
C4—C5—C6119.6 (4)O4—C16—C15120.1 (2)
C4—C5—H5120.2O5—C16—C15115.9 (2)
C6—C5—H5120.2H60A—O6—H60B113.4
C5—C6—C1121.0 (3)
O4—Zn1—O1—C7126.34 (18)C7—C1—C6—C5179.3 (3)
O5i—Zn1—O1—C7118.79 (18)Zn1—O1—C7—N14.7 (3)
N2—Zn1—O1—C72.52 (18)Zn1—O1—C7—C1175.39 (18)
O3—Zn1—O1—C747.4 (3)N2—N1—C7—O14.5 (4)
O4—Zn1—O3—C10172.7 (2)N2—N1—C7—C1175.7 (2)
O5i—Zn1—O3—C1079.7 (2)C2—C1—C7—O1168.5 (3)
O1—Zn1—O3—C1086.5 (2)C6—C1—C7—O112.4 (4)
N2—Zn1—O3—C1036.3 (2)C2—C1—C7—N111.4 (4)
O4—Zn1—O3—C1517.10 (17)C6—C1—C7—N1167.7 (3)
O5i—Zn1—O3—C1590.50 (17)N1—N2—C8—C9172.7 (3)
O1—Zn1—O3—C15103.3 (2)Zn1—N2—C8—C912.9 (5)
N2—Zn1—O3—C15153.49 (18)N2—C8—C9—C14170.7 (3)
O5i—Zn1—O4—C1681.2 (2)N2—C8—C9—C1014.4 (5)
O1—Zn1—O4—C16168.6 (2)C15—O3—C10—C1115.1 (4)
N2—Zn1—O4—C1681.0 (2)Zn1—O3—C10—C11154.5 (2)
O3—Zn1—O4—C1619.1 (2)C15—O3—C10—C9164.0 (2)
C7—N1—N2—C8177.3 (2)Zn1—O3—C10—C926.5 (3)
C7—N1—N2—Zn11.6 (3)C14—C9—C10—O3179.6 (3)
O4—Zn1—N2—C888.4 (3)C8—C9—C10—O34.7 (4)
O5i—Zn1—N2—C872.7 (3)C14—C9—C10—C110.5 (4)
O1—Zn1—N2—C8174.2 (3)C8—C9—C10—C11174.3 (3)
O3—Zn1—N2—C828.7 (3)O3—C10—C11—C12179.4 (2)
O4—Zn1—N2—N196.90 (19)C9—C10—C11—C120.4 (4)
O5i—Zn1—N2—N1101.94 (17)C10—C11—C12—C130.4 (4)
O1—Zn1—N2—N10.47 (17)C11—C12—C13—C141.0 (5)
O3—Zn1—N2—N1156.67 (18)C12—C13—C14—C90.8 (5)
C6—C1—C2—O2178.0 (3)C10—C9—C14—C130.1 (5)
C7—C1—C2—O21.2 (5)C8—C9—C14—C13175.4 (3)
C6—C1—C2—C33.5 (5)C10—O3—C15—C16175.6 (2)
C7—C1—C2—C3177.4 (3)Zn1—O3—C15—C1613.3 (2)
O2—C2—C3—C4178.1 (4)Zn1—O4—C16—O5162.7 (2)
C1—C2—C3—C43.2 (6)Zn1—O4—C16—C1518.2 (3)
C2—C3—C4—C50.9 (6)Zn1ii—O5—C16—O410.5 (4)
C3—C4—C5—C61.1 (6)Zn1ii—O5—C16—C15170.31 (18)
C4—C5—C6—C10.7 (5)O3—C15—C16—O40.8 (3)
C2—C1—C6—C51.5 (5)O3—C15—C16—O5180.0 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H20···N10.75 (4)1.92 (4)2.583 (3)148 (4)
O6—H60A···O1iii0.842.223.056 (4)179
C8—H8···O2iv0.932.413.316 (4)164
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C16H12N2O5)]·H2O
Mr395.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.730 (2), 5.4063 (8), 20.983 (3)
β (°) 106.620 (2)
V3)1601.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9785, 3132, 2764
Rint0.092
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.06
No. of reflections3132
No. of parameters230
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.51

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H20···N10.75 (4)1.92 (4)2.583 (3)148 (4)
O6—H60A···O1i0.842.223.056 (4)178.7
C8—H8···O2ii0.932.413.316 (4)163.5
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
 

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLuo, F. H., Hu, Z. Q. & Yang, L. (2010). Chin. J. Inorg. Chem. 26, 682–686.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M. C., Keng, T. C. & Wang, J. C. (2002). Polyhedron, 21, 2705–2710.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, L. M., Qiu, G. F. & Teng, H. B. (2007). Inorg. Chim. Acta, 360, 3069–3074.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds