organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2981-o2982

10α-Hy­dr­oxy-4,9-di­methyl-13-[(4-phenyl­piperazin-1-yl)meth­yl]-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]tetra­decan-14-one

aLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, bUniversite Blaise Pascal, Laboratoire des Mate'riaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubiere, France, and cLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 3 October 2011; accepted 11 October 2011; online 22 October 2011)

The title compound, C25H34N2O5, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule contains a fused five- and ten-membered ring system. The ten-membered ring adopts an approximate chair–chair conformation, while the five-membered ring is in an envelope conformation, with the C atom closest to the hy­droxy group forming the flap. The piperazine ring is in a chair conformation. In the crystal, O—H⋯O hydrogen bonds connect mol­ecules into chains along [100]. Weak inter­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); Bellakhdar (1997[Bellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272-274. Paris: Edition Ibis Press.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For the synthesis, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34N2O5

  • Mr = 442.54

  • Orthorhombic, P 21 21 21

  • a = 7.7666 (5) Å

  • b = 9.6059 (8) Å

  • c = 31.181 (2) Å

  • V = 2326.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.36 × 0.28 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • 10922 measured reflections

  • 2723 independent reflections

  • 2362 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.06

  • 2723 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 2.11 2.902 (3) 161
C14—H14B⋯O5ii 0.96 2.59 3.289 (3) 129
C21—H21⋯O1iii 0.93 2.51 3.441 (4) 174
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The natural sesquiterpene lactone, 9α - hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al., (1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products of value which can be used in the pharmacological industry. In this context, we have synthesed from 9α-hydroxyparthenolide the 6β,7α- epoxy-9apha hydoxy partenolide (9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (Moumou et al., 2010) and then prepared the title compound (I). The crystal structure of (I) is determined herein. The molecule contains a fused ring system and phenylpiperazine group as a substituent to a lactone ring. The molecular structure, Fig.1, shows that the lactone ring adopts an envelope conformation, as indicated by the Cremer & Pople (1975) puckering parameters Q = 0.347 (2)Å and ϕ = 75.6 (3)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.570 (2) Å, θ = 180.0 (2)° and ϕ2 = 150 (10)°. In the crystal structure, molecules are connected through O—H···O hydrogen bonds (Fig.2), forming chains along [100].

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); Bellakhdar (1997); El Hassany et al. (2004); For reactivity of this sesquiterpene, see: Hwang et al. (2006). Neukirch et al. (2003); Neelakantan et al. (2009) For the synthesis, see: Moumou et al. (2010). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 6β,7α-epoxy-9α-hydoxypartenolide (9α-hydroxy-4,8-dimethyl-12- methylen-3,14-dioxa-tricyclo[9.3.0.02,4]tetradec-7-en-13-one) (0.5 g, 2 mmol) and one equivalent of 1-phenylpiperazine in EtOH (20 ml) was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (10 ml) and extracted three times with ethyl acetate (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 895 mg (1.8 mmol) of the title compound, which was recrystallized in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0. 98Å (methine), O—H = 0.82Å and with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus the Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view showing O–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
10αHydroxy-4,9-dimethyl-13-[(4-phenylpiperazin-1-yl)methyl]- 3,8,15-trioxatetracyclo[10.3.0.02,4.07,9]tetradecan-14-one top
Crystal data top
C25H34N2O5F(000) = 952
Mr = 442.54Dx = 1.264 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10922 reflections
a = 7.7666 (5) Åθ = 2.7–26.4°
b = 9.6059 (8) ŵ = 0.09 mm1
c = 31.181 (2) ÅT = 298 K
V = 2326.2 (3) Å3Prism, colourless
Z = 40.45 × 0.36 × 0.28 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2362 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.4°, θmin = 2.7°
ϕ and ω scansh = 99
10922 measured reflectionsk = 117
2723 independent reflectionsl = 3834
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4378P]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H34N2O5V = 2326.2 (3) Å3
Mr = 442.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7666 (5) ŵ = 0.09 mm1
b = 9.6059 (8) ÅT = 298 K
c = 31.181 (2) Å0.45 × 0.36 × 0.28 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
2362 reflections with I > 2σ(I)
10922 measured reflectionsRint = 0.024
2723 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
2723 reflectionsΔρmin = 0.18 e Å3
293 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5441 (3)0.2316 (2)0.91768 (7)0.0347 (5)
H10.48790.16650.89790.042*
C20.5370 (3)0.1777 (2)0.96267 (7)0.0327 (5)
H20.61430.22520.98270.039*
C30.4930 (3)0.0341 (3)0.97477 (7)0.0349 (5)
C40.5705 (3)0.0184 (3)1.01607 (8)0.0415 (6)
H4A0.49200.08401.02930.050*
H4B0.58590.05911.03560.050*
C50.7438 (3)0.0892 (3)1.00857 (8)0.0435 (6)
H5A0.79810.10761.03600.052*
H5B0.72520.17770.99430.052*
C60.8616 (3)0.0009 (3)0.98170 (8)0.0383 (6)
H60.85880.09850.98880.046*
C70.9154 (3)0.0312 (3)0.93753 (8)0.0383 (6)
C80.9740 (3)0.0848 (3)0.90772 (8)0.0404 (6)
H81.05670.04370.88760.048*
C90.8307 (4)0.1514 (3)0.88067 (8)0.0416 (6)
H9A0.75180.07830.87200.050*
H9B0.88250.18850.85480.050*
C100.7253 (3)0.2680 (2)0.90184 (7)0.0311 (5)
H100.79140.30420.92620.037*
C110.5317 (3)0.4573 (3)0.89329 (8)0.0414 (6)
C120.6839 (3)0.3904 (3)0.87154 (7)0.0376 (6)
H120.64550.35230.84400.045*
C130.8251 (4)0.4953 (3)0.86298 (8)0.0431 (6)
H13A0.77290.57930.85160.052*
H13B0.87860.51940.89010.052*
C140.4374 (4)0.0747 (3)0.94329 (9)0.0473 (6)
H14A0.39880.03060.91740.071*
H14B0.34510.12840.95540.071*
H14C0.53280.13490.93690.071*
C151.1040 (4)0.5453 (3)0.83687 (8)0.0519 (7)
H15A1.14520.54670.86620.062*
H15B1.06680.63870.82950.062*
C160.9013 (3)0.4473 (3)0.78904 (8)0.0490 (7)
H16A0.86180.53930.78080.059*
H16B0.80510.38360.78640.059*
C171.0437 (4)0.4021 (3)0.75924 (8)0.0509 (7)
H17A1.07940.30820.76640.061*
H17B1.00180.40180.72990.061*
C181.2483 (4)0.5027 (4)0.80761 (8)0.0542 (8)
H18A1.34180.56910.81000.065*
H18B1.29150.41220.81630.065*
C191.3260 (4)0.4797 (3)0.73301 (8)0.0448 (6)
C201.3357 (4)0.3688 (3)0.70444 (8)0.0473 (6)
H201.24900.30200.70400.057*
C211.4749 (4)0.3575 (4)0.67644 (8)0.0571 (8)
H211.47970.28350.65730.069*
C221.6044 (4)0.4538 (4)0.67685 (9)0.0645 (9)
H221.69920.44340.65890.077*
C231.5932 (4)0.5657 (4)0.70384 (10)0.0714 (10)
H231.67920.63310.70350.086*
C241.4562 (4)0.5797 (4)0.73158 (9)0.0615 (8)
H241.45030.65680.74960.074*
C260.8708 (4)0.1630 (3)0.91409 (9)0.0535 (7)
H26A0.82220.22880.93380.080*
H26B0.97300.20150.90150.080*
H26C0.78860.14280.89190.080*
N10.9589 (3)0.4506 (2)0.83356 (6)0.0398 (5)
N21.1901 (3)0.4959 (2)0.76275 (6)0.0461 (6)
O10.4819 (3)0.5750 (2)0.89055 (6)0.0565 (5)
O20.3686 (2)0.14622 (18)0.97984 (5)0.0400 (4)
O30.4524 (2)0.36458 (19)0.91853 (5)0.0447 (4)
O51.0321 (2)0.0547 (2)0.97319 (6)0.0543 (5)
O41.0600 (2)0.19268 (19)0.92937 (7)0.0538 (5)
H41.13920.16000.94360.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0319 (12)0.0320 (12)0.0403 (12)0.0020 (11)0.0021 (11)0.0019 (10)
C20.0281 (11)0.0336 (12)0.0364 (11)0.0008 (11)0.0030 (10)0.0008 (9)
C30.0274 (11)0.0351 (12)0.0421 (12)0.0020 (10)0.0068 (10)0.0002 (10)
C40.0464 (14)0.0380 (13)0.0402 (12)0.0040 (12)0.0048 (11)0.0072 (11)
C50.0486 (14)0.0374 (14)0.0446 (13)0.0030 (12)0.0051 (12)0.0065 (11)
C60.0304 (12)0.0343 (13)0.0502 (13)0.0040 (11)0.0070 (11)0.0018 (11)
C70.0330 (12)0.0338 (13)0.0479 (13)0.0062 (11)0.0035 (11)0.0007 (11)
C80.0326 (12)0.0363 (13)0.0522 (14)0.0066 (11)0.0058 (11)0.0029 (11)
C90.0485 (15)0.0362 (13)0.0401 (12)0.0049 (13)0.0062 (12)0.0012 (11)
C100.0303 (12)0.0302 (12)0.0328 (11)0.0005 (10)0.0014 (9)0.0020 (9)
C110.0404 (13)0.0420 (14)0.0417 (13)0.0051 (13)0.0057 (11)0.0079 (11)
C120.0414 (13)0.0336 (13)0.0377 (12)0.0019 (11)0.0008 (11)0.0024 (10)
C130.0503 (14)0.0352 (13)0.0438 (13)0.0031 (13)0.0073 (12)0.0012 (11)
C140.0444 (14)0.0394 (15)0.0582 (15)0.0041 (13)0.0002 (13)0.0033 (12)
C150.0527 (16)0.0597 (18)0.0434 (13)0.0120 (16)0.0041 (12)0.0116 (13)
C160.0419 (14)0.0639 (18)0.0413 (13)0.0058 (15)0.0014 (11)0.0009 (13)
C170.0485 (15)0.0646 (18)0.0396 (13)0.0098 (16)0.0015 (12)0.0086 (13)
C180.0467 (14)0.073 (2)0.0431 (13)0.0101 (15)0.0003 (12)0.0112 (15)
C190.0479 (14)0.0498 (15)0.0368 (12)0.0031 (14)0.0010 (11)0.0005 (12)
C200.0538 (16)0.0476 (15)0.0403 (13)0.0030 (15)0.0013 (13)0.0019 (12)
C210.069 (2)0.0614 (18)0.0413 (14)0.0143 (19)0.0050 (14)0.0000 (14)
C220.0538 (18)0.098 (3)0.0419 (15)0.003 (2)0.0075 (13)0.0051 (17)
C230.0574 (19)0.099 (3)0.0578 (18)0.030 (2)0.0051 (16)0.0013 (19)
C240.0633 (18)0.068 (2)0.0528 (16)0.0199 (19)0.0080 (15)0.0106 (15)
C260.0663 (19)0.0335 (14)0.0608 (16)0.0041 (14)0.0044 (15)0.0079 (13)
N10.0409 (11)0.0424 (12)0.0362 (10)0.0028 (11)0.0019 (9)0.0001 (9)
N20.0454 (12)0.0543 (14)0.0386 (10)0.0091 (12)0.0029 (10)0.0090 (10)
O10.0590 (12)0.0477 (11)0.0627 (11)0.0188 (11)0.0078 (10)0.0146 (9)
O20.0310 (8)0.0414 (9)0.0477 (9)0.0018 (8)0.0081 (7)0.0000 (8)
O30.0333 (9)0.0458 (10)0.0548 (10)0.0089 (9)0.0045 (8)0.0136 (9)
O50.0371 (10)0.0594 (12)0.0662 (12)0.0123 (10)0.0069 (9)0.0060 (10)
O40.0350 (10)0.0429 (11)0.0834 (14)0.0036 (9)0.0090 (10)0.0003 (10)
Geometric parameters (Å, º) top
C1—O31.463 (3)C13—H13A0.9700
C1—C21.496 (3)C13—H13B0.9700
C1—C101.532 (3)C14—H14A0.9600
C1—H10.9800C14—H14B0.9600
C2—O21.445 (3)C14—H14C0.9600
C2—C31.471 (3)C15—N11.452 (3)
C2—H20.9800C15—C181.502 (4)
C3—O21.456 (3)C15—H15A0.9700
C3—C141.497 (4)C15—H15B0.9700
C3—C41.508 (3)C16—N11.459 (3)
C4—C51.526 (4)C16—C171.508 (4)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C5—C61.503 (4)C17—N21.455 (3)
C5—H5A0.9700C17—H17A0.9700
C5—H5B0.9700C17—H17B0.9700
C6—O51.446 (3)C18—N21.471 (3)
C6—C71.468 (3)C18—H18A0.9700
C6—H60.9800C18—H18B0.9700
C7—O51.452 (3)C19—C201.390 (4)
C7—C261.502 (4)C19—C241.395 (4)
C7—C81.521 (4)C19—N21.414 (3)
C8—O41.406 (3)C20—C211.394 (4)
C8—C91.536 (3)C20—H200.9300
C8—H80.9800C21—C221.367 (5)
C9—C101.537 (3)C21—H210.9300
C9—H9A0.9700C22—C231.368 (5)
C9—H9B0.9700C22—H220.9300
C10—C121.542 (3)C23—C241.378 (4)
C10—H100.9800C23—H230.9300
C11—O11.198 (3)C24—H240.9300
C11—O31.339 (3)C26—H26A0.9600
C11—C121.507 (3)C26—H26B0.9600
C12—C131.513 (4)C26—H26C0.9600
C12—H120.9800O4—H40.8200
C13—N11.451 (3)
O3—C1—C2105.50 (18)N1—C13—H13A108.4
O3—C1—C10104.70 (18)C12—C13—H13A108.4
C2—C1—C10114.50 (19)N1—C13—H13B108.4
O3—C1—H1110.6C12—C13—H13B108.4
C2—C1—H1110.6H13A—C13—H13B107.4
C10—C1—H1110.6C3—C14—H14A109.5
O2—C2—C359.88 (14)C3—C14—H14B109.5
O2—C2—C1116.93 (19)H14A—C14—H14B109.5
C3—C2—C1125.0 (2)C3—C14—H14C109.5
O2—C2—H2114.5H14A—C14—H14C109.5
C3—C2—H2114.5H14B—C14—H14C109.5
C1—C2—H2114.5N1—C15—C18111.4 (2)
O2—C3—C259.19 (15)N1—C15—H15A109.3
O2—C3—C14113.4 (2)C18—C15—H15A109.3
C2—C3—C14123.6 (2)N1—C15—H15B109.3
O2—C3—C4114.79 (19)C18—C15—H15B109.3
C2—C3—C4116.1 (2)H15A—C15—H15B108.0
C14—C3—C4116.2 (2)N1—C16—C17111.6 (2)
C3—C4—C5111.7 (2)N1—C16—H16A109.3
C3—C4—H4A109.3C17—C16—H16A109.3
C5—C4—H4A109.3N1—C16—H16B109.3
C3—C4—H4B109.3C17—C16—H16B109.3
C5—C4—H4B109.3H16A—C16—H16B108.0
H4A—C4—H4B107.9N2—C17—C16110.4 (2)
C6—C5—C4111.8 (2)N2—C17—H17A109.6
C6—C5—H5A109.3C16—C17—H17A109.6
C4—C5—H5A109.3N2—C17—H17B109.6
C6—C5—H5B109.3C16—C17—H17B109.6
C4—C5—H5B109.3H17A—C17—H17B108.1
H5A—C5—H5B107.9N2—C18—C15111.1 (2)
O5—C6—C759.77 (15)N2—C18—H18A109.4
O5—C6—C5117.3 (2)C15—C18—H18A109.4
C7—C6—C5125.7 (2)N2—C18—H18B109.4
O5—C6—H6114.2C15—C18—H18B109.4
C7—C6—H6114.2H18A—C18—H18B108.0
C5—C6—H6114.2C20—C19—C24117.9 (3)
O5—C7—C659.36 (15)C20—C19—N2123.0 (2)
O5—C7—C26112.7 (2)C24—C19—N2119.1 (2)
C6—C7—C26123.9 (2)C19—C20—C21120.2 (3)
O5—C7—C8113.3 (2)C19—C20—H20119.9
C6—C7—C8120.8 (2)C21—C20—H20119.9
C26—C7—C8112.9 (2)C22—C21—C20120.8 (3)
O4—C8—C7112.9 (2)C22—C21—H21119.6
O4—C8—C9107.5 (2)C20—C21—H21119.6
C7—C8—C9115.1 (2)C21—C22—C23119.4 (3)
O4—C8—H8107.0C21—C22—H22120.3
C7—C8—H8107.0C23—C22—H22120.3
C9—C8—H8107.0C22—C23—C24120.8 (3)
C8—C9—C10117.0 (2)C22—C23—H23119.6
C8—C9—H9A108.0C24—C23—H23119.6
C10—C9—H9A108.0C23—C24—C19120.8 (3)
C8—C9—H9B108.0C23—C24—H24119.6
C10—C9—H9B108.0C19—C24—H24119.6
H9A—C9—H9B107.3C7—C26—H26A109.5
C1—C10—C9117.5 (2)C7—C26—H26B109.5
C1—C10—C12100.36 (18)H26A—C26—H26B109.5
C9—C10—C12113.83 (19)C7—C26—H26C109.5
C1—C10—H10108.2H26A—C26—H26C109.5
C9—C10—H10108.2H26B—C26—H26C109.5
C12—C10—H10108.2C13—N1—C15108.97 (19)
O1—C11—O3121.5 (2)C13—N1—C16112.8 (2)
O1—C11—C12128.6 (2)C15—N1—C16108.6 (2)
O3—C11—C12109.9 (2)C19—N2—C17117.8 (2)
C11—C12—C13111.3 (2)C19—N2—C18113.5 (2)
C11—C12—C10102.31 (19)C17—N2—C18109.8 (2)
C13—C12—C10117.7 (2)C2—O2—C360.93 (15)
C11—C12—H12108.4C11—O3—C1110.30 (18)
C13—C12—H12108.4C6—O5—C760.87 (15)
C10—C12—H12108.4C8—O4—H4109.5
N1—C13—C12115.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.112.902 (3)161
C14—H14B···O5ii0.962.593.289 (3)129
C21—H21···O1iii0.932.513.441 (4)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H34N2O5
Mr442.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7666 (5), 9.6059 (8), 31.181 (2)
V3)2326.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.36 × 0.28
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10922, 2723, 2362
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.06
No. of reflections2723
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.822.112.902 (3)161
C14—H14B···O5ii0.962.593.289 (3)129
C21—H21···O1iii0.932.513.441 (4)174
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBellakhdar, J. (1997). La Pharmacopé Marocaine Traditionnelle, pp. 272–274. Paris: Edition Ibis Press.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.  Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2981-o2982
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds