organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2941-o2942

N-(3,5-Di­chloro­phen­yl)-2-(naphthalen-1-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu, P.O., Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 3 October 2011; accepted 8 October 2011; online 12 October 2011)

In the title compound, C18H13Cl2NO, the naphthalene ring system [maximum deviation = 0.038 (4) Å] and the benzene ring form dihedral angles of 69.5 (2) and 37.2 (2)°, respectively, with the essentially planar acetamide unit [maximum deviation = 0.004 (4) Å]. The naphthalene ring system forms a dihedral angle of 52.36 (18)° with the benzene ring. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming chains along [001].

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o2926-o2927.]); Li & Wu (2010[Li, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.]); Xiao et al. (2010[Xiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.]); Praveen et al. (2011[Praveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.]); Wang et al. (2010[Wang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2NO

  • Mr = 330.19

  • Monoclinic, P 21 /c

  • a = 7.8090 (14) Å

  • b = 24.811 (4) Å

  • c = 9.6783 (13) Å

  • β = 125.05 (1)°

  • V = 1535.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.38 × 0.29 × 0.06 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.974

  • 16035 measured reflections

  • 4453 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.198

  • S = 1.03

  • 4453 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.80 (4) 2.12 (4) 2.911 (4) 170 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin & Marinkovic, 2006; Mijin et al., 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives, viz., 2-(4-bromophenyl)-N-(2-methoxyphenyl)acetamide (Xiao et al., 2010), N-benzyl-2-(2-bromophenyl)-2-(2-nitrophenoxy) acetamide (Li & Wu, 2010) and N-(3-chloro-4-fluorophenyl)-2- (naphthalen-1-yl)acetamide (Praveen et al., 2011)have been reported. In view of the importance of amides, we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2010, 2011; Wang et al., 2010). The naphthalene ring system (C9-C18, maximum deviation of 0.038 (4) Å at atom C9) and the benzene ring (C1-C6) form dihedral angles of 69.5 (2) and 37.2 (2)°, respectively, with the acetamide moiety (O1/N1/C7/C8, maximum deviation of 0.004 (4) Å at atom C7). The naphthalene ring system forms a dihedral angle of 52.36 (18)° with the benzene ring.

In the crystal, (Fig. 2), molecules are linked via intermolecular N1–H1N1···O1i hydrogen bonds (Table 1) to form one-dimensional chains along [001].

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For related structures, see: Fun et al. (2010, 2011); Li & Wu (2010); Xiao et al. (2010); Praveen et al. (2011); Wang et al. (2010). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Naphthalen-1-acetic acid (0.186g, 1 mmol) and 3,5-dichloroaniline (0.162g, 1 mmol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, and was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Single crystals were grown from toluene and acetone mixture by the slow evaporation method (m.p.: 422-425 K).

Refinement top

Atom H1N1 was located from the difference Fourier map and refined freely N1–H1N1 = 0.80 (4) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(3,5-Dichlorophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H13Cl2NOF(000) = 680
Mr = 330.19Dx = 1.429 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3344 reflections
a = 7.8090 (14) Åθ = 2.7–29.8°
b = 24.811 (4) ŵ = 0.42 mm1
c = 9.6783 (13) ÅT = 296 K
β = 125.05 (1)°Plate, colourless
V = 1535.1 (4) Å30.38 × 0.29 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4453 independent reflections
Radiation source: fine-focus sealed tube2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 108
Tmin = 0.855, Tmax = 0.974k = 3334
16035 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0681P)2 + 1.5936P]
where P = (Fo2 + 2Fc2)/3
4453 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H13Cl2NOV = 1535.1 (4) Å3
Mr = 330.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8090 (14) ŵ = 0.42 mm1
b = 24.811 (4) ÅT = 296 K
c = 9.6783 (13) Å0.38 × 0.29 × 0.06 mm
β = 125.05 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4453 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2621 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.974Rint = 0.051
16035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.198H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.46 e Å3
4453 reflectionsΔρmin = 0.33 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6802 (2)0.95869 (4)0.44624 (14)0.0775 (4)
Cl20.27251 (17)0.91840 (5)0.21419 (12)0.0771 (3)
O10.8282 (4)0.75802 (9)0.4568 (3)0.0637 (7)
N10.8058 (4)0.78590 (10)0.2249 (3)0.0414 (6)
C10.7351 (5)0.86778 (12)0.3249 (4)0.0420 (6)
H1A0.82980.85750.43690.050*
C20.6296 (5)0.91611 (12)0.2847 (4)0.0485 (7)
C30.4862 (5)0.93244 (13)0.1200 (4)0.0511 (8)
H3A0.41550.96510.09540.061*
C40.4521 (5)0.89863 (13)0.0058 (4)0.0488 (7)
C50.5533 (5)0.85030 (12)0.0274 (4)0.0440 (7)
H5A0.52650.82820.06060.053*
C60.6960 (4)0.83471 (11)0.1934 (3)0.0377 (6)
C70.8686 (5)0.75141 (12)0.3535 (4)0.0438 (7)
C80.9966 (6)0.70397 (14)0.3588 (5)0.0580 (9)
H8A0.94230.69350.24400.070*
H8B1.14010.71560.41250.070*
C90.9946 (5)0.65549 (13)0.4519 (4)0.0484 (7)
C100.8751 (6)0.61214 (15)0.3661 (6)0.0665 (10)
H10A0.79600.61250.24880.080*
C110.8659 (7)0.56650 (17)0.4478 (7)0.0776 (13)
H11A0.78240.53730.38520.093*
C120.9787 (8)0.56556 (16)0.6169 (8)0.0826 (14)
H12A0.97100.53560.67070.099*
C131.1104 (5)0.60953 (14)0.7160 (5)0.0558 (9)
C141.2266 (8)0.6089 (2)0.8930 (7)0.0880 (15)
H14A1.21770.57940.94800.106*
C151.3489 (8)0.6501 (3)0.9818 (7)0.0930 (16)
H15A1.42220.64961.09870.112*
C161.3700 (6)0.6941 (2)0.9035 (6)0.0808 (13)
H16A1.46210.72170.96910.097*
C171.2573 (5)0.69744 (16)0.7315 (5)0.0622 (9)
H17A1.27050.72740.68070.075*
C181.1179 (5)0.65423 (13)0.6294 (4)0.0464 (7)
H1N10.822 (5)0.7771 (14)0.154 (5)0.055 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1246 (9)0.0497 (5)0.0709 (6)0.0016 (5)0.0636 (7)0.0107 (4)
Cl20.0783 (6)0.0938 (8)0.0501 (5)0.0249 (5)0.0315 (5)0.0248 (5)
O10.1054 (19)0.0600 (15)0.0634 (15)0.0303 (13)0.0705 (15)0.0228 (12)
N10.0576 (15)0.0437 (14)0.0380 (13)0.0069 (11)0.0363 (12)0.0059 (10)
C10.0505 (16)0.0400 (16)0.0393 (14)0.0035 (12)0.0280 (13)0.0014 (12)
C20.0622 (19)0.0408 (17)0.0527 (18)0.0036 (14)0.0388 (16)0.0025 (14)
C30.0610 (19)0.0444 (18)0.058 (2)0.0096 (14)0.0401 (17)0.0085 (14)
C40.0522 (17)0.0537 (19)0.0464 (17)0.0050 (14)0.0318 (15)0.0125 (14)
C50.0535 (17)0.0475 (18)0.0398 (15)0.0035 (13)0.0319 (14)0.0020 (12)
C60.0445 (15)0.0372 (15)0.0384 (14)0.0011 (11)0.0279 (13)0.0029 (11)
C70.0585 (17)0.0451 (16)0.0429 (15)0.0079 (13)0.0380 (15)0.0071 (12)
C80.082 (2)0.058 (2)0.061 (2)0.0252 (17)0.057 (2)0.0190 (16)
C90.0566 (18)0.0458 (18)0.0555 (19)0.0134 (14)0.0395 (16)0.0054 (14)
C100.063 (2)0.057 (2)0.081 (3)0.0047 (17)0.042 (2)0.017 (2)
C110.083 (3)0.050 (2)0.119 (4)0.0045 (19)0.069 (3)0.018 (2)
C120.106 (3)0.047 (2)0.141 (5)0.020 (2)0.098 (4)0.020 (3)
C130.0616 (19)0.054 (2)0.069 (2)0.0263 (16)0.0474 (18)0.0243 (17)
C140.101 (4)0.105 (4)0.084 (3)0.050 (3)0.068 (3)0.045 (3)
C150.072 (3)0.134 (5)0.066 (3)0.033 (3)0.035 (2)0.022 (3)
C160.047 (2)0.114 (4)0.064 (3)0.002 (2)0.0219 (19)0.014 (3)
C170.0520 (19)0.073 (2)0.067 (2)0.0016 (17)0.0376 (18)0.0055 (19)
C180.0479 (16)0.0506 (18)0.0517 (17)0.0164 (13)0.0350 (15)0.0117 (14)
Geometric parameters (Å, º) top
Cl1—C21.734 (3)C9—C101.352 (5)
Cl2—C41.740 (3)C9—C181.407 (4)
O1—C71.220 (3)C10—C111.406 (6)
N1—C71.349 (4)C10—H10A0.9300
N1—C61.412 (4)C11—C121.341 (7)
N1—H1N10.80 (4)C11—H11A0.9300
C1—C21.378 (4)C12—C131.426 (6)
C1—C61.393 (4)C12—H12A0.9300
C1—H1A0.9300C13—C141.405 (6)
C2—C31.381 (5)C13—C181.411 (4)
C3—C41.373 (5)C14—C151.325 (7)
C3—H3A0.9300C14—H14A0.9300
C4—C51.369 (4)C15—C161.392 (7)
C5—C61.385 (4)C15—H15A0.9300
C5—H5A0.9300C16—C171.367 (6)
C7—C81.526 (4)C16—H16A0.9300
C8—C91.509 (5)C17—C181.441 (5)
C8—H8A0.9700C17—H17A0.9300
C8—H8B0.9700
C7—N1—C6126.6 (2)C10—C9—C18118.6 (3)
C7—N1—H1N1118 (3)C10—C9—C8120.5 (3)
C6—N1—H1N1115 (3)C18—C9—C8120.8 (3)
C2—C1—C6118.2 (3)C9—C10—C11122.4 (4)
C2—C1—H1A120.9C9—C10—H10A118.8
C6—C1—H1A120.9C11—C10—H10A118.8
C1—C2—C3122.6 (3)C12—C11—C10119.4 (4)
C1—C2—Cl1119.1 (2)C12—C11—H11A120.3
C3—C2—Cl1118.4 (2)C10—C11—H11A120.3
C4—C3—C2117.4 (3)C11—C12—C13121.4 (4)
C4—C3—H3A121.3C11—C12—H12A119.3
C2—C3—H3A121.3C13—C12—H12A119.3
C5—C4—C3122.4 (3)C14—C13—C18121.0 (4)
C5—C4—Cl2119.4 (3)C14—C13—C12121.5 (4)
C3—C4—Cl2118.2 (3)C18—C13—C12117.5 (4)
C4—C5—C6119.2 (3)C15—C14—C13120.2 (5)
C4—C5—H5A120.4C15—C14—H14A119.9
C6—C5—H5A120.4C13—C14—H14A119.9
C5—C6—C1120.3 (3)C14—C15—C16121.3 (5)
C5—C6—N1118.3 (3)C14—C15—H15A119.4
C1—C6—N1121.4 (3)C16—C15—H15A119.4
O1—C7—N1122.9 (3)C17—C16—C15121.0 (5)
O1—C7—C8123.3 (3)C17—C16—H16A119.5
N1—C7—C8113.8 (2)C15—C16—H16A119.5
C9—C8—C7113.8 (3)C16—C17—C18119.7 (4)
C9—C8—H8A108.8C16—C17—H17A120.2
C7—C8—H8A108.8C18—C17—H17A120.2
C9—C8—H8B108.8C9—C18—C13120.6 (3)
C7—C8—H8B108.8C9—C18—C17122.6 (3)
H8A—C8—H8B107.7C13—C18—C17116.8 (3)
C6—C1—C2—C30.7 (5)C8—C9—C10—C11178.9 (3)
C6—C1—C2—Cl1178.5 (2)C9—C10—C11—C120.2 (6)
C1—C2—C3—C40.6 (5)C10—C11—C12—C130.9 (6)
Cl1—C2—C3—C4178.6 (2)C11—C12—C13—C14179.2 (4)
C2—C3—C4—C50.4 (5)C11—C12—C13—C180.1 (5)
C2—C3—C4—Cl2179.9 (2)C18—C13—C14—C151.3 (6)
C3—C4—C5—C60.2 (5)C12—C13—C14—C15179.4 (4)
Cl2—C4—C5—C6180.0 (2)C13—C14—C15—C161.7 (7)
C4—C5—C6—C10.3 (4)C14—C15—C16—C173.1 (7)
C4—C5—C6—N1177.1 (3)C15—C16—C17—C181.4 (6)
C2—C1—C6—C50.5 (4)C10—C9—C18—C132.6 (4)
C2—C1—C6—N1176.8 (3)C8—C9—C18—C13177.9 (3)
C7—N1—C6—C5146.4 (3)C10—C9—C18—C17177.1 (3)
C7—N1—C6—C136.2 (4)C8—C9—C18—C172.4 (4)
C6—N1—C7—O13.1 (5)C14—C13—C18—C9177.4 (3)
C6—N1—C7—C8176.2 (3)C12—C13—C18—C91.9 (4)
O1—C7—C8—C923.7 (5)C14—C13—C18—C172.9 (5)
N1—C7—C8—C9157.1 (3)C12—C13—C18—C17177.9 (3)
C7—C8—C9—C10103.2 (4)C16—C17—C18—C9178.8 (3)
C7—C8—C9—C1877.3 (4)C16—C17—C18—C131.5 (5)
C18—C9—C10—C111.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.80 (4)2.12 (4)2.911 (4)170 (4)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13Cl2NO
Mr330.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8090 (14), 24.811 (4), 9.6783 (13)
β (°) 125.05 (1)
V3)1535.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.38 × 0.29 × 0.06
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.855, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16035, 4453, 2621
Rint0.051
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.198, 1.03
No. of reflections4453
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.80 (4)2.12 (4)2.911 (4)170 (4)
Symmetry code: (i) x, y+3/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC-New Delhi, Government of India, for financial assistance for the purchase of chemicals through a BSR one-time grant.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. M. & Wu, J.-L. (2010). Acta Cryst. E66, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPraveen, A. S., Jasinski, J. P., Golen, J. A., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Li, Y.-W. & Li, X.-X. (2010). Acta Cryst. E66, o1977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, Z.-P., Ouyang, Y.-Z., Qin, S.-D., Xie, T. & Yang, J. (2010). Acta Cryst. E66, o67.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2941-o2942
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds