organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Seleno­bis­­(2-hy­dr­oxy­benzaldehyde)

aSchool of Chemistry and Chemical Engneering, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China, and bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: minghuwu@hotmail.com

(Received 8 October 2011; accepted 12 October 2011; online 22 October 2011)

In the title mol­ecule, C14H10O4Se, the dihedral angle between the two benzene rings is 74.6 (1)°. Both hy­droxy­benzaldehyde groups form intra­molecular O—H⋯O hydrogen bonds. In the crystal, pairs of mol­ecules are linked by pairs of weak C—H⋯π(arene) inter­actions, forming centrosymmetric dimers. In addition, mol­ecules are linked by ππ stacking inter­actions, with a centroid–centroid distance of 3.785 (2) Å, forming chains along the c axis.

Related literature

For background to organo-selenium compounds, see: Mukherjee et al. (2006[Mukherjee, C., Tiwari, P. & Misra, A. K. (2006). Tetrahedron Lett. 47, 441-445.]); Phadnis et al. (2005[Phadnis, P. P. & Mugesh, G. (2005). Org. Biomol. Chem. 3, 2476-2481.]); Braga et al. (2005[Braga, A. L., Lüdtke, D. S., Paixao, M. W., Alberto, E. E., Stefabi, H. A. & Juliano, L. (2005). Eur. J. Org. Chem. 20, 4260-4264.]); Mugesh et al. (2001[Mugesh, G., Du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125-2180.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O4Se

  • Mr = 321.18

  • Monoclinic, P 21 /n

  • a = 7.7652 (5) Å

  • b = 11.9129 (8) Å

  • c = 13.3353 (9) Å

  • β = 90.304 (1)°

  • V = 1233.58 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.461, Tmax = 0.581

  • 7045 measured reflections

  • 2550 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.08

  • 2550 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8-C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.90 2.621 (4) 146
O3—H3A⋯O4 0.82 1.95 2.660 (4) 145
C10—H10⋯Cgi 0.93 2.89 3.763 (3) 158
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The organo-selenium nucleus is one of the most abundant structural nucleus found in natural products and biologically active molecules (e.g., seleno-carbohydrates,selenoamino acids,and seleno-peptides)(Mukherjee et al.,2006; Phadnis et al., 2005; Braga et al., 2005). Moreover, organoselenium compounds have emerged as an exceptional class of structures that exemplify a role in biochemical processes, serving as important therapeutic compounds ranging from antiviral and anticancer agents to a variety of situations where free radicals are involved (Mugesh et al., 2001). We are currently studing the synthesis of a new series of organoselenium compounds, such as selanes, diselenides and macrocyclic Schiff bases containing selenium atoms. Reported herein are the synthesis and X-ray structure of the title compound.

In the molecule (Fig. 1), the dihedral angle between the two benzene rings is 74.6 (1)°. Two intramolecular O—H···O hydrogen bonds are present in the molecule. The Se1—C1 and Se1—C8 bond lengths are the same within experimental error. The Se1—C1—C6—C5 and Se1—C8—C13—C12 torsional angles of -174.5 (2)° and -174.6 (2)°, respectively, indicate a slight deviation of the selenium atoms from the mean planes of the benzene rings.

In the crystal, pairs of molecules are linked by weak C—H···π (arene) interactions (see Table 1, Fig. 2). In addition, molecules are linked by Cg1···Cg2ii (symmetry code (ii): -1/2+x, 1/2-y, 1/2+z) and Cg2···Cg1 iii (symmetry code (iii) : 1/2+x, 1/2-y, -1/2+z) ππ stacking interactions with a centroid-centroid distance of 3.785 (2)Å to form one-dimensional chains along the c axis (Fig. 3). Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings.

Related literature top

For background to organo-selenium compounds, see: Mukherjee et al. (2006); Phadnis et al. (2005); Braga et al. (2005); Mugesh et al. (2001).

Experimental top

A mixture of salicylaldehyde (87.93 g, 0.72 mol), selenium dioxide (26.63 g, 0.24 mol)and concentrated hydrochloric acid (132 ml) was stirred for 0.5 h at room temperature. Then, the mixture was further stirred for 50 h at 353 K. The resulting reddish brown solid was filtered, washed with water and ethanol. The obtained yellowish solid was recrystallized with ethyl acetate and etanol (v:v=5:1) to give yellowish crystals of the title compound in yield 20.8%, which are suitable for X-ray analysis.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 Å, O—H = 0.82Å) and included in a riding-model approximation, with Uiso (H) = 1.2Uiso (C) or 1.5Uiso (O)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing showing the hydrogen bonding interactions as thin solid lines. H atoms not involved in hydrogen bonds have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure showing ππ stacking interactions between benzene rings as thin solid lines.
5,5'-Selenobis(2-hydroxybenzaldehyde) top
Crystal data top
C14H10O4SeF(000) = 640
Mr = 321.18Dx = 1.729 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3183 reflections
a = 7.7652 (5) Åθ = 2.3–27.8°
b = 11.9129 (8) ŵ = 3.05 mm1
c = 13.3353 (9) ÅT = 296 K
β = 90.304 (1)°Block, yellow
V = 1233.58 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.100
ϕ and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.461, Tmax = 0.581k = 1014
7045 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C14H10O4SeV = 1233.58 (14) Å3
Mr = 321.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7652 (5) ŵ = 3.05 mm1
b = 11.9129 (8) ÅT = 296 K
c = 13.3353 (9) Å0.30 × 0.20 × 0.20 mm
β = 90.304 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2041 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 0.581Rint = 0.100
7045 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
2550 reflectionsΔρmin = 0.54 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.10731 (4)0.81234 (3)0.62308 (2)0.04535 (18)
C80.0015 (4)0.7027 (3)0.7079 (2)0.0347 (7)
C10.2434 (4)0.7156 (3)0.5393 (2)0.0334 (6)
C50.5117 (4)0.6774 (2)0.4565 (2)0.0340 (7)
C60.4134 (4)0.7406 (3)0.5238 (2)0.0356 (7)
H60.46400.80000.55830.043*
O10.5229 (3)0.5247 (2)0.33974 (17)0.0514 (6)
H10.62190.54830.33550.077*
C130.1686 (4)0.7131 (3)0.7323 (2)0.0369 (7)
H130.23370.76990.70280.044*
C30.2627 (4)0.5615 (3)0.4229 (2)0.0412 (7)
H30.21160.50110.39010.049*
O20.7856 (3)0.6539 (2)0.38446 (19)0.0577 (7)
O40.5065 (3)0.5951 (2)0.8838 (2)0.0593 (7)
C40.4354 (4)0.5874 (3)0.4060 (2)0.0350 (7)
C120.2473 (4)0.6400 (3)0.8007 (2)0.0366 (7)
C20.1688 (4)0.6257 (3)0.4884 (2)0.0389 (7)
H20.05340.60890.49900.047*
C70.6922 (4)0.7058 (3)0.4396 (3)0.0443 (8)
H70.73780.76740.47330.053*
C100.0214 (4)0.5417 (3)0.8167 (3)0.0504 (9)
H100.08660.48340.84360.060*
C90.0956 (4)0.6158 (3)0.7512 (3)0.0463 (8)
H90.21150.60770.73540.056*
C110.1501 (4)0.5530 (3)0.8433 (3)0.0456 (8)
O30.2165 (3)0.4793 (2)0.9087 (2)0.0676 (8)
H3A0.31820.49420.91830.101*
C140.4287 (4)0.6536 (3)0.8254 (3)0.0490 (8)
H140.48890.71130.79410.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0460 (2)0.0397 (2)0.0505 (3)0.00471 (13)0.01921 (17)0.00162 (15)
C80.0277 (15)0.0413 (18)0.0351 (15)0.0014 (12)0.0057 (12)0.0033 (13)
C10.0240 (14)0.0430 (16)0.0332 (15)0.0034 (12)0.0040 (12)0.0008 (14)
C50.0275 (15)0.0406 (17)0.0339 (14)0.0006 (12)0.0046 (12)0.0039 (13)
C60.0374 (16)0.0373 (17)0.0320 (15)0.0022 (13)0.0003 (13)0.0048 (14)
O10.0497 (13)0.0560 (15)0.0485 (13)0.0027 (11)0.0165 (11)0.0142 (12)
C130.0354 (16)0.0412 (17)0.0341 (15)0.0065 (13)0.0019 (13)0.0070 (14)
C30.0424 (17)0.0436 (18)0.0376 (16)0.0076 (14)0.0034 (14)0.0079 (15)
O20.0352 (14)0.0726 (17)0.0653 (16)0.0044 (12)0.0168 (12)0.0026 (15)
O40.0416 (14)0.0705 (18)0.0661 (16)0.0140 (12)0.0206 (12)0.0110 (14)
C40.0287 (14)0.0457 (18)0.0306 (14)0.0029 (13)0.0023 (12)0.0015 (14)
C120.0291 (15)0.0434 (18)0.0373 (16)0.0036 (13)0.0032 (13)0.0113 (14)
C20.0253 (15)0.050 (2)0.0410 (17)0.0050 (13)0.0053 (13)0.0005 (15)
C70.0268 (16)0.058 (2)0.0483 (18)0.0035 (14)0.0002 (14)0.0020 (17)
C100.0308 (16)0.049 (2)0.072 (2)0.0094 (15)0.0054 (16)0.0137 (19)
C90.0317 (16)0.050 (2)0.058 (2)0.0061 (14)0.0081 (15)0.0037 (17)
C110.0453 (18)0.0418 (19)0.0496 (18)0.0030 (15)0.0058 (15)0.0008 (17)
O30.0511 (15)0.0664 (18)0.086 (2)0.0042 (13)0.0179 (14)0.0289 (16)
C140.0383 (19)0.058 (2)0.0504 (19)0.0010 (16)0.0074 (16)0.0098 (19)
Geometric parameters (Å, º) top
Se1—C81.916 (3)C3—C41.395 (4)
Se1—C11.925 (3)C3—H30.9300
C8—C131.368 (4)O2—C71.206 (4)
C8—C91.391 (4)O4—C141.209 (4)
C1—C61.370 (4)C12—C111.401 (5)
C1—C21.392 (4)C12—C141.457 (4)
C5—C41.396 (4)C2—H20.9300
C5—C61.401 (4)C7—H70.9300
C5—C71.461 (4)C10—C91.370 (5)
C6—H60.9300C10—C111.386 (5)
O1—C41.344 (4)C10—H100.9300
O1—H10.8200C9—H90.9300
C13—C121.403 (5)C11—O31.343 (4)
C13—H130.9300O3—H3A0.8200
C3—C21.374 (4)C14—H140.9300
C8—Se1—C199.96 (14)C11—C12—C13119.1 (3)
C13—C8—C9118.3 (3)C11—C12—C14120.6 (3)
C13—C8—Se1119.7 (2)C13—C12—C14120.2 (3)
C9—C8—Se1121.8 (2)C3—C2—C1121.2 (3)
C6—C1—C2119.5 (3)C3—C2—H2119.4
C6—C1—Se1119.3 (2)C1—C2—H2119.4
C2—C1—Se1121.0 (2)O2—C7—C5123.8 (3)
C4—C5—C6119.4 (3)O2—C7—H7118.1
C4—C5—C7120.6 (3)C5—C7—H7118.1
C6—C5—C7120.0 (3)C9—C10—C11120.5 (3)
C1—C6—C5120.5 (3)C9—C10—H10119.7
C1—C6—H6119.7C11—C10—H10119.7
C5—C6—H6119.7C10—C9—C8121.5 (3)
C4—O1—H1109.5C10—C9—H9119.3
C8—C13—C12121.5 (3)C8—C9—H9119.3
C8—C13—H13119.2O3—C11—C10118.4 (3)
C12—C13—H13119.2O3—C11—C12122.6 (3)
C2—C3—C4119.5 (3)C10—C11—C12119.0 (3)
C2—C3—H3120.2C11—O3—H3A109.5
C4—C3—H3120.2O4—C14—C12124.7 (4)
O1—C4—C3118.2 (3)O4—C14—H14117.7
O1—C4—C5121.9 (3)C12—C14—H14117.7
C3—C4—C5119.9 (3)
C1—Se1—C8—C13138.5 (3)C8—C13—C12—C14179.7 (3)
C1—Se1—C8—C945.8 (3)C4—C3—C2—C10.8 (5)
C8—Se1—C1—C6131.5 (3)C6—C1—C2—C30.0 (5)
C8—Se1—C1—C253.3 (3)Se1—C1—C2—C3175.2 (2)
C2—C1—C6—C50.8 (5)C4—C5—C7—O21.6 (5)
Se1—C1—C6—C5174.5 (2)C6—C5—C7—O2178.4 (3)
C4—C5—C6—C10.9 (5)C11—C10—C9—C81.3 (6)
C7—C5—C6—C1179.2 (3)C13—C8—C9—C100.1 (5)
C9—C8—C13—C121.3 (5)Se1—C8—C9—C10175.9 (3)
Se1—C8—C13—C12174.6 (2)C9—C10—C11—O3179.1 (3)
C2—C3—C4—O1178.4 (3)C9—C10—C11—C121.1 (6)
C2—C3—C4—C50.7 (5)C13—C12—C11—O3179.5 (3)
C6—C5—C4—O1179.2 (3)C14—C12—C11—O30.7 (5)
C7—C5—C4—O10.8 (5)C13—C12—C11—C100.2 (5)
C6—C5—C4—C30.1 (4)C14—C12—C11—C10179.0 (3)
C7—C5—C4—C3179.9 (3)C11—C12—C14—O41.6 (5)
C8—C13—C12—C111.4 (5)C13—C12—C14—O4179.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8-C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.902.621 (4)146
O3—H3A···O40.821.952.660 (4)145
C10—H10···Cgi0.932.893.763 (3)158
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10O4Se
Mr321.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.7652 (5), 11.9129 (8), 13.3353 (9)
β (°) 90.304 (1)
V3)1233.58 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.05
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.461, 0.581
No. of measured, independent and
observed [I > 2σ(I)] reflections
7045, 2550, 2041
Rint0.100
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.08
No. of reflections2550
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.54

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8-C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.902.621 (4)145.8
O3—H3A···O40.821.952.660 (4)145.1
C10—H10···Cgi0.932.893.763 (3)158
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work as a project of Guangdong Provincial Department of Education.

References

First citationBraga, A. L., Lüdtke, D. S., Paixao, M. W., Alberto, E. E., Stefabi, H. A. & Juliano, L. (2005). Eur. J. Org. Chem. 20, 4260–4264.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMugesh, G., Du Mont, W. W. & Sies, H. (2001). Chem. Rev. 101, 2125–2180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMukherjee, C., Tiwari, P. & Misra, A. K. (2006). Tetrahedron Lett. 47, 441–445.  Web of Science CrossRef CAS Google Scholar
First citationPhadnis, P. P. & Mugesh, G. (2005). Org. Biomol. Chem. 3, 2476–2481.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds