metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2,4-di­chloro-6-(ethyl­imino­meth­yl)phenolato-κ2N,O]nickel(II)

aKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Ministry of Education, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com, 387810573@qq.com

(Received 10 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title compound, [Ni(C9H8Cl2NO)2], the NiII ion lies on an inversion centre and is coordinated in a slightly distorted square-planar geometry by an N and an O atom from two symmetry-related bidentate 2,4-dichloro-6-(ethyl­imino­meth­yl)phenolate ligands. In the crystal structure, there are short Cl⋯Cl distances of 3.506 (1) and 3.350 (1) Å.

Related literature

For halogen–halogen inter­actions in supra­molecular chemistry and crystal engineering, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000-2013.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Xiao & Zhang (2008[Xiao, Y. & Zhang, M. (2008). Acta Cryst. E64, m1231.]); Aakeröy et al. (2011[Aakeröy, C. B., Sinha, A. S., Chopade, P. D. & Desper, J. (2011). Dalton Trans. 41, doi:10.1039/C1DT10911A.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C9H8Cl2NO)2]

  • Mr = 492.84

  • Monoclinic, P 21 /c

  • a = 7.5004 (6) Å

  • b = 9.3155 (7) Å

  • c = 14.1498 (12) Å

  • β = 103.841 (1)°

  • V = 959.94 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.612, Tmax = 0.667

  • 4890 measured reflections

  • 1685 independent reflections

  • 1267 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.055

  • S = 0.97

  • 1685 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogens have a ubiquitous presence in both inorganic and organic chemistry. Schiff bases of chloro substituents on aromatic systems have aroused interest in recent years because these halogenated compounds are an attractive target for use in supramolecular chemistry and crystal engineering wherein the halogen atoms are directly involved in forming intermolecular interactions (Cohen et al., 1964; Desiraju, 1989; Xiao & Zhang, 2008; Aakeröy et al. 2011). The title compound, (I), contains a deprotonated 2,4-dichloro-2-ethyliminomethyl-phenol ligand, with two Cl atoms accesible for Cl···Cl interactions.

In (I), the NiII ion lies on an inversion center and is coordinated by two O and two N atoms from two symmetry related bidentate 2,4-diChloro-N-ethylsalicylaldimino ligands, forming a slightly distorted square-planar geometry (Fig. 1). In the crystal, there are short Cl···Cl contacts (Cl1···Cl2i 3.506 (1) Å, Cl2···Cl2ii 3.350 (1) Å symmetry code:(i) 1 - x, 1/2 + y, 1/2 - z, (ii) -x, -y, -z) (Fig. 2).

Related literature top

For halogen–halogen interactions in supramolecular chemistry and crystal engineering, see: Cohen et al. (1964); Desiraju (1989); Xiao & Zhang (2008); Aakeröy et al. (2011).

Experimental top

A solution of (0.191 g, 1.0 mmol) 3,5-dichloro-2-hydroxy-benzaldehyde and (0.044 g, 1 mmol) ethylamine and (0.040 g, 1 mmol) sodium hydroxide in 20 ml absolute methanol was added slowly a solution of nickel nitrate hexahydrate (0.145 g, 0.5 mmol) in methanol. The mixture was stirred for 3 h at room temperature to give a green solution which was filtered and the filtrate was left to stand at room temperature. Green block-shaped crystals suitable for X-ray diffraction were obtained by slow evaporation. yield: 78.2% (Based on Nickel). Elemental analysis calculated: C 43.83, H 3.75, N 5.68%; Found: C 43.79, H,3.78, N 5.71%.

Refinement top

H atoms were positioned geometrically and refined with a riding model, with C—H distances = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms are omitted.
[Figure 2] Fig. 2. Part of the crystal structure showing short Cl···Cl contacts as dashed lines.
Bis[2,4-dichloro-6-(ethyliminomethyl)phenolato-κ2N,O]nickel(II) top
Crystal data top
[Ni(C9H8Cl2NO)2]F(000) = 500
Mr = 492.84Dx = 1.705 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1685 reflections
a = 7.5004 (6) Åθ = 2.6–25.0°
b = 9.3155 (7) ŵ = 1.58 mm1
c = 14.1498 (12) ÅT = 293 K
β = 103.841 (1)°Block, green
V = 959.94 (13) Å30.32 × 0.28 × 0.26 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1685 independent reflections
Radiation source: fine-focus sealed tube1267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 87
Tmin = 0.612, Tmax = 0.667k = 118
4890 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0012P)2]
where P = (Fo2 + 2Fc2)/3
1685 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C9H8Cl2NO)2]V = 959.94 (13) Å3
Mr = 492.84Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5004 (6) ŵ = 1.58 mm1
b = 9.3155 (7) ÅT = 293 K
c = 14.1498 (12) Å0.32 × 0.28 × 0.26 mm
β = 103.841 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1685 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1267 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.667Rint = 0.060
4890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 0.97Δρmax = 0.28 e Å3
1685 reflectionsΔρmin = 0.35 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6897 (3)0.3911 (3)0.06190 (18)0.0321 (6)
C20.5743 (3)0.3976 (3)0.12798 (17)0.0344 (7)
C30.4233 (3)0.3110 (3)0.11860 (18)0.0383 (7)
H3A0.35020.31760.16310.046*
C40.3801 (3)0.2139 (3)0.0429 (2)0.0384 (7)
C50.4853 (3)0.2045 (3)0.02361 (18)0.0393 (7)
H5A0.45460.13930.07470.047*
C60.6402 (3)0.2937 (3)0.01460 (18)0.0324 (6)
Cl10.62781 (9)0.51726 (8)0.22421 (4)0.0454 (2)
Cl20.18645 (10)0.10465 (8)0.03097 (5)0.0538 (2)
Ni11.00000.50000.00000.03205 (15)
O10.8324 (2)0.47509 (19)0.07451 (12)0.0393 (5)
C70.7422 (3)0.2847 (3)0.08801 (18)0.0374 (7)
H7A0.70230.21710.13690.045*
C80.9509 (4)0.3268 (3)0.18214 (19)0.0465 (8)
H8A0.91350.23030.20400.056*
H8B1.08400.33020.16590.056*
C90.8770 (4)0.4311 (4)0.26300 (19)0.0654 (10)
H9A0.92290.40670.31870.098*
H9B0.91550.52650.24190.098*
H9C0.74530.42660.28000.098*
N10.8836 (3)0.3602 (2)0.09375 (14)0.0337 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0305 (15)0.0322 (17)0.0333 (15)0.0026 (13)0.0070 (13)0.0053 (13)
C20.0343 (16)0.0373 (17)0.0315 (15)0.0041 (13)0.0078 (13)0.0053 (13)
C30.0341 (16)0.0456 (19)0.0376 (16)0.0033 (14)0.0132 (14)0.0094 (15)
C40.0303 (16)0.0388 (17)0.0449 (17)0.0045 (14)0.0068 (14)0.0099 (15)
C50.0387 (16)0.0399 (18)0.0376 (17)0.0064 (14)0.0055 (15)0.0018 (13)
C60.0329 (15)0.0315 (16)0.0332 (15)0.0005 (13)0.0084 (13)0.0012 (13)
Cl10.0483 (4)0.0536 (5)0.0372 (4)0.0018 (4)0.0162 (4)0.0060 (4)
Cl20.0394 (4)0.0634 (6)0.0583 (5)0.0150 (4)0.0110 (4)0.0083 (4)
Ni10.0334 (3)0.0326 (3)0.0319 (3)0.0019 (2)0.0112 (2)0.0032 (2)
O10.0403 (11)0.0445 (13)0.0372 (10)0.0116 (10)0.0173 (9)0.0094 (9)
C70.0427 (17)0.0348 (17)0.0341 (16)0.0010 (14)0.0077 (14)0.0038 (13)
C80.0481 (18)0.051 (2)0.0465 (18)0.0117 (15)0.0238 (15)0.0196 (16)
C90.055 (2)0.105 (3)0.0394 (18)0.013 (2)0.0178 (17)0.002 (2)
N10.0374 (13)0.0342 (13)0.0326 (12)0.0020 (11)0.0143 (11)0.0027 (11)
Geometric parameters (Å, º) top
C1—O11.303 (3)Ni1—O1i1.8382 (16)
C1—C61.393 (3)Ni1—N1i1.914 (2)
C1—C21.419 (3)Ni1—N11.914 (2)
C2—C31.372 (3)C7—N11.291 (3)
C2—Cl11.731 (3)C7—H7A0.9300
C3—C41.380 (3)C8—N11.489 (3)
C3—H3A0.9300C8—C91.502 (4)
C4—C51.368 (3)C8—H8A0.9700
C4—Cl21.749 (3)C8—H8B0.9700
C5—C61.410 (3)C9—H9A0.9600
C5—H5A0.9300C9—H9B0.9600
C6—C71.432 (3)C9—H9C0.9600
Ni1—O11.8382 (16)
O1—C1—C6123.7 (2)O1i—Ni1—N187.10 (8)
O1—C1—C2119.6 (2)N1i—Ni1—N1180.0
C6—C1—C2116.7 (2)C1—O1—Ni1130.49 (17)
C3—C2—C1122.1 (3)N1—C7—C6127.1 (3)
C3—C2—Cl1119.1 (2)N1—C7—H7A116.5
C1—C2—Cl1118.9 (2)C6—C7—H7A116.5
C2—C3—C4119.7 (3)N1—C8—C9111.6 (2)
C2—C3—H3A120.1N1—C8—H8A109.3
C4—C3—H3A120.1C9—C8—H8A109.3
C5—C4—C3120.6 (2)N1—C8—H8B109.3
C5—C4—Cl2119.9 (2)C9—C8—H8B109.3
C3—C4—Cl2119.4 (2)H8A—C8—H8B108.0
C4—C5—C6119.9 (3)C8—C9—H9A109.5
C4—C5—H5A120.1C8—C9—H9B109.5
C6—C5—H5A120.1H9A—C9—H9B109.5
C1—C6—C5121.0 (2)C8—C9—H9C109.5
C1—C6—C7120.8 (2)H9A—C9—H9C109.5
C5—C6—C7118.2 (2)H9B—C9—H9C109.5
O1—Ni1—O1i180.00 (13)C7—N1—C8112.8 (2)
O1—Ni1—N1i87.10 (8)C7—N1—Ni1124.90 (19)
O1i—Ni1—N1i92.90 (8)C8—N1—Ni1122.30 (17)
O1—Ni1—N192.90 (8)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C9H8Cl2NO)2]
Mr492.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5004 (6), 9.3155 (7), 14.1498 (12)
β (°) 103.841 (1)
V3)959.94 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.612, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
4890, 1685, 1267
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.055, 0.97
No. of reflections1685
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant No. 21161006) and by the Startup Foundation of Guilin University of Technology (to SHZ).

References

First citationAakeröy, C. B., Sinha, A. S., Chopade, P. D. & Desper, J. (2011). Dalton Trans. 41, doi:10.1039/C1DT10911A.  Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Y. & Zhang, M. (2008). Acta Cryst. E64, m1231.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds