organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3019-o3020

2-{[2,8-Bis(tri­fluoro­meth­yl)quinolin-4-yl](hy­dr­oxy)meth­yl}piperidin-1-ium 3-amino-5-nitro­benzoate sesquihydrate

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos – Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 11 October 2011; accepted 14 October 2011; online 22 October 2011)

The asymmetric unit of the title salt solvate, C17H17F6N2O+·C7H5N2O4·1.5H2O, comprises a piperidin-1-ium cation, a 3-amino-5-nitro­benzoate anion, and three fractionally occupied [i.e. 0.414 (3), 0.627 (6) and 0.459 (5)] disordered water mol­ecules of solvation. The cation has an L shape with a C—C—C—C torsion angle of −102.9 (3)° for the atoms linking the quinolinyl group to the rest of the cation. In the anion, the carboxyl­ate and nitro groups are essentially coplanar with the benzene ring [O—C—C—C torsion angle = 179.7 (2)° and O—N—C—C torsion angle = −3.9 (3)°]. In the crystal, extensive O—H⋯O, O—H⋯F and N—H⋯·O hydrogen bonding leads to the formation of a layer in the ab plane.

Related literature

For background information on mefloquine and derivatives, see: Kunin & Ellis (2007[Kunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624-1630.]); Maguire et al. (2006[Maguire, J. D., Krisin, M. H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067-1072.]); Dow et al. (2004[Dow, G. S., Koenig, M. L., Wolf, L., Gerena, L., Lopez-Sanchez, M., Hudson, T. H. & Bhattacharjee, A. K. (2004). Antimicrob. Agents Chemother. 48, 2624-2632.]). For selected crystal structures of mefloquine and its salts, see: Obaleye et al. (2009[Obaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859-868.]); Skórska et al. (2005[Skórska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850-853.]); Karle & Karle (1991[Karle, J. M. & Karle, I. L. (1991). Acta Cryst. C47, 2391-2395.], 2002[Karle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529-1534.]); Wardell et al. (2010[Wardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & de Lima, G. M. (2010). Acta Cryst. E66, m336-m337.], 2011[Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011). Z. Kristallogr. 226, 68-77.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17F6N2O+·C7H5N2O4·1.5H2O

  • Mr = 587.48

  • Triclinic, [P \overline 1]

  • a = 9.1705 (5) Å

  • b = 12.5446 (9) Å

  • c = 12.7788 (8) Å

  • α = 66.278 (4)°

  • β = 77.261 (4)°

  • γ = 71.537 (4)°

  • V = 1269.23 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 120 K

  • 0.28 × 0.16 × 0.10 mm

Data collection
  • Bruker–Nonius APEXII CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.640, Tmax = 0.746

  • 25681 measured reflections

  • 5832 independent reflections

  • 3477 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.174

  • S = 1.03

  • 5832 reflections

  • 416 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (1) 1.83 (1) 2.669 (3) 178 (3)
N4—H41⋯O2i 0.88 (1) 2.04 (1) 2.900 (3) 164 (3)
N2—H21⋯O3ii 0.89 (1) 1.87 (1) 2.717 (3) 159 (3)
N4—H42⋯O5iii 0.88 (1) 2.27 (2) 3.101 (3) 159 (3)
N2—H22⋯O2W 0.89 (1) 2.05 (1) 2.916 (4) 165 (3)
N2—H22⋯O3W 0.89 (1) 1.98 (2) 2.727 (5) 141 (3)
OWw—H1W1⋯O1 0.84 (1) 2.08 (4) 2.867 (5) 156 (8)
O1W—H1W2⋯F6iv 0.84 (1) 2.47 (7) 2.867 (5) 110 (6)
O2W—H2W1⋯O1W 0.85 (1) 2.07 (2) 2.859 (6) 154 (4)
O2W—H2W2⋯O4v 0.85 (1) 2.30 (2) 3.119 (4) 165 (4)
O3W—H3W1⋯O3 0.84 (1) 2.21 (1) 3.049 (5) 174 (7)
O3W—H3W2⋯O4v 0.84 (1) 2.37 (3) 3.158 (5) 156 (7)
O3W—H3W2⋯O5v 0.84 (1) 2.32 (6) 3.016 (5) 140 (7)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+3, -z+1; (iv) x, y+1, z; (v) -x, -y+3, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A synthetic analogue of quinine, mefloquine, is manufactured as the racemic erythro hydrochloride salt, and is used in the prevention and treatment of malaria in combination with other drugs (Maguire et al., 2006). While it is known that both enantiomers of erythro mefloquinium hydrochloride are active, the (+) form is the more potent against the D6 and W2 strains of Plasmodium falciparum (Karle & Karle, 2002). After its introduction in 1971, mefloquine has proved to be an effective anti-malarial agent, in part due to its long half-life and the fact that it is a good prophylactic. A widespread resistance of Plasmodium sp. developed by the end of the 20th century. This, together with undesirable side-effects [e.g. anxiety, aggression, seizures, nightmares, neuropathy, insomnia, acute depression and urinary disorders] have resulted in a decline in its use (Dow et al., 2004). Derivatives of mefloquine are also been investigated against for efficacy against other diseases, e.g. as anti-viral and anti-tuberculosis agents (Kunin & Ellis, 2007). A few crystal structures of mefloquine (Skórska et al., 2005) and mefloquinium salts, including the hydrated chloride (Karle & Karle, 2002; Skórska et al., 2005), methylsulfonate (Karle & Karle, 1991), tetrachlorocobaltate (Skórska et al., 2005), and tetrachlorocuprate and tetrabromocadmate salts (Obaleye et al., 2009) have been reported. We now report the structure of the title salt, (I), in continuation of structural studies in this area (Wardell et al., 2010; Wardell et al., 2011).

The asymmetric unit of (I) comprises a piperidin-1-ium cation, a 3-amino-5-nitrobenzoate anion, and three fractionally occupied [i.e. 0.414 (3), 0.627 (6) and 0.459 (5)] disordered water molecules of solvation; the ions are illustrated in Fig. 1. The confirmation of protonation at the amine-N2 atom is found in the nature of the intermolecular interactions, see below, as well as in the equivalence of the C—O bond distances [O2—C18 = 1.251 (4) Å and O3—C18 = 1.246 (4) Å] in the anion. Overall, the cation has an L-shaped conformation as the quinolinyl residue is approximately orthogonal to the rest of the cation; the C2–C3–C12–C13 torsion angle is -102.9 (3) °. The six-membered piperidin-1-ium ring adopts a chair conformation. The anion is effectively planar with both of the carboxylate [O2—C18—C19—C20 torsion angle = 179.7 (2)°] and nitro [O4—N3—C21—C20 torsion angle = -3.9 (3)°] groups being co-planar with the benzene ring to which it is connected

The crystal packing is stabilized by hydrogen bonding, Table 1, that leads to layers in the ab plane. The carboxylate-O2 atom accepts two hydrogen bonds, one from the cation-OH and the other from the anion-amino-H. The carboxylate-O3 atom accepts a single interaction, i.e. from an ammonium-H. The second amino-H atom connects to nitro-O while the second ammonium-H hydrogen bonds water-O atoms. Water molecules form hydrogen bonds with each other and also donor hydrogen bonds to the cation-O atom, anion-O atoms and a weak contact to the F6 atom, Table 1. A view of the unit-cell contents is shown in Fig. 2 indicating layers stack along the c axis.

Related literature top

For background information on mefloquine and derivatives, see: Kunin & Ellis (2007); Maguire et al. (2006); Dow et al. (2004). For selected crystal structures of mefloquine and its salts, see: Obaleye et al. (2009); Skórska et al. (2005); Karle & Karle (1991, 2002); Wardell et al. (2010, 2011)..

Experimental top

A solution of mefloquine (0.383 g, 1 mmol) and 3-amino-5-nitrobenzoic acid (0.18 g. 1 mmol) in EtOH (15 ml) was refluxed for 20 min. On maintaining the reaction mixture at room temperature, crystals of the title salt slowly formed. M.pt.: 503–504 K (dec.). IR ν: 3600–2200(br), 1632, 1612, 1555, 1518, 1472, 1435, 1389, 1344, 1310, 1265, 1217, 1184, 1150, 1109, 1078, 1013, 970, 934, 918, 899, 887, 866, 839, 795, 783, 743, 725, 665, 542, 444 cm-1.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H and N—H H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88–0.92±0.01 Å, respectively, and with Uiso(H) = yUeq(O or N) with y = 1.5 for O and y = 1.2 for N. There are a total of 1.5 water molecules in the asymmetric unit and these are disordered over three positions with site occupancies factors of 0.414 (3), 0.627 (6) and 0.459 (5); hydrogen atoms were located for each of these and refined as described above.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the components comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The disordered water molecules of solvation have been omitted for reasons of clarity.
[Figure 2] Fig. 2. A view in projection along the a axis of the unit-cell contents in (I) showing the alternation of cations and anions along the c axis. The O—H···O, N—H···O and O—H···F interactions are shown as orange, blue and green dashed lines, respectively.
2-{[2,8-Bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium 3-amino-5-nitrobenzoate sesquihydrate top
Crystal data top
C17H17F6N2O+·C7H5N2O4·1.5H2OZ = 2
Mr = 587.48F(000) = 606
Triclinic, P1Dx = 1.537 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1705 (5) ÅCell parameters from 30639 reflections
b = 12.5446 (9) Åθ = 2.9–27.5°
c = 12.7788 (8) ŵ = 0.14 mm1
α = 66.278 (4)°T = 120 K
β = 77.261 (4)°Block, orange
γ = 71.537 (4)°0.28 × 0.16 × 0.10 mm
V = 1269.23 (14) Å3
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
5832 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3477 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.078
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ & ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1616
Tmin = 0.640, Tmax = 0.746l = 1616
25681 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.174 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.2367P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5832 reflectionsΔρmax = 0.39 e Å3
416 parametersΔρmin = 0.38 e Å3
15 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (4)
Crystal data top
C17H17F6N2O+·C7H5N2O4·1.5H2Oγ = 71.537 (4)°
Mr = 587.48V = 1269.23 (14) Å3
Triclinic, P1Z = 2
a = 9.1705 (5) ÅMo Kα radiation
b = 12.5446 (9) ŵ = 0.14 mm1
c = 12.7788 (8) ÅT = 120 K
α = 66.278 (4)°0.28 × 0.16 × 0.10 mm
β = 77.261 (4)°
Data collection top
Bruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
5832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3477 reflections with I > 2σ(I)
Tmin = 0.640, Tmax = 0.746Rint = 0.078
25681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06415 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
5832 reflectionsΔρmin = 0.38 e Å3
416 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.87381 (17)0.49471 (18)0.83650 (15)0.0532 (5)
F20.74544 (19)0.50218 (18)0.99348 (14)0.0515 (5)
F30.7703 (2)0.66464 (17)0.8535 (2)0.0766 (7)
F40.55227 (19)0.21925 (14)0.99220 (14)0.0443 (4)
F50.69944 (17)0.22502 (14)0.83406 (15)0.0457 (5)
F60.51655 (18)0.13558 (14)0.88618 (15)0.0443 (4)
O10.3030 (2)0.89697 (16)0.68621 (16)0.0321 (4)
H10.287 (4)0.940 (2)0.6179 (12)0.048*
O20.2506 (2)1.03009 (17)0.46810 (18)0.0442 (5)
O30.0666 (2)1.19038 (17)0.39087 (19)0.0437 (5)
O40.0825 (2)1.58565 (17)0.37663 (17)0.0409 (5)
O50.2815 (3)1.60038 (18)0.42819 (19)0.0509 (6)
O1W0.3447 (6)1.0482 (5)0.7901 (4)0.0431 (14)0.414 (3)
H1W10.358 (8)0.991 (5)0.768 (7)0.065*0.414 (3)
H1W20.413 (7)1.086 (6)0.754 (6)0.065*0.414 (3)
O2W0.0428 (4)1.1348 (3)0.7158 (3)0.0449 (11)0.627 (6)
H2W10.128 (3)1.133 (4)0.733 (5)0.067*0.627 (6)
H2W20.006 (5)1.2078 (17)0.689 (5)0.067*0.627 (6)
O3W0.0625 (6)1.1518 (4)0.6409 (4)0.0467 (16)0.459 (5)
H3W10.022 (9)1.158 (6)0.573 (3)0.070*0.459 (5)
H3W20.096 (9)1.221 (3)0.644 (6)0.070*0.459 (5)
N10.5885 (2)0.46024 (19)0.84811 (18)0.0284 (5)
N20.0203 (2)0.9090 (2)0.7489 (2)0.0297 (5)
H210.039 (3)0.895 (3)0.6913 (17)0.036*
H220.008 (3)0.9766 (16)0.727 (2)0.036*
N30.2069 (3)1.5407 (2)0.41647 (19)0.0338 (5)
N40.6061 (3)1.1835 (2)0.5903 (2)0.0467 (7)
H410.657 (3)1.1130 (16)0.585 (3)0.056*
H420.660 (3)1.230 (3)0.590 (3)0.056*
C10.6030 (3)0.5648 (2)0.8371 (2)0.0273 (6)
C20.4964 (3)0.6767 (2)0.7926 (2)0.0269 (6)
H2A0.51320.74880.78990.032*
C30.3666 (3)0.6788 (2)0.7529 (2)0.0261 (6)
C40.3486 (3)0.5686 (2)0.7576 (2)0.0262 (6)
C50.2229 (3)0.5601 (2)0.7155 (2)0.0295 (6)
H50.14750.63130.68000.035*
C60.2094 (3)0.4515 (2)0.7256 (2)0.0320 (6)
H6A0.12540.44780.69620.038*
C70.3189 (3)0.3440 (2)0.7793 (2)0.0325 (6)
H70.30710.26860.78680.039*
C80.4418 (3)0.3481 (2)0.8204 (2)0.0295 (6)
C90.4616 (3)0.4604 (2)0.8081 (2)0.0273 (6)
C100.7471 (3)0.5578 (2)0.8802 (2)0.0322 (6)
C110.5530 (3)0.2330 (2)0.8820 (3)0.0350 (6)
C120.2441 (3)0.7967 (2)0.7111 (2)0.0278 (6)
H12A0.20920.80290.63960.033*
C130.1041 (3)0.7996 (2)0.8030 (2)0.0281 (6)
H130.06640.72640.82320.034*
C140.1666 (3)0.9248 (3)0.8275 (3)0.0371 (7)
H14A0.21440.85810.84530.045*
H14B0.24041.00130.78850.045*
C150.1351 (3)0.9265 (3)0.9384 (2)0.0374 (7)
H15A0.23160.92990.99140.045*
H15B0.10050.99940.92170.045*
C160.0107 (3)0.8142 (3)0.9959 (2)0.0385 (7)
H16A0.01260.81921.06560.046*
H16B0.04910.74161.01960.046*
C170.1353 (3)0.8042 (3)0.9131 (2)0.0328 (6)
H17A0.21410.73040.95060.039*
H17B0.17730.87420.89390.039*
C180.1878 (3)1.1404 (2)0.4389 (2)0.0297 (6)
C190.2628 (3)1.2185 (2)0.4629 (2)0.0273 (6)
C200.1963 (3)1.3416 (2)0.4311 (2)0.0275 (6)
H200.10211.37810.39690.033*
C210.2735 (3)1.4088 (2)0.4515 (2)0.0294 (6)
C220.4084 (3)1.3611 (2)0.5017 (2)0.0322 (6)
H22A0.45651.41150.51370.039*
C230.4745 (3)1.2369 (2)0.5350 (2)0.0325 (6)
C240.3990 (3)1.1676 (2)0.5141 (2)0.0297 (6)
H240.44251.08320.53560.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0231 (8)0.0818 (14)0.0522 (11)0.0005 (8)0.0032 (7)0.0318 (10)
F20.0431 (10)0.0790 (14)0.0330 (9)0.0209 (9)0.0030 (7)0.0173 (9)
F30.0609 (12)0.0301 (11)0.140 (2)0.0128 (9)0.0556 (13)0.0075 (12)
F40.0490 (10)0.0316 (10)0.0437 (10)0.0045 (7)0.0151 (8)0.0043 (8)
F50.0274 (8)0.0313 (9)0.0670 (12)0.0030 (7)0.0015 (8)0.0161 (9)
F60.0432 (9)0.0209 (9)0.0658 (11)0.0029 (7)0.0133 (8)0.0129 (8)
O10.0339 (10)0.0219 (10)0.0374 (10)0.0080 (8)0.0063 (8)0.0055 (8)
O20.0627 (13)0.0206 (11)0.0550 (13)0.0047 (9)0.0330 (11)0.0102 (9)
O30.0380 (11)0.0283 (11)0.0703 (14)0.0028 (9)0.0203 (10)0.0201 (11)
O40.0492 (12)0.0263 (11)0.0478 (12)0.0050 (9)0.0130 (10)0.0133 (10)
O50.0781 (15)0.0252 (11)0.0601 (14)0.0162 (10)0.0286 (12)0.0129 (10)
O1W0.050 (3)0.044 (3)0.040 (3)0.017 (2)0.003 (2)0.019 (3)
O2W0.043 (2)0.032 (2)0.056 (2)0.0070 (15)0.0043 (17)0.0147 (18)
O3W0.049 (3)0.030 (3)0.055 (3)0.005 (2)0.003 (2)0.014 (2)
N10.0231 (11)0.0252 (12)0.0322 (12)0.0050 (9)0.0003 (9)0.0081 (10)
N20.0301 (11)0.0209 (12)0.0385 (13)0.0007 (9)0.0104 (10)0.0120 (10)
N30.0525 (15)0.0229 (12)0.0296 (12)0.0110 (11)0.0067 (11)0.0107 (10)
N40.0625 (17)0.0285 (14)0.0600 (17)0.0056 (12)0.0316 (14)0.0185 (13)
C10.0240 (12)0.0243 (14)0.0288 (13)0.0051 (10)0.0005 (10)0.0066 (11)
C20.0273 (13)0.0208 (13)0.0288 (13)0.0066 (10)0.0010 (10)0.0069 (11)
C30.0259 (13)0.0218 (13)0.0250 (12)0.0032 (10)0.0005 (10)0.0060 (11)
C40.0239 (12)0.0234 (14)0.0273 (13)0.0038 (10)0.0009 (10)0.0077 (11)
C50.0267 (13)0.0240 (14)0.0338 (14)0.0004 (10)0.0028 (11)0.0119 (12)
C60.0265 (13)0.0310 (15)0.0389 (15)0.0043 (11)0.0037 (11)0.0152 (13)
C70.0300 (14)0.0257 (15)0.0416 (15)0.0041 (11)0.0019 (12)0.0153 (13)
C80.0256 (13)0.0246 (14)0.0354 (14)0.0014 (10)0.0016 (11)0.0125 (12)
C90.0207 (12)0.0269 (14)0.0299 (13)0.0044 (10)0.0010 (10)0.0089 (11)
C100.0311 (14)0.0240 (14)0.0366 (15)0.0069 (11)0.0026 (12)0.0065 (12)
C110.0308 (14)0.0220 (14)0.0465 (17)0.0028 (11)0.0034 (12)0.0099 (13)
C120.0268 (13)0.0188 (13)0.0336 (14)0.0023 (10)0.0065 (11)0.0061 (11)
C130.0261 (13)0.0150 (13)0.0379 (14)0.0004 (10)0.0057 (11)0.0067 (11)
C140.0246 (13)0.0301 (16)0.0555 (18)0.0004 (11)0.0057 (12)0.0186 (14)
C150.0319 (14)0.0318 (16)0.0440 (16)0.0014 (12)0.0000 (12)0.0162 (14)
C160.0350 (15)0.0324 (16)0.0402 (16)0.0012 (12)0.0003 (12)0.0131 (14)
C170.0294 (13)0.0281 (15)0.0371 (15)0.0019 (11)0.0072 (11)0.0102 (12)
C180.0413 (15)0.0230 (14)0.0255 (13)0.0078 (12)0.0068 (11)0.0081 (11)
C190.0386 (14)0.0244 (14)0.0201 (12)0.0106 (11)0.0022 (11)0.0077 (11)
C200.0354 (14)0.0232 (14)0.0258 (13)0.0089 (11)0.0023 (11)0.0102 (11)
C210.0457 (16)0.0197 (13)0.0235 (13)0.0080 (11)0.0043 (11)0.0083 (11)
C220.0469 (16)0.0258 (15)0.0300 (14)0.0127 (12)0.0069 (12)0.0121 (12)
C230.0470 (16)0.0283 (15)0.0272 (13)0.0104 (12)0.0108 (12)0.0106 (12)
C240.0422 (15)0.0213 (14)0.0254 (13)0.0069 (11)0.0070 (11)0.0073 (11)
Geometric parameters (Å, º) top
F1—C101.333 (3)C4—C51.423 (4)
F2—C101.329 (3)C4—C91.425 (4)
F3—C101.318 (3)C5—C61.359 (4)
F4—C111.346 (3)C5—H50.9500
F5—C111.338 (3)C6—C71.414 (4)
F6—C111.345 (3)C6—H6A0.9500
O1—C121.417 (3)C7—C81.367 (4)
O1—H10.839 (10)C7—H70.9500
O2—C181.249 (3)C8—C91.419 (4)
O3—C181.248 (3)C8—C111.501 (4)
O4—N31.223 (3)C12—C131.540 (3)
O5—N31.230 (3)C12—H12A1.0000
O1W—H1W10.843 (10)C13—C171.523 (4)
O1W—H1W20.843 (10)C13—H131.0000
O2W—H2W10.849 (10)C14—C151.516 (4)
O2W—H2W20.845 (10)C14—H14A0.9900
O3W—H2W21.36 (5)C14—H14B0.9900
O3W—H3W10.843 (10)C15—C161.532 (4)
O3W—H3W20.843 (10)C15—H15A0.9900
N1—C11.307 (3)C15—H15B0.9900
N1—C91.370 (3)C16—C171.518 (4)
N2—C141.499 (3)C16—H16A0.9900
N2—C131.502 (3)C16—H16B0.9900
N2—H210.885 (10)C17—H17A0.9900
N2—H220.886 (10)C17—H17B0.9900
N3—C211.481 (3)C18—C191.513 (4)
N4—C231.374 (4)C19—C241.384 (4)
N4—H410.881 (10)C19—C201.389 (4)
N4—H420.877 (10)C20—C211.384 (3)
C1—C21.409 (4)C20—H200.9500
C1—C101.506 (4)C21—C221.368 (4)
C2—C31.382 (4)C22—C231.399 (4)
C2—H2A0.9500C22—H22A0.9500
C3—C41.420 (4)C23—C241.399 (4)
C3—C121.520 (3)C24—H240.9500
C12—O1—H1105 (2)O1—C12—C3111.4 (2)
H1W1—O1W—H1W2108.9 (18)O1—C12—C13108.89 (19)
H2W1—O2W—H2W2107.6 (17)C3—C12—C13110.1 (2)
H2W2—O3W—H3W1114 (6)O1—C12—H12A108.8
H2W2—O3W—H3W249 (6)C3—C12—H12A108.8
H3W1—O3W—H3W2108.9 (18)C13—C12—H12A108.8
C1—N1—C9116.9 (2)N2—C13—C17109.3 (2)
C14—N2—C13113.7 (2)N2—C13—C12106.8 (2)
C14—N2—H21108.8 (18)C17—C13—C12115.0 (2)
C13—N2—H21103.5 (19)N2—C13—H13108.5
C14—N2—H22105.2 (18)C17—C13—H13108.5
C13—N2—H22112.4 (19)C12—C13—H13108.5
H21—N2—H22113 (3)N2—C14—C15111.1 (2)
O4—N3—O5122.9 (2)N2—C14—H14A109.4
O4—N3—C21119.5 (2)C15—C14—H14A109.4
O5—N3—C21117.6 (2)N2—C14—H14B109.4
C23—N4—H41114 (2)C15—C14—H14B109.4
C23—N4—H42118 (2)H14A—C14—H14B108.0
H41—N4—H42117 (3)C14—C15—C16110.9 (2)
N1—C1—C2125.9 (2)C14—C15—H15A109.5
N1—C1—C10114.0 (2)C16—C15—H15A109.5
C2—C1—C10120.1 (2)C14—C15—H15B109.5
C3—C2—C1118.1 (2)C16—C15—H15B109.5
C3—C2—H2A121.0H15A—C15—H15B108.1
C1—C2—H2A121.0C17—C16—C15110.0 (2)
C2—C3—C4118.5 (2)C17—C16—H16A109.7
C2—C3—C12119.6 (2)C15—C16—H16A109.7
C4—C3—C12121.8 (2)C17—C16—H16B109.7
C3—C4—C5123.5 (2)C15—C16—H16B109.7
C3—C4—C9118.3 (2)H16A—C16—H16B108.2
C5—C4—C9118.2 (2)C16—C17—C13111.5 (2)
C6—C5—C4120.8 (2)C16—C17—H17A109.3
C6—C5—H5119.6C13—C17—H17A109.3
C4—C5—H5119.6C16—C17—H17B109.3
C5—C6—C7120.8 (2)C13—C17—H17B109.3
C5—C6—H6A119.6H17A—C17—H17B108.0
C7—C6—H6A119.6O3—C18—O2123.9 (2)
C8—C7—C6120.3 (2)O3—C18—C19117.8 (2)
C8—C7—H7119.9O2—C18—C19118.3 (2)
C6—C7—H7119.9C24—C19—C20120.2 (2)
C7—C8—C9120.2 (2)C24—C19—C18119.9 (2)
C7—C8—C11119.6 (2)C20—C19—C18119.8 (2)
C9—C8—C11120.1 (2)C21—C20—C19117.0 (2)
N1—C9—C8118.1 (2)C21—C20—H20121.5
N1—C9—C4122.2 (2)C19—C20—H20121.5
C8—C9—C4119.6 (2)C22—C21—C20124.0 (2)
F3—C10—F2108.0 (2)C22—C21—N3117.7 (2)
F3—C10—F1106.2 (2)C20—C21—N3118.2 (2)
F2—C10—F1105.0 (2)C21—C22—C23119.0 (2)
F3—C10—C1112.7 (2)C21—C22—H22A120.5
F2—C10—C1112.3 (2)C23—C22—H22A120.5
F1—C10—C1112.1 (2)N4—C23—C24120.7 (2)
F5—C11—F6106.4 (2)N4—C23—C22121.4 (2)
F5—C11—F4106.9 (2)C24—C23—C22117.8 (2)
F6—C11—F4105.7 (2)C19—C24—C23121.9 (2)
F5—C11—C8113.6 (2)C19—C24—H24119.1
F6—C11—C8112.1 (2)C23—C24—H24119.1
F4—C11—C8111.6 (2)
C9—N1—C1—C23.1 (4)C9—C8—C11—F461.3 (3)
C9—N1—C1—C10178.5 (2)C2—C3—C12—O118.0 (3)
N1—C1—C2—C32.3 (4)C4—C3—C12—O1164.9 (2)
C10—C1—C2—C3179.3 (2)C2—C3—C12—C13102.9 (3)
C1—C2—C3—C40.9 (3)C4—C3—C12—C1374.2 (3)
C1—C2—C3—C12176.3 (2)C14—N2—C13—C1755.4 (3)
C2—C3—C4—C5177.6 (2)C14—N2—C13—C12179.6 (2)
C12—C3—C4—C55.3 (4)O1—C12—C13—N266.0 (2)
C2—C3—C4—C93.0 (3)C3—C12—C13—N2171.6 (2)
C12—C3—C4—C9174.1 (2)O1—C12—C13—C1755.4 (3)
C3—C4—C5—C6177.9 (2)C3—C12—C13—C1767.0 (3)
C9—C4—C5—C61.4 (4)C13—N2—C14—C1555.0 (3)
C4—C5—C6—C70.7 (4)N2—C14—C15—C1654.2 (3)
C5—C6—C7—C81.0 (4)C14—C15—C16—C1756.0 (3)
C6—C7—C8—C90.9 (4)C15—C16—C17—C1357.8 (3)
C6—C7—C8—C11177.1 (2)N2—C13—C17—C1656.6 (3)
C1—N1—C9—C8179.1 (2)C12—C13—C17—C16176.7 (2)
C1—N1—C9—C40.6 (3)O3—C18—C19—C24178.8 (2)
C7—C8—C9—N1178.4 (2)O2—C18—C19—C241.1 (3)
C11—C8—C9—N13.6 (3)O3—C18—C19—C200.2 (3)
C7—C8—C9—C43.0 (4)O2—C18—C19—C20179.7 (2)
C11—C8—C9—C4175.0 (2)C24—C19—C20—C210.9 (3)
C3—C4—C9—N12.3 (3)C18—C19—C20—C21177.7 (2)
C5—C4—C9—N1178.3 (2)C19—C20—C21—C220.8 (4)
C3—C4—C9—C8176.1 (2)C19—C20—C21—N3178.9 (2)
C5—C4—C9—C83.2 (3)O4—N3—C21—C22176.4 (2)
N1—C1—C10—F3170.9 (2)O5—N3—C21—C224.3 (3)
C2—C1—C10—F310.5 (3)O4—N3—C21—C203.9 (3)
N1—C1—C10—F266.8 (3)O5—N3—C21—C20175.4 (2)
C2—C1—C10—F2111.7 (3)C20—C21—C22—C230.0 (4)
N1—C1—C10—F151.2 (3)N3—C21—C22—C23179.6 (2)
C2—C1—C10—F1130.3 (2)C21—C22—C23—N4177.1 (3)
C7—C8—C11—F5122.3 (3)C21—C22—C23—C240.6 (4)
C9—C8—C11—F559.7 (3)C20—C19—C24—C230.3 (4)
C7—C8—C11—F61.7 (3)C18—C19—C24—C23178.3 (2)
C9—C8—C11—F6179.7 (2)N4—C23—C24—C19177.3 (3)
C7—C8—C11—F4116.7 (3)C22—C23—C24—C190.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (1)1.83 (1)2.669 (3)178 (3)
N4—H41···O2i0.88 (1)2.04 (1)2.900 (3)164 (3)
N2—H21···O3ii0.89 (1)1.87 (1)2.717 (3)159 (3)
N4—H42···O5iii0.88 (1)2.27 (2)3.101 (3)159 (3)
N2—H22···O2W0.89 (1)2.05 (1)2.916 (4)165 (3)
N2—H22···O3W0.89 (1)1.98 (2)2.727 (5)141 (3)
OWw—H1W1···O10.84 (1)2.08 (4)2.867 (5)156 (8)
O1W—H1W2···F6iv0.84 (1)2.47 (7)2.867 (5)110 (6)
O2W—H2W1···O1W0.85 (1)2.07 (2)2.859 (6)154 (4)
O2W—H2W2···O4v0.85 (1)2.30 (2)3.119 (4)165 (4)
O3W—H3W1···O30.84 (1)2.21 (1)3.049 (5)174 (7)
O3W—H3W2···O4v0.84 (1)2.37 (3)3.158 (5)156 (7)
O3W—H3W2···O5v0.84 (1)2.32 (6)3.016 (5)140 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x, y+1, z; (v) x, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC17H17F6N2O+·C7H5N2O4·1.5H2O
Mr587.48
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.1705 (5), 12.5446 (9), 12.7788 (8)
α, β, γ (°)66.278 (4), 77.261 (4), 71.537 (4)
V3)1269.23 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.28 × 0.16 × 0.10
Data collection
DiffractometerBruker–Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.640, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
25681, 5832, 3477
Rint0.078
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.174, 1.03
No. of reflections5832
No. of parameters416
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.839 (10)1.831 (11)2.669 (3)178 (3)
N4—H41···O2i0.881 (10)2.043 (14)2.900 (3)164 (3)
N2—H21···O3ii0.885 (10)1.871 (14)2.717 (3)159 (3)
N4—H42···O5iii0.877 (10)2.266 (16)3.101 (3)159 (3)
N2—H22···O2W0.886 (10)2.051 (13)2.916 (4)165 (3)
N2—H22···O3W0.886 (10)1.98 (2)2.727 (5)141 (3)
OWw—H1W1···O10.843 (10)2.08 (4)2.867 (5)156 (8)
O1W—H1W2···F6iv0.843 (10)2.47 (7)2.867 (5)110 (6)
O2W—H2W1···O1W0.849 (10)2.07 (2)2.859 (6)154 (4)
O2W—H2W2···O4v0.845 (10)2.295 (18)3.119 (4)165 (4)
O3W—H3W1···O30.843 (10)2.209 (14)3.049 (5)174 (7)
O3W—H3W2···O4v0.843 (10)2.37 (3)3.158 (5)156 (7)
O3W—H3W2···O5v0.843 (10)2.32 (6)3.016 (5)140 (7)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x, y+1, z; (v) x, y+3, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDow, G. S., Koenig, M. L., Wolf, L., Gerena, L., Lopez-Sanchez, M., Hudson, T. H. & Bhattacharjee, A. K. (2004). Antimicrob. Agents Chemother. 48, 2624–2632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKarle, J. M. & Karle, I. L. (1991). Acta Cryst. C47, 2391–2395.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarle, J. M. & Karle, I. L. (2002). Antimicrob. Agents Chemother. 46, 1529–1534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKunin, C. M. & Ellis, W. Y. (2007). ChemMedChem, 2, 1624–1630.  Web of Science PubMed Google Scholar
First citationMaguire, J. D., Krisin, M. H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObaleye, J. A., Caira, M. R. & Tella, A. C. (2009). Struct. Chem. 20, 859–868.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkórska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.  Web of Science PubMed Google Scholar
First citationWardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011). Z. Kristallogr. 226, 68–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & de Lima, G. M. (2010). Acta Cryst. E66, m336–m337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3019-o3020
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds