organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-6,7-dimeth­­oxy­quinoline

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wuminnj@163.com

(Received 16 September 2011; accepted 14 October 2011; online 22 October 2011)

The title mol­ecule, C11H10ClNO2, is almost planar with the C atoms of the meth­oxy groups deviating by −0.082 (2) and 0.020 (2) Å from the least-squares plane defined by the atoms of the quinoline ring system (r.m.s. deviation = 0.002 Å). An intra­molecular C—H⋯Cl inter­action generates an S(5) ring motif.

Related literature

For related structures, see: Davies & Bond (2001[Davies, J. E. & Bond, A. D. (2001). Acta Cryst. E57, o947-o949.]); Yathirajan et al. (2007[Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763-o765.]). For biological properties of quinoline derivatives, see: Franck et al. (2004[Franck, X., Fournet, A., Prina, E., Mahieuxe, R., Hocquemiller, R. & Fiqadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.]); Moret et al. (2006[Moret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J. L. (2006). Bioorg. Med. Chem. Lett. 16, 5988-5992.]); Furuta et al. (2006[Furuta, T., Sakai, T., Senga, T., Osawa, T., Kubo, K., Shimizu, T., Suzuki, R., Yoshino, T., Endo, M. & Miwa, A. (2006). J. Med. Chem. 49, 2186-2192.]); Ilovich et al. (2008[Ilovich, O., Jacobson, O., Aviv, Y., Litchi, A., Chisin, R. & Mishani, E. (2008). Bioorg. Med. Chem. 16, 4242-4251.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClNO2

  • Mr = 223.65

  • Monoclinic, P 21 /c

  • a = 12.5530 (17) Å

  • b = 4.6499 (7) Å

  • c = 18.274 (3) Å

  • β = 105.786 (2)°

  • V = 1026.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 6840 measured reflections

  • 1808 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.115

  • S = 1.08

  • 1808 reflections

  • 139 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1 0.93 2.70 3.0827 (17) 105

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline derivatives have been interesting to researchers for many years because a large number of natural products contain these heterocycles and also because their varied biological activities ( Franck et al. 2004; Moret et al. 2006; Furuta et al. 2006 & Ilovich et al. 2008).

Prompted by the properties of quinoline derivatives, the title compound, C11H10ClNO2, has been synthesized. Bond lengths and angles are in the usual range (Davies & Bond 2001 & Yathirajan et al. 2007) and the whole molecule is almost planar with the carbon atoms of the methoxyl groups deviating 0.08 (C10) and 0.02Å (C11) from the least-square plane defined by the atoms of the quinoline ring. There are intramolecular C8 — H8 ···Cl1 interactions (Table 1) generating S(5) ring motifs (Bernstein et al. 1995) . Figure 1 shows the molecular structure of the title compound and Figure 2 is a partial paking view of the crystal structure down the b axis.

Related literature top

For related structures, see: Davies & Bond (2001); Yathirajan et al. (2007). For biological properties of quinoline derivatives, see: Franck et al. (2004); Moret et al. (2006); Furuta et al. (2006); Ilovich et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 6,7- dimethoxynaphthalen-1-ol (20.4 g, 100 mmol) and POCl3 (60 ml, 640 mmol) was heated under reflux for 6 h. The excess of phosporus oxychoride was distilled out under reduced pressure. 200 g crush ice was added to the residue followed by 50% aqueous NaOH until the pH was adjusted to 8. The resulting solid was collected by filtration and washed with water to give the crude product. Purification of the crude product by a column chromatography (petroleum ether: EtOAc = 8:1 v.v) afforded the title compound (15.6 g, 70%) as pink crystals.The purity of the product, 4- chloro- 6, 7- dimethoxy- quinoline, was determined using a reversed- phase C-18 analytical HPLC column (99% purity). Crystals of the title compound suitable for X– ray diffraction were obtained by slow evaporation of methanol solution at room temperature. m. p. 403- 404 K; 1H NMR (DMSO– d6): δ8.57 (d, J = 5.1 Hz, 1H), 7.40 (d, J = 4.8 Hz, 1H), 7.37 (s, 1H), 7.32 (s, 1H), 4.04 (s, 3H), 4.03 (s. 3H). MS (ESI, m/z): 224 (M+1).

Refinement top

All H atoms were placed at calculated positions; C—H = 0.93 Å for aromatic H, C—H = 0.96 Å for methoxyl H. They were refined using a riding model with Uiso(H) = 1.2 Ueq (C) and Uiso(H) =1.5 Ueq (C), respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing view of the title compound, viewed down the b axis.
4-Chloro-6,7-dimethoxyquinoline top
Crystal data top
C11H10ClNO2F(000) = 464
Mr = 223.65Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5530 (17) ÅCell parameters from 30 reflections
b = 4.6499 (7) Åθ = 3–25°
c = 18.274 (3) ŵ = 0.35 mm1
β = 105.786 (2)°T = 296 K
V = 1026.4 (3) Å3Block, pink
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.034
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.7°
Graphite monochromatorh = 1414
ω scansk = 55
6840 measured reflectionsl = 2121
1808 independent reflections3 standard reflections every 150 reflections
1542 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.1562P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1808 reflectionsΔρmax = 0.29 e Å3
139 parametersΔρmin = 0.22 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (4)
Crystal data top
C11H10ClNO2V = 1026.4 (3) Å3
Mr = 223.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5530 (17) ŵ = 0.35 mm1
b = 4.6499 (7) ÅT = 296 K
c = 18.274 (3) Å0.3 × 0.2 × 0.2 mm
β = 105.786 (2)°
Data collection top
Rigaku SCXmini
diffractometer
Rint = 0.034
6840 measured reflections3 standard reflections every 150 reflections
1808 independent reflections intensity decay: none
1542 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
1808 reflectionsΔρmin = 0.22 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18445 (16)0.9064 (4)0.34245 (10)0.0508 (5)
C20.23248 (18)0.7745 (5)0.40978 (11)0.0608 (5)
H20.20710.80770.45230.073*
C30.32020 (19)0.5895 (5)0.41333 (12)0.0668 (6)
H30.35220.49990.45960.080*
C40.31375 (16)0.6656 (4)0.28823 (10)0.0486 (5)
C50.35750 (15)0.6077 (4)0.22615 (11)0.0503 (5)
H50.41730.48320.23260.060*
C60.31298 (14)0.7325 (4)0.15691 (10)0.0469 (4)
C70.22217 (14)0.9277 (4)0.14727 (9)0.0443 (4)
C80.17947 (14)0.9890 (4)0.20641 (9)0.0441 (4)
H80.12081.11730.19970.053*
C90.22416 (14)0.8581 (3)0.27829 (9)0.0437 (4)
C100.43422 (17)0.4878 (5)0.09810 (13)0.0659 (6)
H10A0.49970.55630.13440.099*
H10B0.44820.47030.04920.099*
H10C0.41420.30330.11390.099*
C110.09705 (17)1.2379 (5)0.06201 (12)0.0580 (5)
H11A0.03391.14990.07290.087*
H11B0.07801.29720.00970.087*
H11C0.11951.40250.09420.087*
Cl10.07193 (4)1.13418 (12)0.33477 (3)0.0656 (3)
N10.36194 (14)0.5307 (4)0.35576 (9)0.0623 (5)
O10.34547 (11)0.6869 (3)0.09331 (7)0.0585 (4)
O20.18526 (11)1.0371 (3)0.07552 (7)0.0561 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0588 (11)0.0528 (10)0.0423 (10)0.0142 (9)0.0164 (8)0.0043 (8)
C20.0742 (13)0.0699 (12)0.0404 (11)0.0112 (10)0.0193 (10)0.0013 (9)
C30.0824 (14)0.0736 (13)0.0398 (11)0.0076 (11)0.0088 (10)0.0115 (10)
C40.0543 (10)0.0463 (10)0.0428 (10)0.0079 (8)0.0094 (8)0.0014 (8)
C50.0505 (10)0.0487 (10)0.0506 (11)0.0030 (8)0.0120 (8)0.0001 (8)
C60.0498 (10)0.0491 (9)0.0438 (10)0.0047 (8)0.0162 (8)0.0054 (8)
C70.0504 (10)0.0460 (9)0.0363 (9)0.0045 (7)0.0114 (7)0.0014 (7)
C80.0467 (9)0.0452 (9)0.0405 (9)0.0029 (7)0.0121 (7)0.0012 (7)
C90.0487 (9)0.0445 (9)0.0381 (9)0.0113 (7)0.0123 (7)0.0036 (7)
C100.0635 (12)0.0696 (13)0.0717 (14)0.0061 (11)0.0303 (10)0.0091 (11)
C110.0643 (12)0.0611 (11)0.0474 (11)0.0071 (10)0.0134 (9)0.0054 (9)
Cl10.0735 (4)0.0778 (4)0.0532 (4)0.0040 (3)0.0302 (3)0.0051 (2)
N10.0685 (11)0.0630 (10)0.0506 (10)0.0002 (8)0.0083 (8)0.0112 (8)
O10.0633 (8)0.0695 (9)0.0478 (8)0.0123 (7)0.0239 (6)0.0024 (6)
O20.0675 (8)0.0654 (8)0.0380 (7)0.0129 (7)0.0188 (6)0.0068 (6)
Geometric parameters (Å, º) top
C1—C21.360 (3)C6—C71.430 (3)
C1—C91.411 (3)C7—C81.361 (2)
C1—Cl11.740 (2)C7—O21.365 (2)
C2—C31.385 (3)C8—C91.418 (2)
C2—H20.9300C8—H80.9300
C3—N11.325 (3)C10—O11.433 (2)
C3—H30.9300C10—H10A0.9600
C4—N11.370 (2)C10—H10B0.9600
C4—C91.410 (3)C10—H10C0.9600
C4—C51.414 (3)C11—O21.418 (2)
C5—C61.366 (3)C11—H11A0.9600
C5—H50.9300C11—H11B0.9600
C6—O11.349 (2)C11—H11C0.9600
C2—C1—C9120.67 (19)C7—C8—C9120.25 (17)
C2—C1—Cl1119.85 (16)C7—C8—H8119.9
C9—C1—Cl1119.48 (14)C9—C8—H8119.9
C1—C2—C3118.27 (19)C4—C9—C1116.33 (16)
C1—C2—H2120.9C4—C9—C8119.53 (16)
C3—C2—H2120.9C1—C9—C8124.14 (17)
N1—C3—C2124.90 (18)O1—C10—H10A109.5
N1—C3—H3117.6O1—C10—H10B109.5
C2—C3—H3117.6H10A—C10—H10B109.5
N1—C4—C9123.24 (18)O1—C10—H10C109.5
N1—C4—C5117.57 (17)H10A—C10—H10C109.5
C9—C4—C5119.19 (16)H10B—C10—H10C109.5
C6—C5—C4120.80 (17)O2—C11—H11A109.5
C6—C5—H5119.6O2—C11—H11B109.5
C4—C5—H5119.6H11A—C11—H11B109.5
O1—C6—C5126.01 (17)O2—C11—H11C109.5
O1—C6—C7114.29 (15)H11A—C11—H11C109.5
C5—C6—C7119.69 (17)H11B—C11—H11C109.5
C8—C7—O2125.52 (16)C3—N1—C4116.59 (18)
C8—C7—C6120.54 (15)C6—O1—C10117.47 (15)
O2—C7—C6113.94 (15)C7—O2—C11117.24 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl10.932.703.0827 (17)105

Experimental details

Crystal data
Chemical formulaC11H10ClNO2
Mr223.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.5530 (17), 4.6499 (7), 18.274 (3)
β (°) 105.786 (2)
V3)1026.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6840, 1808, 1542
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.115, 1.08
No. of reflections1808
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl10.932.703.0827 (17)105
 

Acknowledgements

We gratefully acknowledge financial support by the Natural Science Foundation of Jiangsu Province (BK2009293) and the Educational Commission of Jiangsu Province (JHB 2011–2).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDavies, J. E. & Bond, A. D. (2001). Acta Cryst. E57, o947–o949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFranck, X., Fournet, A., Prina, E., Mahieuxe, R., Hocquemiller, R. & Fiqadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635–3638.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFuruta, T., Sakai, T., Senga, T., Osawa, T., Kubo, K., Shimizu, T., Suzuki, R., Yoshino, T., Endo, M. & Miwa, A. (2006). J. Med. Chem. 49, 2186–2192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIlovich, O., Jacobson, O., Aviv, Y., Litchi, A., Chisin, R. & Mishani, E. (2008). Bioorg. Med. Chem. 16, 4242–4251.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J. L. (2006). Bioorg. Med. Chem. Lett. 16, 5988–5992.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o763–o765.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds