organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(diiso­propyl­ammonium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: jinyunihao@yahoo.cn

(Received 9 September 2011; accepted 20 October 2011; online 29 October 2011)

In the title compound, 2C6H16N+·C10H6O6S22−, the cations and anions are associated via N—H⋯O and C—H⋯O hydrogen-bonding inter­actions.

Related literature

For general background on ferroelectric metal–organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Wu et al. (2011[Wu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319-324.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H16N+·C10H6O6S22−

  • Mr = 490.66

  • Triclinic, [P \overline 1]

  • a = 7.9518 (16) Å

  • b = 9.1215 (18) Å

  • c = 9.4319 (19) Å

  • α = 74.33 (3)°

  • β = 88.60 (3)°

  • γ = 74.74 (3)°

  • V = 634.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.489, Tmax = 1.000

  • 6562 measured reflections

  • 2904 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.12

  • 2904 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.90 2.03 2.887 (2) 159
N1—H1D⋯O3ii 0.90 2.02 2.916 (2) 174
C9—H9A⋯O3 0.96 2.58 3.480 (3) 156
C6—H6A⋯O3ii 0.96 2.58 3.351 (3) 138
C11—H11C⋯O1ii 0.96 2.61 3.439 (4) 144
C11—H11B⋯O2i 0.96 2.47 3.382 (3) 158
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Currently, simple molecular-ionic compounds containing organic cations and anions are of considerable interest owing to the tunability of their structural features and their potential to show ferroelectric properties. There exists a series of compounds in which the components can be arranged in a disordered fashion at a relative high temperature and in an ordered fashion at a relative low temperature. (Fu et al., 2009; Zhang et al., 2010; Zhang et al., 2008;Ye et al., 2006). The transition from the disordered arrangement to the ordered one leads to sharp change in the physical properties of the compound. As part of our search for simple ferroelectric compounds we have investigated the title compound and report its room temperature structure.

The centrosymmetric anion and one cation are shown in Fig. 1 with the hydrogen bonds listed in Table 1. These interactions tie the cations and anions together in sheets approximately parallel to {100} with zig-zag rows of cations lying between rows of anions (Fig. 2). There are only van der Waals interactions between layers.

Related literature top

For general background on ferroelectric metal–organic frameworks, see: Fu et al. (2009); Wu et al. (2011); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

1,5-naphthalenedisulfonic acid (10 mmol, 2.88 g) was dissolved in 15 ml of distilled water and was stirred for 5 minutes after which diisopropylamine (1.5 ml) was added with stirring. The solution was filtered and left to stand undisturbed whereupon colorless block crystals suitable for X-ray diffraction were obtained in about 68% yield after two days. These were filtered off and washed with distilled water.

Refinement top

H atoms bound to carbon and nitrogen were placed at idealized positions [C—H = 0.93–0.96 Å and N—H = 0.90 Å] and allowed to ride on their parent atoms with Uiso fixed at 1.2 Ueq(C,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of one cation and the anion for (I).Displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of (I) viewed down the a axis. The N—H···O and C—H···O interactions are shown, respectively as dashed and dotted lines.
Bis(diisopropylammonium) naphthalene-1,5-disulfonate top
Crystal data top
2C6H16N+·C10H6O6S22Z = 1
Mr = 490.66F(000) = 264
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9518 (16) ÅCell parameters from 3450 reflections
b = 9.1215 (18) Åθ = 3.1–27.6°
c = 9.4319 (19) ŵ = 0.25 mm1
α = 74.33 (3)°T = 293 K
β = 88.60 (3)°Block, colorless
γ = 74.74 (3)°0.3 × 0.3 × 0.2 mm
V = 634.7 (2) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1010
Tmin = 0.489, Tmax = 1.000k = 1111
6562 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.2055P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2904 reflectionsΔρmax = 0.50 e Å3
150 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.85 (3)
Crystal data top
2C6H16N+·C10H6O6S22γ = 74.74 (3)°
Mr = 490.66V = 634.7 (2) Å3
Triclinic, P1Z = 1
a = 7.9518 (16) ÅMo Kα radiation
b = 9.1215 (18) ŵ = 0.25 mm1
c = 9.4319 (19) ÅT = 293 K
α = 74.33 (3)°0.3 × 0.3 × 0.2 mm
β = 88.60 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2621 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 1.000Rint = 0.038
6562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.12Δρmax = 0.50 e Å3
2904 reflectionsΔρmin = 0.45 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0351 (2)0.2895 (2)0.7281 (2)0.0369 (4)
H1B0.01970.20810.81480.044*
C20.1044 (2)0.34189 (18)0.66995 (17)0.0283 (3)
C30.08495 (18)0.46559 (17)0.53574 (17)0.0259 (3)
C40.2268 (2)0.5223 (2)0.47013 (19)0.0337 (4)
H4A0.33830.47730.51480.040*
C50.2021 (2)0.6413 (2)0.3430 (2)0.0406 (4)
H5A0.29650.67740.30260.049*
C60.1682 (3)0.0620 (3)0.2747 (3)0.0628 (7)
H6A0.24900.03430.32870.094*
H6B0.13880.05270.18000.094*
H6C0.06430.08180.32840.094*
C70.2506 (2)0.1971 (2)0.2543 (2)0.0429 (4)
H7A0.27420.20970.35120.052*
C80.1320 (3)0.3506 (3)0.1613 (3)0.0607 (6)
H8A0.19030.43290.14610.091*
H8B0.02660.37840.21120.091*
H8C0.10400.33770.06770.091*
C90.6308 (4)0.2023 (4)0.3419 (3)0.0714 (8)
H9A0.54320.20480.41370.107*
H9B0.70080.27090.35050.107*
H9C0.70360.09640.35850.107*
C100.5439 (3)0.2570 (2)0.1895 (2)0.0437 (5)
H10A0.47670.36760.17090.052*
C110.6760 (3)0.2441 (4)0.0729 (3)0.0661 (7)
H11A0.75470.30620.07870.099*
H11B0.61680.28220.02270.099*
H11C0.74040.13560.08860.099*
N10.42071 (17)0.15825 (17)0.18060 (16)0.0335 (3)
H1C0.39670.16940.08490.040*
H1D0.47610.05600.22160.040*
O10.28340 (19)0.14639 (18)0.90458 (15)0.0519 (4)
O20.3674 (2)0.38559 (19)0.79367 (18)0.0585 (4)
O30.42442 (18)0.17516 (17)0.67405 (16)0.0517 (4)
S10.31154 (5)0.25661 (5)0.76799 (5)0.0357 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (9)0.0366 (9)0.0327 (9)0.0133 (7)0.0020 (7)0.0025 (7)
C20.0264 (7)0.0285 (7)0.0287 (8)0.0033 (6)0.0008 (6)0.0096 (6)
C30.0231 (7)0.0279 (7)0.0276 (7)0.0059 (6)0.0001 (6)0.0101 (6)
C40.0227 (7)0.0399 (9)0.0384 (9)0.0087 (6)0.0004 (6)0.0101 (7)
C50.0328 (9)0.0468 (10)0.0426 (10)0.0186 (8)0.0049 (7)0.0054 (8)
C60.0394 (11)0.0591 (14)0.0805 (17)0.0143 (10)0.0068 (11)0.0030 (12)
C70.0350 (9)0.0497 (11)0.0442 (10)0.0058 (8)0.0055 (7)0.0187 (8)
C80.0441 (12)0.0442 (11)0.0883 (18)0.0052 (9)0.0023 (11)0.0255 (12)
C90.0689 (16)0.118 (2)0.0499 (13)0.0474 (16)0.0010 (11)0.0383 (14)
C100.0414 (10)0.0422 (10)0.0495 (11)0.0152 (8)0.0024 (8)0.0114 (8)
C110.0519 (13)0.105 (2)0.0431 (12)0.0390 (13)0.0018 (10)0.0054 (12)
N10.0291 (7)0.0354 (7)0.0345 (7)0.0038 (6)0.0022 (5)0.0115 (6)
O10.0527 (9)0.0584 (9)0.0318 (7)0.0073 (7)0.0081 (6)0.0023 (6)
O20.0545 (9)0.0595 (9)0.0644 (10)0.0164 (7)0.0242 (7)0.0182 (8)
O30.0412 (8)0.0515 (8)0.0456 (8)0.0119 (6)0.0027 (6)0.0090 (6)
S10.0306 (3)0.0390 (3)0.0310 (3)0.00070 (17)0.00660 (16)0.00666 (18)
Geometric parameters (Å, º) top
C1—C21.366 (2)C8—H8A0.9600
C1—C5i1.409 (3)C8—H8B0.9600
C1—H1B0.9300C8—H8C0.9600
C2—C31.430 (2)C9—C101.507 (3)
C2—S11.7844 (17)C9—H9A0.9600
C3—C41.422 (2)C9—H9B0.9600
C3—C3i1.430 (3)C9—H9C0.9600
C4—C51.360 (3)C10—C111.508 (3)
C4—H4A0.9300C10—N11.513 (2)
C5—C1i1.409 (3)C10—H10A0.9800
C5—H5A0.9300C11—H11A0.9600
C6—C71.508 (3)C11—H11B0.9600
C6—H6A0.9600C11—H11C0.9600
C6—H6B0.9600N1—H1C0.9000
C6—H6C0.9600N1—H1D0.9000
C7—N11.508 (2)O1—S11.4578 (15)
C7—C81.517 (3)O2—S11.4401 (16)
C7—H7A0.9800O3—S11.4521 (15)
C2—C1—C5i120.17 (16)H8B—C8—H8C109.5
C2—C1—H1B119.9C10—C9—H9A109.5
C5i—C1—H1B119.9C10—C9—H9B109.5
C1—C2—C3121.06 (15)H9A—C9—H9B109.5
C1—C2—S1118.57 (13)C10—C9—H9C109.5
C3—C2—S1120.34 (12)H9A—C9—H9C109.5
C4—C3—C3i118.72 (18)H9B—C9—H9C109.5
C4—C3—C2123.01 (14)C9—C10—C11111.56 (19)
C3i—C3—C2118.28 (17)C9—C10—N1109.39 (17)
C5—C4—C3121.05 (15)C11—C10—N1109.33 (17)
C5—C4—H4A119.5C9—C10—H10A108.8
C3—C4—H4A119.5C11—C10—H10A108.8
C4—C5—C1i120.72 (16)N1—C10—H10A108.8
C4—C5—H5A119.6C10—C11—H11A109.5
C1i—C5—H5A119.6C10—C11—H11B109.5
C7—C6—H6A109.5H11A—C11—H11B109.5
C7—C6—H6B109.5C10—C11—H11C109.5
H6A—C6—H6B109.5H11A—C11—H11C109.5
C7—C6—H6C109.5H11B—C11—H11C109.5
H6A—C6—H6C109.5C7—N1—C10115.64 (14)
H6B—C6—H6C109.5C7—N1—H1C108.4
N1—C7—C6108.75 (16)C10—N1—H1C108.4
N1—C7—C8109.60 (17)C7—N1—H1D108.4
C6—C7—C8111.47 (19)C10—N1—H1D108.4
N1—C7—H7A109.0H1C—N1—H1D107.4
C6—C7—H7A109.0O2—S1—O3113.49 (10)
C8—C7—H7A109.0O2—S1—O1112.42 (10)
C7—C8—H8A109.5O3—S1—O1111.45 (9)
C7—C8—H8B109.5O2—S1—C2106.31 (8)
H8A—C8—H8B109.5O3—S1—C2106.05 (8)
C7—C8—H8C109.5O1—S1—C2106.53 (8)
H8A—C8—H8C109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1ii0.902.032.887 (2)159
N1—H1D···O3iii0.902.022.916 (2)174
C9—H9A···O30.962.583.480 (3)156
C6—H6A···O3iii0.962.583.351 (3)138
C11—H11C···O1iii0.962.613.439 (4)144
C11—H11B···O2ii0.962.473.382 (3)158
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2C6H16N+·C10H6O6S22
Mr490.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9518 (16), 9.1215 (18), 9.4319 (19)
α, β, γ (°)74.33 (3), 88.60 (3), 74.74 (3)
V3)634.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.489, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6562, 2904, 2621
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.12
No. of reflections2904
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.45

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.902.032.887 (2)159
N1—H1D···O3ii0.902.022.916 (2)174
C9—H9A···O30.962.583.480 (3)156
C6—H6A···O3ii0.962.583.351 (3)138
C11—H11C···O1ii0.962.613.439 (4)144
C11—H11B···O2i0.962.473.382 (3)158
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1.
 

Acknowledgements

Yu Jin thanks Ordered Matter Science Research Center, Southeast University for its excellent experimental facilities.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, D.-H., Ge, J.-Z., Cai, H.-L., Zhang, W. & Xiong, R.-G. (2011). CrystEngComm, 13, 319–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds