organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2994-o2995

Opipramol di­hydro­chloride

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, and bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 27 September 2011; accepted 13 October 2011; online 22 October 2011)

The title compound (systematic name: 4-{3-[2-aza­tricyclo­[9.4.0.03,8]penta­deca-1(15),3,5,7,11,13-hexaen-2-yl]prop­yl}-1-(2-hy­droxy­eth­yl)piperazine-1,4-diium dichloride), C23H31N3O+·2Cl, is the dihydro­chloride of a piperazine derivative bearing a bulky 3-(5H-dibenz[b,f]azepin-5-yl)propyl substituent. Protonation took place on both N atoms of the piperazine unit. The diaza­cyclo­hexane ring adopts a chair conformation. N—H⋯Cl, O—H⋯Cl and C—H⋯Cl hydrogen bonding as well as C—H⋯O contacts connect the components into a three-dimensional network in the crystal. Two C—H⋯π contacts are also observed.

Related literature

For applications of opipramol, see: Moller et al. (2001[Moller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.]). For related structures, see: Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979-o1980.]); Fun et al. (2011[Fun, H.-K., Loh, W.-S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1598.]); Siddegowda, Butcher et al. (2011[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2079-o2080.]); Siddegowda, Jasinski et al. (2011[Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Boessenkool & Boeyens (1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]).

[Scheme 1]

Experimental

Crystal data
  • C23H31N3O2+·2Cl

  • Mr = 436.41

  • Orthorhombic, P n a 21

  • a = 33.6581 (6) Å

  • b = 9.4265 (2) Å

  • c = 6.8978 (1) Å

  • V = 2188.52 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 200 K

  • 0.51 × 0.27 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 20068 measured reflections

  • 5253 independent reflections

  • 4854 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.03

  • 5253 reflections

  • 274 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2293 Friedel pairs

  • Flack parameter: −0.004 (33)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H81⋯Cl1i 0.79 (2) 2.39 (2) 3.1701 (14) 169 (2)
N2—H72⋯Cl1 0.82 (2) 2.212 (19) 3.0057 (13) 163.0 (15)
N3—H73⋯Cl2ii 0.98 (3) 2.03 (3) 2.9972 (12) 171 (2)
C5—H5A⋯Cl1iii 0.99 2.82 3.7065 (15) 149
C5—H5A⋯O1ii 0.99 2.59 3.3373 (18) 133
C14—H14⋯Cl1iv 0.95 2.83 3.7233 (14) 157
C31—H31A⋯O1ii 0.99 2.54 3.2446 (18) 128
C31—H31B⋯Cl2v 0.99 2.75 3.5518 (14) 139
C32—H32B⋯Cl1ii 0.99 2.85 3.8246 (13) 169
C32—H32A⋯Cl2vi 0.99 2.85 3.7213 (16) 148
C6—H6B⋯Cl2vi 0.99 2.76 3.6634 (18) 152
C34—H34A⋯Cl2 0.99 2.82 3.5471 (13) 131
C16—H16⋯Cg2iv 0.95 2.98 3.6402 (16) 128
C23—H23⋯Cg2vii 0.95 2.67 3.4805 (18) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [-x, -y+1, z+{\script{1\over 2}}]; (v) x, y+1, z; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [-x, -y+2, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Opipramol (systematic IUPAC name: 4-(3-{2-azatricyclo[9.4.0.03,8]pentadeca- 1(15),3,5,7,11,13-hexaen-2-yl}propyl)-1-(2-hydroxyethyl)piperazin-1,4-diium dichloride is an antidepressant and anxiolytic typically used in the treatment of generalized anxiety disorder (Moller et al., 2001). Opipramol is a tricyclic compound with no reuptake-inhibiting properties. However, it has pronounced D2-, 5-HT2-, and H1-blocking potential and high affinity to sigma receptors (sigma-1 and sigma-2). The crystal structures of opipramol dipicrate (Jasinski et al., 2010), opipramol (Fun et al., 2011), opipramolium fumarate (Siddegowda, Butcher et al., 2011) and flupentixol dihydrochloride (Siddegowda, Jasinski et al., 2011) have been reported recently. In view of the importance of the title compound we herein report its molecular and crystal structure.

Protonation took place exclusively on both nitrogen atoms of the piperazine unit. The diazacyclohexane ring adopts a 4C1 (N3CN2) conformation (Cremer & Pople, 1975). The more rigid skeleton of the seven-membered ring adopts a conformation in between a TC2 and a C6 conformation (Q2: 0.6128 (14) Å, Q3: 0.2043 (14) Å, π2: 177.14 (14)°, π3: 178.9 (4)°) (Boessenkool & Boeyens, 1980). The nitrogen atom sticks out of the least-squares plane defined by its atoms by 0.451 (1) Å (Fig. 1).

Apart from classical hydrogen bonds of the N–H···Cl and the O–H···Cl type, the crystal structure features a multitude of C–H···Cl contacts and two C–H···O contacts whose ranges invariably fall at least 0.1 Å below the sum of van-der-Waals radii of the respective atoms participating. The C–H···Cl contacts involve hydrogen atoms of methylene groups – both intracyclic as well as those on the hydroxyethyl side-chain – as well as one hydrogen atom on a phenyl ring. The C–H···O contacts all involve hydrogen atoms of the methylene groups located in the piperazine moiety and in the hydrocarbon chain connecting this to the remainder of the molecule. Both chloride anions attain pentacoordination via their combined contacts with hydrogen atoms, however, one of the anions features four instead of three C–H-supported contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level while the C–H···O contacts require a C11(7)C11(9) descriptor on the same level. A DDDDDDD descriptor on the unitary level is necessary to capture the C–H···Cl contacts. Furthermore, two C–H···Cg contacts can be observed involving hydrogen atoms on the phenyl rings as donors and the phenyl moiety comprised of the carbon atoms C11–C16. All of these interactions serve to connect the cations and anions into a three-dimensional network in the crystal. The shortest intercentroid distance between two aromatic systems was measured at 4.7319 (9) Å and is apparent between two different phenyl moieties.

The packing of the title compound in the crystal is shown in Figure 2.

Related literature top

For applications of opipramol, see: Moller et al. (2001). For related structures, see: Bindya et al. (2007); Jasinski et al. (2010); Fun et al. (2011); Siddegowda, Butcher et al. (2011); Siddegowda, Jasinski et al. (2011); Swamy et al. (2007). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975); Boessenkool & Boeyens (1980).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem. Ltd., Bangalore, India. The compound was recrystallized from a 1:1 mixture of butan-1-one and benzene.

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic and vinylic hydrogen atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The oxygen-bound H atom as well as both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).
4-{3-[2-azatricyclo[9.4.0.03,8]pentadeca-1(15),3,5,7,11,13-hexaen-2-yl]propyl}-1-(2-hydroxyethyl)piperazine-1,4-diium dichloride top
Crystal data top
C23H31N3O2+·2ClDx = 1.324 Mg m3
Mr = 436.41Melting point = 482–484 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9954 reflections
a = 33.6581 (6) Åθ = 2.4–28.3°
b = 9.4265 (2) ŵ = 0.32 mm1
c = 6.8978 (1) ÅT = 200 K
V = 2188.52 (7) Å3Platelet, green
Z = 40.51 × 0.27 × 0.14 mm
F(000) = 928
Data collection top
Bruker APEXII CCD
diffractometer
4854 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 4444
20068 measured reflectionsk = 129
5253 independent reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.0541P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5253 reflectionsΔρmax = 0.24 e Å3
274 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 2293 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (33)
Crystal data top
C23H31N3O2+·2ClV = 2188.52 (7) Å3
Mr = 436.41Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 33.6581 (6) ŵ = 0.32 mm1
b = 9.4265 (2) ÅT = 200 K
c = 6.8978 (1) Å0.51 × 0.27 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
4854 reflections with I > 2σ(I)
20068 measured reflectionsRint = 0.030
5253 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071Δρmax = 0.24 e Å3
S = 1.03Δρmin = 0.21 e Å3
5253 reflectionsAbsolute structure: Flack (1983), 2293 Friedel pairs
274 parametersAbsolute structure parameter: 0.004 (33)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33522 (3)0.24837 (14)0.58052 (17)0.0359 (3)
H810.3356 (6)0.173 (2)0.631 (4)0.044 (6)*
N10.05595 (3)0.73088 (11)0.60732 (17)0.0210 (2)
N20.19011 (3)0.51107 (11)0.64833 (18)0.0161 (2)
H720.1886 (5)0.5036 (16)0.530 (3)0.020 (4)*
N30.27628 (3)0.49616 (11)0.69361 (16)0.0174 (2)
H730.2750 (7)0.500 (2)0.835 (5)0.074 (8)*
C10.00179 (4)0.79746 (17)0.2855 (2)0.0294 (3)
H10.01280.77420.17210.035*
C20.03133 (4)0.89067 (17)0.2622 (2)0.0310 (3)
H20.03560.92370.13370.037*
C30.08286 (3)0.64016 (15)0.7199 (2)0.0213 (3)
H3A0.07190.54280.72530.026*
H3B0.08460.67650.85430.026*
C40.12436 (4)0.63572 (14)0.6312 (2)0.0239 (3)
H4A0.12240.61980.48960.029*
H4B0.13790.72750.65290.029*
C50.14816 (3)0.51695 (13)0.7235 (2)0.0186 (2)
H5A0.14870.53090.86570.022*
H5B0.13490.42530.69700.022*
C60.31889 (4)0.49360 (15)0.6266 (3)0.0237 (3)
H6A0.33220.58160.67020.028*
H6B0.31950.49210.48320.028*
C70.34174 (4)0.36661 (17)0.7029 (2)0.0285 (3)
H7A0.37050.38900.70740.034*
H7B0.33280.34410.83620.034*
C110.01455 (3)0.69862 (13)0.6216 (2)0.0207 (2)
C120.01079 (4)0.72710 (15)0.4633 (2)0.0232 (3)
C130.05001 (4)0.67850 (16)0.4742 (2)0.0292 (3)
H130.06750.69800.36940.035*
C140.06431 (4)0.60348 (16)0.6307 (3)0.0332 (3)
H140.09100.57070.63280.040*
C150.03922 (4)0.57682 (16)0.7842 (3)0.0332 (4)
H150.04850.52420.89240.040*
C160.00025 (4)0.62655 (16)0.7816 (2)0.0272 (3)
H160.01640.61100.89080.033*
C210.06763 (4)0.87575 (14)0.5829 (2)0.0219 (3)
C220.05776 (4)0.94775 (16)0.4107 (2)0.0250 (3)
C230.07445 (5)1.08179 (16)0.3787 (3)0.0338 (4)
H230.06791.13150.26330.041*
C240.10005 (5)1.14375 (17)0.5089 (3)0.0400 (4)
H240.11181.23310.48080.048*
C250.10856 (5)1.07525 (18)0.6806 (3)0.0383 (4)
H250.12561.11860.77280.046*
C260.09204 (4)0.94189 (17)0.7189 (3)0.0294 (3)
H260.09750.89610.83860.035*
C310.21421 (3)0.63744 (14)0.7062 (2)0.0199 (3)
H31A0.21540.64320.84940.024*
H31B0.20120.72480.65780.024*
C320.25605 (3)0.62810 (13)0.6249 (2)0.0199 (2)
H32A0.25490.62810.48150.024*
H32B0.27150.71210.66660.024*
C330.25223 (3)0.37093 (13)0.6327 (2)0.0190 (2)
H33A0.26530.28290.67820.023*
H33B0.25080.36740.48950.023*
C340.21058 (4)0.37928 (14)0.7157 (2)0.0191 (2)
H34A0.19520.29520.67420.023*
H34B0.21190.37900.85910.023*
Cl10.172378 (10)0.43277 (4)0.23488 (5)0.03102 (9)
Cl20.217571 (10)0.00951 (3)0.62670 (6)0.02579 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0419 (6)0.0321 (6)0.0337 (7)0.0108 (5)0.0089 (5)0.0078 (5)
N10.0168 (4)0.0210 (5)0.0252 (6)0.0029 (4)0.0012 (4)0.0058 (5)
N20.0176 (5)0.0147 (5)0.0161 (6)0.0006 (4)0.0018 (4)0.0003 (4)
N30.0177 (5)0.0200 (6)0.0146 (5)0.0015 (4)0.0007 (4)0.0010 (4)
C10.0297 (7)0.0346 (8)0.0240 (7)0.0056 (6)0.0057 (5)0.0003 (6)
C20.0354 (7)0.0339 (8)0.0237 (8)0.0069 (6)0.0000 (6)0.0072 (6)
C30.0179 (5)0.0240 (6)0.0219 (6)0.0043 (5)0.0001 (5)0.0045 (6)
C40.0197 (6)0.0267 (7)0.0253 (7)0.0060 (5)0.0020 (5)0.0062 (6)
C50.0150 (5)0.0198 (6)0.0209 (6)0.0013 (4)0.0003 (5)0.0007 (6)
C60.0164 (5)0.0307 (7)0.0241 (6)0.0005 (5)0.0006 (6)0.0026 (6)
C70.0212 (6)0.0377 (8)0.0268 (7)0.0080 (6)0.0065 (5)0.0059 (6)
C110.0181 (5)0.0179 (6)0.0262 (6)0.0036 (4)0.0004 (5)0.0018 (6)
C120.0224 (6)0.0200 (7)0.0272 (7)0.0040 (5)0.0030 (5)0.0045 (6)
C130.0223 (7)0.0274 (7)0.0378 (8)0.0037 (6)0.0064 (6)0.0095 (7)
C140.0221 (6)0.0259 (7)0.0517 (10)0.0012 (5)0.0044 (7)0.0092 (8)
C150.0259 (7)0.0245 (7)0.0492 (11)0.0017 (6)0.0117 (6)0.0049 (7)
C160.0229 (6)0.0276 (7)0.0312 (8)0.0053 (6)0.0038 (5)0.0044 (6)
C210.0166 (6)0.0210 (6)0.0283 (8)0.0044 (5)0.0031 (5)0.0019 (6)
C220.0228 (6)0.0242 (7)0.0280 (7)0.0052 (6)0.0045 (6)0.0045 (6)
C230.0374 (8)0.0238 (8)0.0403 (9)0.0067 (6)0.0072 (7)0.0092 (7)
C240.0353 (8)0.0211 (8)0.0637 (12)0.0021 (7)0.0059 (8)0.0027 (8)
C250.0284 (7)0.0265 (8)0.0598 (13)0.0009 (6)0.0061 (7)0.0085 (7)
C260.0258 (6)0.0265 (7)0.0359 (8)0.0040 (6)0.0024 (6)0.0002 (7)
C310.0190 (5)0.0152 (6)0.0256 (7)0.0010 (5)0.0004 (5)0.0032 (5)
C320.0218 (6)0.0159 (5)0.0220 (6)0.0002 (4)0.0004 (5)0.0013 (6)
C330.0190 (5)0.0161 (5)0.0218 (6)0.0023 (4)0.0001 (5)0.0019 (6)
C340.0204 (5)0.0146 (6)0.0224 (6)0.0019 (5)0.0002 (5)0.0026 (6)
Cl10.02975 (16)0.0431 (2)0.02020 (15)0.00569 (15)0.00392 (14)0.00588 (17)
Cl20.03646 (17)0.02445 (16)0.01645 (14)0.00133 (13)0.00162 (14)0.00090 (14)
Geometric parameters (Å, º) top
O1—C71.4155 (19)C11—C161.388 (2)
O1—H810.79 (2)C11—C121.4112 (19)
N1—C111.4296 (15)C12—C131.3995 (19)
N1—C211.4311 (17)C13—C141.377 (2)
N1—C31.4681 (16)C13—H130.9500
N2—C341.4947 (16)C14—C151.377 (2)
N2—C311.4955 (16)C14—H140.9500
N2—C51.5049 (16)C15—C161.393 (2)
N2—H720.82 (2)C15—H150.9500
N3—C331.4918 (16)C16—H160.9500
N3—C321.4950 (16)C21—C261.394 (2)
N3—C61.5069 (16)C21—C221.408 (2)
N3—H730.98 (3)C22—C231.400 (2)
C1—C21.336 (2)C23—C241.375 (3)
C1—C121.457 (2)C23—H230.9500
C1—H10.9500C24—C251.379 (3)
C2—C221.460 (2)C24—H240.9500
C2—H20.9500C25—C261.400 (2)
C3—C41.5256 (17)C25—H250.9500
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C31—C321.5183 (17)
C4—C51.5168 (18)C31—H31A0.9900
C4—H4A0.9900C31—H31B0.9900
C4—H4B0.9900C32—H32A0.9900
C5—H5A0.9900C32—H32B0.9900
C5—H5B0.9900C33—C341.5160 (17)
C6—C71.517 (2)C33—H33A0.9900
C6—H6A0.9900C33—H33B0.9900
C6—H6B0.9900C34—H34A0.9900
C7—H7A0.9900C34—H34B0.9900
C7—H7B0.9900
C7—O1—H81116.3 (18)C13—C12—C1117.91 (13)
C11—N1—C21118.62 (10)C11—C12—C1124.22 (13)
C11—N1—C3116.17 (10)C14—C13—C12122.66 (14)
C21—N1—C3116.65 (10)C14—C13—H13118.7
C34—N2—C31109.20 (10)C12—C13—H13118.7
C34—N2—C5110.86 (10)C15—C14—C13118.80 (13)
C31—N2—C5112.80 (10)C15—C14—H14120.6
C34—N2—H72105.4 (11)C13—C14—H14120.6
C31—N2—H72111.5 (11)C14—C15—C16120.43 (15)
C5—N2—H72106.8 (11)C14—C15—H15119.8
C33—N3—C32108.78 (10)C16—C15—H15119.8
C33—N3—C6114.68 (10)C11—C16—C15120.82 (14)
C32—N3—C6110.47 (10)C11—C16—H16119.6
C33—N3—H73106.9 (13)C15—C16—H16119.6
C32—N3—H73105.3 (13)C26—C21—C22119.42 (13)
C6—N3—H73110.3 (13)C26—C21—N1120.63 (12)
C2—C1—C12128.07 (14)C22—C21—N1119.64 (13)
C2—C1—H1116.0C23—C22—C21118.25 (14)
C12—C1—H1116.0C23—C22—C2117.80 (14)
C1—C2—C22127.67 (14)C21—C22—C2123.94 (14)
C1—C2—H2116.2C24—C23—C22122.13 (15)
C22—C2—H2116.2C24—C23—H23118.9
N1—C3—C4111.63 (11)C22—C23—H23118.9
N1—C3—H3A109.3C23—C24—C25119.48 (15)
C4—C3—H3A109.3C23—C24—H24120.3
N1—C3—H3B109.3C25—C24—H24120.3
C4—C3—H3B109.3C24—C25—C26120.03 (16)
H3A—C3—H3B108.0C24—C25—H25120.0
C5—C4—C3109.60 (11)C26—C25—H25120.0
C5—C4—H4A109.8C21—C26—C25120.56 (16)
C3—C4—H4A109.8C21—C26—H26119.7
C5—C4—H4B109.8C25—C26—H26119.7
C3—C4—H4B109.8N2—C31—C32111.00 (11)
H4A—C4—H4B108.2N2—C31—H31A109.4
N2—C5—C4112.22 (11)C32—C31—H31A109.4
N2—C5—H5A109.2N2—C31—H31B109.4
C4—C5—H5A109.2C32—C31—H31B109.4
N2—C5—H5B109.2H31A—C31—H31B108.0
C4—C5—H5B109.2N3—C32—C31110.71 (11)
H5A—C5—H5B107.9N3—C32—H32A109.5
N3—C6—C7112.88 (12)C31—C32—H32A109.5
N3—C6—H6A109.0N3—C32—H32B109.5
C7—C6—H6A109.0C31—C32—H32B109.5
N3—C6—H6B109.0H32A—C32—H32B108.1
C7—C6—H6B109.0N3—C33—C34110.76 (10)
H6A—C6—H6B107.8N3—C33—H33A109.5
O1—C7—C6109.62 (12)C34—C33—H33A109.5
O1—C7—H7A109.7N3—C33—H33B109.5
C6—C7—H7A109.7C34—C33—H33B109.5
O1—C7—H7B109.7H33A—C33—H33B108.1
C6—C7—H7B109.7N2—C34—C33110.62 (10)
H7A—C7—H7B108.2N2—C34—H34A109.5
C16—C11—C12119.44 (12)C33—C34—H34A109.5
C16—C11—N1120.57 (12)N2—C34—H34B109.5
C12—C11—N1119.67 (12)C33—C34—H34B109.5
C13—C12—C11117.80 (13)H34A—C34—H34B108.1
C12—C1—C2—C221.6 (3)C11—N1—C21—C26120.11 (14)
C11—N1—C3—C4154.28 (12)C3—N1—C21—C2626.61 (18)
C21—N1—C3—C458.17 (16)C11—N1—C21—C2266.34 (17)
N1—C3—C4—C5167.31 (11)C3—N1—C21—C22146.94 (12)
C34—N2—C5—C4170.35 (11)C26—C21—C22—C232.8 (2)
C31—N2—C5—C466.82 (15)N1—C21—C22—C23170.80 (12)
C3—C4—C5—N2177.44 (11)C26—C21—C22—C2177.67 (13)
C33—N3—C6—C760.37 (17)N1—C21—C22—C28.7 (2)
C32—N3—C6—C7176.29 (12)C1—C2—C22—C23153.31 (16)
N3—C6—C7—O184.54 (16)C1—C2—C22—C2127.2 (2)
C21—N1—C11—C16123.35 (14)C21—C22—C23—C240.3 (2)
C3—N1—C11—C1623.53 (18)C2—C22—C23—C24179.21 (15)
C21—N1—C11—C1263.22 (17)C22—C23—C24—C252.6 (3)
C3—N1—C11—C12149.90 (12)C23—C24—C25—C261.7 (3)
C16—C11—C12—C131.05 (19)C22—C21—C26—C253.7 (2)
N1—C11—C12—C13172.46 (13)N1—C21—C26—C25169.85 (13)
C16—C11—C12—C1177.82 (14)C24—C25—C26—C211.4 (2)
N1—C11—C12—C14.3 (2)C34—N2—C31—C3257.10 (15)
C2—C1—C12—C13155.85 (16)C5—N2—C31—C32179.15 (11)
C2—C1—C12—C1127.4 (2)C33—N3—C32—C3158.15 (15)
C11—C12—C13—C140.8 (2)C6—N3—C32—C31175.15 (12)
C1—C12—C13—C14176.16 (14)N2—C31—C32—N358.39 (15)
C12—C13—C14—C151.0 (2)C32—N3—C33—C3458.79 (15)
C13—C14—C15—C160.8 (2)C6—N3—C33—C34176.97 (12)
C12—C11—C16—C152.8 (2)C31—N2—C34—C3357.48 (14)
N1—C11—C16—C15170.66 (13)C5—N2—C34—C33177.64 (11)
C14—C15—C16—C112.7 (2)N3—C33—C34—N259.46 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1—H81···Cl1i0.79 (2)2.39 (2)3.1701 (14)169 (2)
N2—H72···Cl10.82 (2)2.212 (19)3.0057 (13)163.0 (15)
N3—H73···Cl2ii0.98 (3)2.03 (3)2.9972 (12)171 (2)
C5—H5A···Cl1iii0.992.823.7065 (15)149
C5—H5A···O1ii0.992.593.3373 (18)133
C14—H14···Cl1iv0.952.833.7233 (14)157
C31—H31A···O1ii0.992.543.2446 (18)128
C31—H31B···Cl2v0.992.753.5518 (14)139
C32—H32B···Cl1ii0.992.853.8246 (13)169
C32—H32A···Cl2vi0.992.853.7213 (16)148
C6—H6B···Cl2vi0.992.763.6634 (18)152
C34—H34A···Cl20.992.823.5471 (13)131
C16—H16···Cg2iv0.952.983.6402 (16)128
C23—H23···Cg2vii0.952.673.4805 (18)143
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z1/2; (vii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H31N3O2+·2Cl
Mr436.41
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)33.6581 (6), 9.4265 (2), 6.8978 (1)
V3)2188.52 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.51 × 0.27 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20068, 5253, 4854
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.03
No. of reflections5253
No. of parameters274
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.21
Absolute structureFlack (1983), 2293 Friedel pairs
Absolute structure parameter0.004 (33)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1—H81···Cl1i0.79 (2)2.39 (2)3.1701 (14)169 (2)
N2—H72···Cl10.82 (2)2.212 (19)3.0057 (13)163.0 (15)
N3—H73···Cl2ii0.98 (3)2.03 (3)2.9972 (12)171 (2)
C5—H5A···Cl1iii0.992.823.7065 (15)148.8
C5—H5A···O1ii0.992.593.3373 (18)132.6
C14—H14···Cl1iv0.952.833.7233 (14)157.4
C31—H31A···O1ii0.992.543.2446 (18)128.3
C31—H31B···Cl2v0.992.753.5518 (14)138.6
C32—H32B···Cl1ii0.992.853.8246 (13)168.6
C32—H32A···Cl2vi0.992.853.7213 (16)147.9
C6—H6B···Cl2vi0.992.763.6634 (18)151.7
C34—H34A···Cl20.992.823.5471 (13)131.2
C16—H16···Cg2iv0.952.983.6402 (16)128
C23—H23···Cg2vii0.952.673.4805 (18)143
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1/2; (v) x, y+1, z; (vi) x+1/2, y+1/2, z1/2; (vii) x, y+2, z1/2.
 

Acknowledgements

BPS thanks the University of Mysore for research facilities. HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample of the title compound.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Siddegowda, M. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o1598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Siddaraju, B. P., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o1979–o1980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2079–o2080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011). Acta Cryst. E67, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2994-o2995
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds