metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(pyridin-2-yl­methanol)nickel(II) hexa­fluoridophosphate tri­fluoro­acetate

aDepartment of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: thama@fukuoka-u.ac.jp

(Received 26 September 2011; accepted 25 October 2011; online 29 October 2011)

In the crystal structure of the title complex, [Ni(C6H7NO)3](PF6)(C2F3O2), the NiII ion is in a slightly distorted octa­hedral NiO3N3 coordination geometry with each of the three N and three O atoms in a meridional coordination. In the crystal, the complex mol­ecules and the trifluoro­acetate anions are connected via O—H⋯O hydrogen bonding into layers parallel to the ab plane.

Related literature

For related complexes, see: Ito & Onaka (2004[Ito, M. & Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039-1046.]); Kermagoret & Braunstein (2008[Kermagoret, A. & Braunstein, P. (2008). Dalton Trans. pp. 1564-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H7NO)3](PF6)(C2F3O2)

  • Mr = 644.08

  • Triclinic, [P \overline 1]

  • a = 9.6381 (2) Å

  • b = 11.9668 (4) Å

  • c = 11.9892 (3) Å

  • α = 109.950 (1)°

  • β = 95.348 (1)°

  • γ = 101.411 (1)°

  • V = 1254.60 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 1.000

  • 12517 measured reflections

  • 5736 independent reflections

  • 5234 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.05

  • 5736 reflections

  • 376 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.0461 (12)
Ni1—N2 2.0601 (14)
Ni1—O2 2.0647 (12)
Ni1—N1 2.0662 (14)
Ni1—O3 2.0714 (12)
Ni1—N3 2.0769 (14)
O1—Ni1—N1 78.11 (5)
N2—Ni1—O2 78.53 (5)
O3—Ni1—N3 78.09 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.87 1.76 2.6003 (19) 162.5
O2—H2⋯O5ii 0.92 1.77 2.6965 (18) 175.8
O3—H3⋯O5iii 0.98 1.65 2.6267 (18) 173.8
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari .]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Yadokari-XG and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound is composed of [NiII(C6H7ON)3]2+ cations, hexafluorophosphate and trifluoroacetate anions. The NiII ion is in a slightly distorted octahedral coordination, comprising three N atoms and three O atoms from three pyridine-2-methanol ligands (Fig. 1 and Table 1). The three N and three O atoms make a meridional NiO3N3 coordination and the mean bite angle of the pyridine-2-methanol ligand amount to 78.2 (2) °.

In the crystal structure the complexes are connected via O—H···O hydrogen bonding between the hydroxy H atoms of the pyridine-2-methanol ligand and the O atoms of the trifluoroacetate anion into layers that are parallel to the a/b plane. (Fig. 2 and 3 and Table 2).

Related literature top

For related complexes, see: Ito & Onaka (2004); Kermagoret & Braunstein (2008).

Experimental top

A solution of NiSO4.6H2O (0.5 mmol) in H2O (1 ml) was added to the solution of pyridine-2-methanol (1.5 mmol) in H2O (3 ml). Afterwards NH4PF6 (6.0 mmol) and CF3COONa (2.5 mmol) were added to the resulting blue solution. The resulting pale blue precipitate was collected. The crude product was purified by recrystallization from acetone and water. The blue prism-like crystals were obtained a few days later on slow evaporation of the solvent.

Refinement top

The O–H H atoms were located in a difference Fourier map and the coordinates were fixed. Their Uiso(H) values were set to 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C–H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C). Three F atoms in CF3COO anions are rotationally disordered between three positions. The two parts of lower occupation were refined only isotropic (sof. 0.6:0.24:0.16).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2002); cell refinement: RAPID-AUTO (Rigaku, 2002); data reduction: RAPID-AUTO (Rigaku, 2002); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia ,1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009)and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing for the title complex with labeling showing 50% probability displacement ellipsoids. Please note: The trifluoroacetate anion is disordered.
[Figure 2] Fig. 2. Crystal structure of the title compound view along the b-axis. The C-H H atoms, the PF6 anions and the disordered F atoms with lower occupation of the trifluoroacetate anions are omitted for clarity. O—H···O hydrogen bonding is shown as dashed blue lines.
[Figure 3] Fig. 3. Crystal structure of the title compound with view along the c-axis. The C-H H atoms and the disordered F atoms with lower occupation of the trifluoroacetate anions are omitted for clarity.
Tris(pyridin-2-ylmethanol)nickel(II) hexafluoridophosphate trifluoroacetate top
Crystal data top
[Ni(C6H7NO)3](PF6)(C2F3O2)V = 1254.60 (6) Å3
Mr = 644.08Z = 2
Triclinic, P1F(000) = 652
Hall symbol: -P 1Dx = 1.705 Mg m3
a = 9.6381 (2) ÅMo Kα radiation, λ = 0.71075 Å
b = 11.9668 (4) ŵ = 0.94 mm1
c = 11.9892 (3) ÅT = 200 K
α = 109.950 (1)°Block, blue
β = 95.348 (1)°0.40 × 0.30 × 0.20 mm
γ = 101.411 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5234 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1211
Tmin = 0.813, Tmax = 1.000k = 1515
12517 measured reflectionsl = 1515
5736 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.5841P]
where P = (Fo2 + 2Fc2)/3
5736 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.50 e Å3
9 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni(C6H7NO)3](PF6)(C2F3O2)γ = 101.411 (1)°
Mr = 644.08V = 1254.60 (6) Å3
Triclinic, P1Z = 2
a = 9.6381 (2) ÅMo Kα radiation
b = 11.9668 (4) ŵ = 0.94 mm1
c = 11.9892 (3) ÅT = 200 K
α = 109.950 (1)°0.40 × 0.30 × 0.20 mm
β = 95.348 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5736 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
5234 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 1.000Rint = 0.018
12517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0339 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
5736 reflectionsΔρmin = 0.45 e Å3
376 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.18393 (2)0.369025 (18)0.808996 (17)0.02212 (7)
O10.00845 (13)0.39356 (12)0.88953 (12)0.0304 (3)
H10.05960.41980.86090.046*
O20.35252 (13)0.32008 (12)0.72559 (12)0.0337 (3)
H20.44250.37330.75470.051*
O30.33165 (14)0.49798 (11)0.95482 (11)0.0316 (3)
H30.34310.51041.04080.047*
N10.16982 (15)0.24566 (12)0.89561 (13)0.0257 (3)
N20.07694 (15)0.24685 (13)0.64160 (13)0.0264 (3)
N30.20297 (15)0.52595 (13)0.76794 (12)0.0255 (3)
C10.26677 (19)0.17914 (16)0.90061 (18)0.0338 (4)
H40.33810.17750.85090.041*
C20.2656 (2)0.11372 (19)0.9755 (2)0.0447 (5)
H50.33430.06700.97650.054*
C30.1636 (3)0.1169 (2)1.0488 (2)0.0530 (6)
H60.16240.07401.10250.064*
C40.0627 (2)0.1836 (2)1.0432 (2)0.0458 (5)
H70.00930.18641.09240.055*
C50.06813 (18)0.24611 (15)0.96467 (16)0.0286 (3)
C60.04137 (18)0.31692 (16)0.95294 (17)0.0297 (4)
H80.13470.25960.90860.036*
H90.05530.36741.03380.036*
C70.06644 (19)0.20268 (16)0.60926 (16)0.0306 (4)
H100.12540.22630.66810.037*
C80.1309 (2)0.12438 (17)0.49383 (18)0.0377 (4)
H110.23240.09450.47340.045*
C90.0448 (2)0.09037 (18)0.40852 (18)0.0418 (5)
H120.08660.03720.32820.050*
C100.1021 (2)0.13424 (19)0.44087 (17)0.0400 (4)
H130.16280.11170.38330.048*
C110.1602 (2)0.21193 (17)0.55887 (16)0.0317 (4)
C120.3203 (2)0.2616 (2)0.59846 (19)0.0488 (6)
H140.36900.19390.57240.059*
H150.35580.32110.56070.059*
C130.1246 (2)0.53539 (18)0.67400 (16)0.0345 (4)
H160.05280.46560.62170.041*
C140.1440 (2)0.6415 (2)0.6504 (2)0.0446 (5)
H170.08600.64510.58380.054*
C150.2493 (2)0.7428 (2)0.7254 (2)0.0459 (5)
H180.26640.81680.71020.055*
C160.3291 (2)0.73469 (18)0.82255 (19)0.0375 (4)
H190.40150.80340.87570.045*
C170.30264 (17)0.62549 (15)0.84201 (15)0.0255 (3)
C180.38677 (18)0.61428 (15)0.94787 (16)0.0282 (3)
H200.48920.62380.93930.034*
H210.38050.68011.02300.034*
P10.59552 (5)0.02974 (4)0.74358 (4)0.03228 (11)
F40.5841 (2)0.0626 (2)0.88218 (15)0.0891 (6)
F50.61092 (18)0.00030 (18)0.60798 (13)0.0725 (5)
F60.76632 (13)0.04945 (12)0.77770 (13)0.0494 (3)
F70.61897 (16)0.17125 (12)0.76545 (17)0.0680 (5)
F80.42616 (14)0.01136 (14)0.71068 (15)0.0597 (4)
F90.57607 (18)0.10966 (14)0.7258 (2)0.0789 (5)
F1A0.2162 (3)0.4114 (5)0.3777 (4)0.0633 (9)0.60
F2A0.4293 (6)0.4201 (7)0.3364 (5)0.0959 (18)0.60
F3A0.3715 (5)0.5861 (4)0.4479 (2)0.0956 (15)0.60
F1B0.2326 (11)0.3584 (9)0.3289 (9)0.075 (3)*0.24
F2B0.4556 (11)0.4729 (9)0.3644 (10)0.048 (2)*0.24
F3B0.3095 (15)0.5496 (11)0.4460 (11)0.097 (4)*0.24
F1C0.3378 (19)0.3456 (13)0.2889 (13)0.091 (4)*0.16
F2C0.4376 (13)0.5252 (12)0.4082 (13)0.063 (3)*0.16
F3C0.2240 (13)0.4706 (12)0.4110 (11)0.054 (3)*0.16
O40.15453 (15)0.51056 (17)0.21720 (16)0.0494 (4)
O50.38100 (14)0.53211 (14)0.18470 (12)0.0372 (3)
C190.28069 (19)0.50937 (18)0.23870 (16)0.0320 (4)
C200.3227 (3)0.4746 (3)0.3470 (2)0.0605 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01984 (11)0.02370 (12)0.02007 (11)0.00408 (8)0.00167 (7)0.00581 (8)
O10.0279 (6)0.0369 (7)0.0343 (7)0.0153 (5)0.0108 (5)0.0175 (6)
O20.0225 (6)0.0426 (7)0.0292 (6)0.0059 (5)0.0058 (5)0.0058 (5)
O30.0354 (7)0.0307 (6)0.0223 (6)0.0020 (5)0.0054 (5)0.0102 (5)
N10.0229 (6)0.0228 (6)0.0273 (7)0.0037 (5)0.0003 (5)0.0064 (5)
N20.0275 (7)0.0248 (7)0.0227 (7)0.0042 (5)0.0015 (5)0.0055 (5)
N30.0244 (7)0.0279 (7)0.0217 (7)0.0032 (5)0.0020 (5)0.0085 (5)
C10.0264 (8)0.0289 (9)0.0426 (10)0.0080 (7)0.0000 (7)0.0099 (8)
C20.0370 (10)0.0365 (10)0.0634 (14)0.0103 (8)0.0038 (9)0.0243 (10)
C30.0543 (13)0.0514 (13)0.0652 (15)0.0095 (10)0.0025 (11)0.0402 (12)
C40.0453 (12)0.0497 (12)0.0522 (13)0.0087 (9)0.0137 (10)0.0313 (11)
C50.0263 (8)0.0252 (8)0.0304 (8)0.0019 (6)0.0023 (6)0.0085 (7)
C60.0247 (8)0.0284 (8)0.0344 (9)0.0035 (6)0.0079 (7)0.0105 (7)
C70.0280 (8)0.0312 (9)0.0293 (9)0.0016 (7)0.0013 (7)0.0117 (7)
C80.0383 (10)0.0316 (9)0.0357 (10)0.0020 (7)0.0101 (8)0.0131 (8)
C90.0574 (13)0.0314 (9)0.0267 (9)0.0082 (9)0.0084 (8)0.0040 (8)
C100.0544 (12)0.0372 (10)0.0248 (9)0.0169 (9)0.0052 (8)0.0044 (8)
C110.0346 (9)0.0300 (9)0.0269 (8)0.0094 (7)0.0046 (7)0.0051 (7)
C120.0325 (10)0.0682 (15)0.0309 (10)0.0091 (9)0.0099 (8)0.0007 (10)
C130.0352 (9)0.0379 (10)0.0258 (8)0.0003 (7)0.0039 (7)0.0132 (7)
C140.0460 (11)0.0492 (12)0.0394 (11)0.0012 (9)0.0067 (9)0.0269 (10)
C150.0483 (12)0.0403 (11)0.0511 (13)0.0000 (9)0.0021 (10)0.0282 (10)
C160.0339 (9)0.0326 (9)0.0414 (10)0.0022 (7)0.0023 (8)0.0159 (8)
C170.0210 (7)0.0298 (8)0.0247 (8)0.0049 (6)0.0050 (6)0.0092 (7)
C180.0257 (8)0.0256 (8)0.0283 (8)0.0018 (6)0.0021 (6)0.0080 (7)
P10.0319 (2)0.0294 (2)0.0314 (2)0.00634 (18)0.00592 (18)0.00648 (19)
F40.0957 (13)0.1473 (19)0.0426 (9)0.0587 (13)0.0304 (9)0.0368 (11)
F50.0719 (10)0.1113 (14)0.0344 (7)0.0355 (10)0.0129 (7)0.0187 (8)
F60.0357 (6)0.0454 (7)0.0592 (8)0.0106 (5)0.0001 (5)0.0114 (6)
F70.0577 (9)0.0331 (7)0.1023 (13)0.0123 (6)0.0049 (8)0.0157 (8)
F80.0328 (7)0.0575 (8)0.0740 (10)0.0086 (6)0.0046 (6)0.0086 (7)
F90.0600 (9)0.0381 (7)0.1392 (17)0.0055 (7)0.0159 (10)0.0374 (9)
F1A0.0651 (18)0.089 (3)0.061 (2)0.0150 (19)0.0181 (15)0.059 (2)
F2A0.082 (3)0.167 (5)0.110 (4)0.085 (4)0.032 (3)0.105 (4)
F3A0.075 (2)0.159 (4)0.0224 (12)0.018 (3)0.0068 (13)0.0261 (17)
O40.0281 (7)0.0754 (11)0.0610 (10)0.0183 (7)0.0077 (6)0.0425 (9)
O50.0281 (6)0.0558 (8)0.0263 (6)0.0041 (6)0.0028 (5)0.0171 (6)
C190.0276 (8)0.0416 (10)0.0291 (9)0.0093 (7)0.0032 (7)0.0158 (8)
C200.0362 (11)0.114 (2)0.0521 (14)0.0214 (13)0.0112 (10)0.0533 (16)
Geometric parameters (Å, º) top
Ni1—O12.0461 (12)C10—C111.389 (3)
Ni1—N22.0601 (14)C10—H130.9500
Ni1—O22.0647 (12)C11—C121.506 (3)
Ni1—N12.0662 (14)C12—H140.9900
Ni1—O32.0714 (12)C12—H150.9900
Ni1—N32.0769 (14)C13—C141.374 (3)
O1—C61.421 (2)C13—H160.9500
O1—H10.8716C14—C151.381 (3)
O2—C121.417 (2)C14—H170.9500
O2—H20.9235C15—C161.377 (3)
O3—C181.422 (2)C15—H180.9500
O3—H30.9822C16—C171.384 (3)
N1—C51.340 (2)C16—H190.9500
N1—C11.352 (2)C17—C181.501 (2)
N2—C111.342 (2)C18—H200.9900
N2—C71.346 (2)C18—H210.9900
N3—C171.340 (2)P1—F51.5697 (15)
N3—C131.347 (2)P1—F91.5777 (15)
C1—C21.377 (3)P1—F71.5881 (14)
C1—H40.9500P1—F41.5915 (16)
C2—C31.376 (4)P1—F81.5960 (14)
C2—H50.9500P1—F61.6087 (13)
C3—C41.385 (3)F1A—C201.308 (4)
C3—H60.9500F2A—C201.316 (4)
C4—C51.387 (3)F3A—C201.417 (5)
C4—H70.9500F1B—C201.420 (10)
C5—C61.503 (2)F2B—C201.284 (11)
C6—H80.9900F3B—C201.255 (12)
C6—H90.9900F1C—C201.505 (14)
C7—C81.380 (3)F2C—C201.188 (11)
C7—H100.9500F3C—C201.279 (12)
C8—C91.381 (3)O4—C191.223 (2)
C8—H110.9500O5—C191.249 (2)
C9—C101.376 (3)C19—C201.536 (3)
C9—H120.9500
O1—Ni1—N298.09 (6)N2—C11—C10121.78 (18)
O1—Ni1—O2172.33 (5)N2—C11—C12117.35 (16)
O1—Ni1—N178.11 (5)C10—C11—C12120.87 (18)
N2—Ni1—O278.53 (5)O2—C12—C11109.50 (16)
N2—Ni1—N197.35 (6)O2—C12—H14109.8
O2—Ni1—N195.41 (6)C11—C12—H14109.8
O1—Ni1—O395.00 (5)O2—C12—H15109.8
N2—Ni1—O3166.15 (6)C11—C12—H15109.8
O2—Ni1—O389.01 (5)H14—C12—H15108.2
N1—Ni1—O389.74 (5)N3—C13—C14122.91 (17)
O1—Ni1—N393.77 (5)N3—C13—H16118.5
N2—Ni1—N396.49 (6)C14—C13—H16118.5
O2—Ni1—N393.45 (6)C13—C14—C15118.77 (18)
N1—Ni1—N3164.81 (6)C13—C14—H17120.6
O3—Ni1—N378.09 (5)C15—C14—H17120.6
C6—O1—Ni1118.49 (10)C16—C15—C14118.86 (18)
C6—O1—H1112.8C16—C15—H18120.6
Ni1—O1—H1122.2C14—C15—H18120.6
C12—O2—Ni1115.90 (11)C15—C16—C17119.37 (18)
C12—O2—H2114.4C15—C16—H19120.3
Ni1—O2—H2118.1C17—C16—H19120.3
C18—O3—Ni1117.12 (10)N3—C17—C16122.05 (16)
C18—O3—H3106.7N3—C17—C18117.36 (15)
Ni1—O3—H3130.7C16—C17—C18120.58 (15)
C5—N1—C1118.61 (16)O3—C18—C17110.11 (13)
C5—N1—Ni1116.13 (11)O3—C18—H20109.6
C1—N1—Ni1124.57 (13)C17—C18—H20109.6
C11—N2—C7118.69 (15)O3—C18—H21109.6
C11—N2—Ni1115.61 (12)C17—C18—H21109.6
C7—N2—Ni1125.69 (12)H20—C18—H21108.2
C17—N3—C13118.01 (15)F5—P1—F990.77 (11)
C17—N3—Ni1116.35 (11)F5—P1—F790.50 (11)
C13—N3—Ni1125.64 (12)F9—P1—F7178.09 (10)
N1—C1—C2122.16 (19)F5—P1—F4178.33 (12)
N1—C1—H4118.9F9—P1—F490.26 (12)
C2—C1—H4118.9F7—P1—F488.43 (12)
C3—C2—C1119.20 (19)F5—P1—F890.97 (9)
C3—C2—H5120.4F9—P1—F891.58 (9)
C1—C2—H5120.4F7—P1—F889.83 (8)
C2—C3—C4119.1 (2)F4—P1—F890.31 (10)
C2—C3—H6120.5F5—P1—F689.37 (8)
C4—C3—H6120.5F9—P1—F688.81 (8)
C3—C4—C5119.1 (2)F7—P1—F689.77 (7)
C3—C4—H7120.5F4—P1—F689.35 (9)
C5—C4—H7120.5F8—P1—F6179.48 (9)
N1—C5—C4121.87 (17)O4—C19—O5129.17 (18)
N1—C5—C6117.09 (15)O4—C19—C20115.85 (17)
C4—C5—C6121.03 (17)O5—C19—C20114.97 (16)
O1—C6—C5108.67 (14)F2C—C20—F3C111.5 (9)
O1—C6—H8110.0F3B—C20—F2B102.8 (7)
C5—C6—H8110.0F1A—C20—F2A109.8 (4)
O1—C6—H9110.0F1A—C20—F3A104.4 (3)
C5—C6—H9110.0F2A—C20—F3A106.6 (4)
H8—C6—H9108.3F3B—C20—F1B108.1 (7)
N2—C7—C8122.40 (18)F2B—C20—F1B110.5 (6)
N2—C7—H10118.8F2C—C20—F1C102.0 (9)
C8—C7—H10118.8F3C—C20—F1C107.2 (8)
C7—C8—C9118.65 (18)F2C—C20—C19118.3 (6)
C7—C8—H11120.7F3B—C20—C19113.8 (6)
C9—C8—H11120.7F3C—C20—C19113.1 (6)
C10—C9—C8119.43 (18)F2B—C20—C19113.3 (5)
C10—C9—H12120.3F1A—C20—C19115.0 (2)
C8—C9—H12120.3F2A—C20—C19113.6 (3)
C9—C10—C11119.03 (19)F3A—C20—C19106.5 (3)
C9—C10—H13120.5F1B—C20—C19108.2 (4)
C11—C10—H13120.5F1C—C20—C19103.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.871.762.6003 (19)162.5
O2—H2···O5ii0.921.772.6965 (18)175.8
O3—H3···O5iii0.981.652.6267 (18)173.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H7NO)3](PF6)(C2F3O2)
Mr644.08
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.6381 (2), 11.9668 (4), 11.9892 (3)
α, β, γ (°)109.950 (1), 95.348 (1), 101.411 (1)
V3)1254.60 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.813, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12517, 5736, 5234
Rint0.018
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.05
No. of reflections5736
No. of parameters376
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.45

Computer programs: RAPID-AUTO (Rigaku, 2002), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia ,1997) and Mercury (Macrae et al., 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009)and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Ni1—O12.0461 (12)Ni1—N12.0662 (14)
Ni1—N22.0601 (14)Ni1—O32.0714 (12)
Ni1—O22.0647 (12)Ni1—N32.0769 (14)
O1—Ni1—N178.11 (5)O3—Ni1—N378.09 (5)
N2—Ni1—O278.53 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.871.762.6003 (19)162.5
O2—H2···O5ii0.921.772.6965 (18)175.8
O3—H3···O5iii0.981.652.6267 (18)173.8
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

This work was supported in part by funds (No. 115001) from the Central Research Institute of Fukuoka University.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIto, M. & Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039–1046.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKermagoret, A. & Braunstein, P. (2008). Dalton Trans. pp. 1564–1573.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds