metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(μ-2-formyl-6-meth­­oxy­phenolato)copper(II)sodium]-μ-nitrato]

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gaoting1218@yahoo.com.cn

(Received 24 September 2011; accepted 29 September 2011; online 12 October 2011)

In the title heterodinuclear complex, [CuNa(C8H7O3)2(NO3)]n, the CuII ion is five-coordinated in a square-pyramidal arrangement by four atoms of two different ligand molecules in equatorial positions and one remote nitrate O atom in the apical position. The Na+ ion is eight-coordinated by four ligand O atoms and four nitrate O atoms. The ligand links the CuII and Na ions, forming a layered arrangement extending parallel to (001).

Related literature

For similar nickel–sodium complexes, see Costes et al. (1997a[Costes, J. P., Dahan, F., Dupuis, A. & Laurent, J. P. (1997a). Inorg. Chem. 36, 3429-3433.],b[Costes, J. P., Laurent, J. P., Chabert, P., Commenges, G. & Dahan, F. (1997b). Inorg. Chem. 36, 656-660.]).

[Scheme 1]

Experimental

Crystal data
  • [CuNa(C8H7O3)2(NO3)]

  • Mr = 450.81

  • Orthorhombic, P 21 21 21

  • a = 7.737 (2) Å

  • b = 13.165 (4) Å

  • c = 16.889 (6) Å

  • V = 1720.2 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.648, Tmax = 0.691

  • 16868 measured reflections

  • 3926 independent reflections

  • 3692 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.057

  • S = 1.03

  • 3926 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1671 Friedel pairs

  • Flack parameter: 0.007 (8)

Table 1
Selected bond lengths (Å)

Cu1—O5 1.8989 (12)
Cu1—O2 1.9074 (12)
Cu1—O6 1.9487 (12)
Cu1—O3 1.9608 (14)
Cu1—O7 2.3560 (14)
Na1—O2 2.3667 (16)
Na1—O5 2.3900 (14)
Na1—O8i 2.4154 (17)
Na1—O1 2.5249 (15)
Na1—O4 2.6129 (16)
Na1—O9i 2.749 (2)
Na1—O9ii 2.755 (2)
Na1—O8 2.937 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. ]); software used to prepare material for publication: SHELXL97 .

Supporting information


Comment top

Orthovanillin is a commercial ligand that is able to chelate 3 d ions,mainly with copper ions. Furthermore, orthovanillin can also yield heterodinuclear 3 d-4f complexes and the first examples involve Cu—Ln complexes (Costes et al., 1997a,b). We were interested in the nature of the products obtained by reacting a mononuclear 3 d complex with alkali metal ions. As shown in Fig. 1, The CuII is four-coordinated by two aldehyde oxygen atoms and two phenol oxygen atoms from the two orthovanillin ligands. The copper atom centre is inserted into the inner cavity. The Na ion is ligated by two hydroxyl oxygen atoms, two methoxyl oxygen atoms, two oxygen atoms of one bidentate nitrate counterion and two oxygen atoms of two different monodentate nitrate counterion. The CuII and Na are bridged by the phenolic oxygen atoms, layered arrangement extending parallel to (001).

Related literature top

For similar nickel–sodium complexes, see Costes et al. (1997a,b).

Experimental top

To a solution of o-vanillin (0.046 g, 0.20 mmol) in dichloromethane (5 ml) was added to a solution of copper(II) acetate monohydrate (0.040 g, 0.20 mmol) and sodium nitrate (0.086 g, 0.20 mmol) in ethanol (5 ml). The mixture was stirred, heated under reflux (30 min) and then allowed to cool to room temperature. Yield: 70%. The crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into the solution for one week. Analysis calculated for C16H14NCuNaO9: C 42.63, H 3.13, N 3.11%; Found: C 42.29, H 3.17, N, 3.22%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the the title compound, showing 30% probability displacement ellipsoids.
catena-Poly[[bis(µ-2-formyl-6-methoxyphenolato)copper(II)sodium]- µ-nitrato] top
Crystal data top
[CuNa(C8H7O3)2(NO3)]F(000) = 916
Mr = 450.81Dx = 1.741 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15663 reflections
a = 7.737 (2) Åθ = 3.1–27.5°
b = 13.165 (4) ŵ = 1.35 mm1
c = 16.889 (6) ÅT = 293 K
V = 1720.2 (9) Å3Block, brown
Z = 40.35 × 0.33 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3926 independent reflections
Radiation source: fine-focus sealed tube3692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 910
Tmin = 0.648, Tmax = 0.691k = 1716
16868 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3926 reflectionsΔρmax = 0.22 e Å3
255 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1671 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (8)
Crystal data top
[CuNa(C8H7O3)2(NO3)]V = 1720.2 (9) Å3
Mr = 450.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.737 (2) ŵ = 1.35 mm1
b = 13.165 (4) ÅT = 293 K
c = 16.889 (6) Å0.35 × 0.33 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3926 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3692 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.691Rint = 0.025
16868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.21 e Å3
3926 reflectionsAbsolute structure: Flack (1983), 1671 Friedel pairs
255 parametersAbsolute structure parameter: 0.007 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0679 (2)0.92359 (12)0.67688 (10)0.0321 (3)
C20.0859 (2)1.02319 (13)0.70061 (11)0.0375 (4)
H20.03781.07490.67030.045*
C30.1765 (2)1.04734 (13)0.77039 (12)0.0411 (4)
H30.18951.11480.78560.049*
C40.2450 (3)0.97166 (13)0.81555 (10)0.0406 (4)
H40.30250.98780.86220.049*
C50.2298 (2)0.86831 (12)0.79230 (10)0.0331 (3)
C60.14000 (19)0.84231 (11)0.72185 (10)0.0293 (3)
C70.3021 (2)0.79245 (15)0.84132 (11)0.0401 (4)
H70.34520.81490.88970.048*
C80.0953 (3)0.96653 (15)0.56154 (13)0.0484 (5)
H8A0.17811.00340.59260.073*
H8B0.15290.93410.51800.073*
H8C0.00951.01260.54160.073*
C90.0758 (2)0.44760 (12)0.54819 (9)0.0309 (3)
C100.0625 (3)0.34687 (13)0.52792 (12)0.0421 (4)
H100.00320.32810.48230.051*
C110.1387 (3)0.27166 (13)0.57635 (13)0.0495 (5)
H110.12920.20360.56220.059*
C120.2248 (3)0.29714 (13)0.64274 (12)0.0446 (5)
H120.27380.24660.67400.054*
C130.2416 (3)0.40139 (11)0.66559 (10)0.0337 (3)
C140.1682 (2)0.47851 (12)0.61750 (9)0.0287 (3)
C150.3276 (2)0.42379 (13)0.73717 (11)0.0379 (4)
H150.37280.36880.76480.046*
C160.0964 (3)0.50378 (17)0.43943 (13)0.0513 (5)
H16A0.02410.47280.40000.077*
H16B0.14580.56500.41850.077*
H16C0.18720.45770.45380.077*
Cu10.25742 (3)0.636953 (13)0.726538 (11)0.03049 (6)
N10.5362 (2)0.72115 (11)0.60308 (10)0.0391 (3)
Na10.03464 (14)0.71081 (6)0.56511 (5)0.0556 (2)
O10.01427 (18)0.89168 (9)0.60950 (8)0.0423 (3)
O20.11760 (15)0.74989 (9)0.69651 (7)0.0349 (3)
O30.31612 (18)0.69909 (10)0.82857 (8)0.0433 (3)
O40.00468 (16)0.52733 (9)0.50775 (7)0.0367 (3)
O50.17851 (16)0.57479 (8)0.63174 (7)0.0330 (2)
O60.34982 (16)0.50983 (9)0.76779 (8)0.0386 (3)
O70.51745 (17)0.70304 (11)0.67537 (8)0.0449 (3)
O80.4100 (2)0.74389 (12)0.56117 (8)0.0547 (4)
O90.6790 (2)0.7162 (2)0.57232 (13)0.0937 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (8)0.0350 (8)0.0315 (8)0.0009 (7)0.0035 (7)0.0002 (7)
C20.0381 (9)0.0324 (8)0.0421 (10)0.0028 (7)0.0080 (7)0.0033 (7)
C30.0414 (9)0.0336 (8)0.0482 (10)0.0039 (7)0.0074 (9)0.0076 (8)
C40.0388 (9)0.0458 (9)0.0373 (8)0.0037 (10)0.0026 (9)0.0099 (7)
C50.0318 (8)0.0379 (8)0.0296 (7)0.0008 (8)0.0032 (6)0.0020 (6)
C60.0266 (7)0.0320 (7)0.0294 (7)0.0012 (6)0.0037 (6)0.0007 (6)
C70.0437 (10)0.0507 (9)0.0258 (8)0.0024 (8)0.0044 (7)0.0043 (7)
C80.0524 (12)0.0468 (10)0.0461 (11)0.0120 (10)0.0117 (9)0.0078 (9)
C90.0315 (8)0.0313 (7)0.0299 (8)0.0006 (7)0.0048 (7)0.0017 (6)
C100.0514 (10)0.0351 (8)0.0399 (9)0.0018 (8)0.0041 (8)0.0086 (8)
C110.0703 (14)0.0269 (7)0.0513 (12)0.0020 (9)0.0068 (11)0.0041 (8)
C120.0541 (12)0.0288 (7)0.0508 (10)0.0105 (9)0.0092 (10)0.0069 (7)
C130.0352 (8)0.0291 (6)0.0367 (8)0.0024 (8)0.0045 (8)0.0056 (6)
C140.0289 (7)0.0278 (7)0.0293 (8)0.0006 (6)0.0053 (6)0.0029 (6)
C150.0399 (9)0.0345 (8)0.0394 (10)0.0085 (8)0.0024 (8)0.0116 (7)
C160.0540 (12)0.0548 (11)0.0453 (11)0.0040 (10)0.0180 (10)0.0021 (9)
Cu10.03520 (10)0.02981 (9)0.02645 (10)0.00292 (9)0.00451 (9)0.00259 (7)
N10.0461 (9)0.0354 (7)0.0357 (8)0.0090 (7)0.0044 (7)0.0047 (6)
Na10.0954 (7)0.0374 (4)0.0340 (4)0.0132 (4)0.0188 (4)0.0012 (3)
O10.0518 (7)0.0344 (6)0.0407 (7)0.0082 (6)0.0130 (6)0.0016 (5)
O20.0404 (6)0.0302 (5)0.0340 (6)0.0051 (5)0.0081 (5)0.0019 (5)
O30.0581 (8)0.0437 (6)0.0282 (6)0.0092 (6)0.0082 (6)0.0006 (5)
O40.0423 (7)0.0344 (6)0.0334 (6)0.0006 (6)0.0082 (5)0.0009 (5)
O50.0434 (6)0.0244 (5)0.0312 (6)0.0007 (5)0.0066 (5)0.0042 (4)
O60.0415 (6)0.0402 (6)0.0343 (6)0.0054 (5)0.0075 (6)0.0078 (5)
O70.0448 (7)0.0593 (8)0.0305 (6)0.0087 (6)0.0033 (6)0.0084 (6)
O80.0627 (9)0.0642 (9)0.0373 (8)0.0019 (8)0.0063 (7)0.0162 (7)
O90.0520 (10)0.158 (2)0.0716 (13)0.0040 (12)0.0224 (9)0.0250 (14)
Geometric parameters (Å, º) top
C1—O11.370 (2)C14—O51.2925 (19)
C1—C21.378 (2)C15—O61.257 (2)
C1—C61.426 (2)C15—H150.9300
C2—C31.407 (3)C16—O41.428 (2)
C2—H20.9300C16—H16A0.9600
C3—C41.362 (3)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.421 (2)Cu1—O51.8989 (12)
C4—H40.9300Cu1—O21.9074 (12)
C5—C71.413 (2)Cu1—O61.9487 (12)
C5—C61.420 (2)Cu1—O31.9608 (14)
C6—O21.3013 (19)Cu1—O72.3560 (14)
C7—O31.252 (2)Cu1—Na13.3688 (11)
C7—H70.9300N1—O91.223 (2)
C8—O11.421 (2)N1—O81.243 (2)
C8—H8A0.9600N1—O71.252 (2)
C8—H8B0.9600N1—Na1i2.978 (2)
C8—H8C0.9600Na1—O22.3667 (16)
C9—O41.368 (2)Na1—O52.3900 (14)
C9—C101.373 (2)Na1—O8ii2.4154 (17)
C9—C141.431 (2)Na1—O12.5249 (15)
C10—C111.413 (3)Na1—O42.6129 (16)
C10—H100.9300Na1—O9ii2.749 (2)
C11—C121.347 (3)Na1—O9iii2.755 (2)
C11—H110.9300Na1—O82.937 (2)
C12—C131.431 (2)Na1—N1ii2.978 (2)
C12—H120.9300O8—Na1i2.4154 (17)
C13—C151.411 (3)O9—Na1i2.749 (2)
C13—C141.419 (2)O9—Na1iv2.755 (2)
O1—C1—C2125.48 (15)O8—N1—O7120.68 (16)
O1—C1—C6113.20 (14)O9—N1—Na1i67.31 (13)
C2—C1—C6121.31 (16)O8—N1—Na1i51.77 (9)
C1—C2—C3120.59 (16)O7—N1—Na1i170.58 (13)
C1—C2—H2119.7O2—Na1—O566.12 (4)
C3—C2—H2119.7O2—Na1—O8ii151.95 (6)
C4—C3—C2119.82 (16)O5—Na1—O8ii141.87 (6)
C4—C3—H3120.1O2—Na1—O163.72 (4)
C2—C3—H3120.1O5—Na1—O1129.54 (5)
C3—C4—C5120.89 (17)O8ii—Na1—O188.25 (6)
C3—C4—H4119.6O2—Na1—O4124.94 (5)
C5—C4—H4119.6O5—Na1—O461.52 (4)
C7—C5—C6120.96 (15)O8ii—Na1—O482.27 (5)
C7—C5—C4118.82 (16)O1—Na1—O4165.61 (6)
C6—C5—C4120.21 (15)O2—Na1—O9ii127.27 (7)
O2—C6—C5124.49 (14)O5—Na1—O9ii118.04 (7)
O2—C6—C1118.32 (15)O8ii—Na1—O9ii47.97 (5)
C5—C6—C1117.18 (14)O1—Na1—O9ii88.98 (7)
O3—C7—C5128.84 (17)O4—Na1—O9ii92.63 (7)
O3—C7—H7115.6O2—Na1—O9iii102.93 (7)
C5—C7—H7115.6O5—Na1—O9iii117.63 (7)
O1—C8—H8A109.5O8ii—Na1—O9iii68.52 (6)
O1—C8—H8B109.5O1—Na1—O9iii79.21 (7)
H8A—C8—H8B109.5O4—Na1—O9iii87.24 (7)
O1—C8—H8C109.5O9ii—Na1—O9iii115.72 (6)
H8A—C8—H8C109.5O2—Na1—O873.79 (5)
H8B—C8—H8C109.5O5—Na1—O870.20 (5)
O4—C9—C10125.88 (16)O8ii—Na1—O8109.77 (5)
O4—C9—C14113.03 (14)O1—Na1—O890.86 (5)
C10—C9—C14121.08 (16)O4—Na1—O8102.50 (6)
C9—C10—C11120.06 (18)O9ii—Na1—O861.80 (5)
C9—C10—H10120.0O9iii—Na1—O8169.91 (7)
C11—C10—H10120.0O2—Na1—N1ii145.87 (6)
C12—C11—C10120.92 (16)O5—Na1—N1ii132.26 (6)
C12—C11—H11119.5O8ii—Na1—N1ii23.83 (5)
C10—C11—H11119.5O1—Na1—N1ii90.01 (5)
C11—C12—C13120.54 (17)O4—Na1—N1ii85.69 (5)
C11—C12—H12119.7O9ii—Na1—N1ii24.23 (5)
C13—C12—H12119.7O9iii—Na1—N1ii92.20 (6)
C15—C13—C14121.97 (15)O8—Na1—N1ii85.98 (5)
C15—C13—C12118.31 (16)O2—Na1—Cu133.40 (3)
C14—C13—C12119.70 (16)O5—Na1—Cu133.32 (3)
O5—C14—C13124.79 (15)O8ii—Na1—Cu1171.94 (5)
O5—C14—C9117.52 (14)O1—Na1—Cu196.23 (4)
C13—C14—C9117.69 (15)O4—Na1—Cu194.51 (4)
O6—C15—C13127.26 (15)O9ii—Na1—Cu1125.19 (5)
O6—C15—H15116.4O9iii—Na1—Cu1118.86 (6)
C13—C15—H15116.4O8—Na1—Cu163.60 (3)
O4—C16—H16A109.5N1ii—Na1—Cu1148.94 (5)
O4—C16—H16B109.5C1—O1—C8117.75 (14)
H16A—C16—H16B109.5C1—O1—Na1117.80 (10)
O4—C16—H16C109.5C8—O1—Na1123.41 (12)
H16A—C16—H16C109.5C6—O2—Cu1124.46 (10)
H16B—C16—H16C109.5C6—O2—Na1123.21 (11)
O5—Cu1—O285.95 (5)Cu1—O2—Na1103.51 (5)
O5—Cu1—O692.82 (5)C7—O3—Cu1122.72 (12)
O2—Cu1—O6166.56 (5)C9—O4—C16117.21 (14)
O5—Cu1—O3174.40 (6)C9—O4—Na1119.25 (10)
O2—Cu1—O392.28 (5)C16—O4—Na1123.29 (11)
O6—Cu1—O387.66 (6)C14—O5—Cu1126.82 (10)
O5—Cu1—O797.15 (5)C14—O5—Na1128.20 (11)
O2—Cu1—O795.67 (5)Cu1—O5—Na1102.93 (5)
O6—Cu1—O797.76 (5)C15—O6—Cu1125.21 (11)
O3—Cu1—O788.31 (6)N1—O7—Cu1121.78 (11)
O5—Cu1—Na143.75 (4)N1—O8—Na1i104.40 (12)
O2—Cu1—Na143.08 (4)N1—O8—Na1136.74 (11)
O6—Cu1—Na1136.46 (4)Na1i—O8—Na1116.83 (6)
O3—Cu1—Na1135.18 (4)N1—O9—Na1i88.46 (14)
O7—Cu1—Na191.92 (4)N1—O9—Na1iv157.32 (17)
O9—N1—O8118.74 (18)Na1i—O9—Na1iv112.18 (7)
O9—N1—O7120.58 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuNa(C8H7O3)2(NO3)]
Mr450.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.737 (2), 13.165 (4), 16.889 (6)
V3)1720.2 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.648, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
16868, 3926, 3692
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.03
No. of reflections3926
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21
Absolute structureFlack (1983), 1671 Friedel pairs
Absolute structure parameter0.007 (8)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Selected bond lengths (Å) top
Cu1—O51.8989 (12)Na1—O8i2.4154 (17)
Cu1—O21.9074 (12)Na1—O12.5249 (15)
Cu1—O61.9487 (12)Na1—O42.6129 (16)
Cu1—O31.9608 (14)Na1—O9i2.749 (2)
Cu1—O72.3560 (14)Na1—O9ii2.755 (2)
Na1—O22.3667 (16)Na1—O82.937 (2)
Na1—O52.3900 (14)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from Heilongjiang Province (12511386) and Key Laboratory of Chemical Engineering Processes & Technology for High-efficiency Conversion, College of Heilongjiang Province.

References

First citationCostes, J. P., Dahan, F., Dupuis, A. & Laurent, J. P. (1997a). Inorg. Chem. 36, 3429–3433.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationCostes, J. P., Laurent, J. P., Chabert, P., Commenges, G. & Dahan, F. (1997b). Inorg. Chem. 36, 656–660.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.   Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds