organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(3-Methyl­phen­yl)sulfamo­yl]phen­yl}benzamide

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, and bDepartment of Chemistry, St. Joseph Engineering College, Vamanjoor, Mangalore 575 028, India
*Correspondence e-mail: jyothikudva@gmail.com

(Received 28 September 2011; accepted 30 September 2011; online 8 October 2011)

In the title compound, C20H18N2O3S, the dihedral angle between the central benzene ring and the amide group is 24.1 (3)° and that between this ring and the aromatic ring of the tolyl group is 68.2 (16)°. In the crystal, adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into a linear chain running along [100]. Weak C—H⋯O contacts also occur. Extensive weak ππ inter­actions exist from both face-to-face and face-to-edge inter­actions occur between the aromatic rings [centroid–centroid distances = 3.612 (2) and 4.843 (2) Å].

Related literature

For related structures, see: Aziz-ur-Rehman et al. (2010a[Aziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.],b[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.],c[Aziz-ur-Rehman, Shahzaman, Akkurt, M., Abbasi, M. A. & Khan, I. U. (2010c). Acta Cryst. E66, o2855.]); Khan et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]); Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.], 2009[Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98-o99.]); Yasmeen et al. (2010[Yasmeen, S., Murtaza, S., Akkurt, M., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o2264.]); Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O3S

  • Mr = 366.42

  • Triclinic, [P \overline 1]

  • a = 8.5344 (2) Å

  • b = 8.8477 (3) Å

  • c = 12.4383 (4) Å

  • α = 77.924 (2)°

  • β = 75.382 (2)°

  • γ = 86.537 (2)°

  • V = 888.67 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 123 K

  • 0.32 × 0.20 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer with Bruker APEXII detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.675, Tmax = 0.746

  • 11971 measured reflections

  • 3122 independent reflections

  • 2591 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.04

  • 3122 reflections

  • 242 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O27i 0.86 (2) 1.99 (2) 2.813 (2) 160 (2)
N25—H25⋯O17ii 0.84 (2) 2.38 (2) 3.062 (2) 140 (2)
C4—H4⋯O18 0.95 2.40 3.047 (3) 125
Symmetry codes: (i) -x, -y+2, -z+2; (ii) x-1, y, z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; Otwinowski et al. 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006)[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Sulfonamides are very important class of compounds because of their antibacterial and enzyme inhibitor properties as well as their extensive use in medicine. As a contribution to a structural study of sulfonamide derivatives (Khan et al., 2010; Aziz-ur-Rehman et al., 2010a,b,c; Yasmeen et al., 2010; Gowda et al. 2007), we report here the title compound, N-{4-[(3-methylphenyl)sulfamoyl]phenyl}benzamide (I).

Compound (I) crystallizes in triclinic space group P-1 (No. 2) without any solvent molecules and having a single molecule in an asymmetric unit (Fig. 1). The sulfonyl and amide groups show characteristic geometries (tetrahedral and planar conformation, respectively) having typical bond distances and angles for these groups (see Tables). The dihedral angles between the central phenyl group [C(19)>C(24)] and amide group N(25)—C(26)—O(27) is about 24° and the tilting of terminal groups bonded to the sulfonamide is about 111°. The molecules are packed in infinite chains along tne a-axis enabling the hydrogen bond network to occur via a axis, whereas along c axis the packing is more columnar forming "box"-like shapes cornered by the sulfonyl groups (Fig. 2). The infinite hydrogen bond networks, along a axis, occur via N(7)—H(7)···O(27) and N(25)—H(25)···O(17) donor-acceptors with d(D···A) bond distances of 2.813 (2) and 3.062 (2) Å in angles of about 160° and 140°, respectively. Three weaker intramolecular hydrogen bonds exist between aromatic ring H atoms (H4, H20 H23) and O atoms O(27) and O(18) having d(D···A) distances of about 2.9–3.0 Å and having fairly unfavorable contact angles varying 105–125°. In addition extensive weak π-π interactions exist in the structure as both face-to-face and face-to-edge interactions occurs between the phenyl rings (Fig. 3).

Related literature top

For related structures, see: Aziz-ur-Rehman et al. (2010a,b,c); Khan et al. (2010); Shad et al. (2008, 2009); Yasmeen et al. (2010); Gowda et al. (2007).

Experimental top

4-Amino-N-(3-methylphenyl)benzenesulfonamide (0.5 g, 1.91 mmol) was taken in 20 ml dry EtOH and then benzoyl chloride (0.22 ml, 1.91 mmol) was added dropwise. The reaction medium was maintained at basic condition by adding pyridine to neutralize the produced HCl. The mixture was refluxed at 343 K for 2 h to complete the reaction. The progress of the reaction was monitored by TLC. A white precipitate obtained was filtered and purified in acetone to constant melting point. Few crystals suitable for a single-crystal structure determination were recrystallized from ethanol-acetone solution.

Refinement top

Hydrogen atoms were either calculated to their positions as riding atoms (C host) or taken from the electron density map (N host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al. 2003); data reduction: DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al. 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 50% propability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Molecular packing along a-, b- and c-axes from left to right, respectively.
[Figure 3] Fig. 3. Examples of extensive π-π interaction networks between neighbouring molecules.
N-{4-[(3-Methylphenyl)sulfamoyl]phenyl}benzamide top
Crystal data top
C20H18N2O3SZ = 2
Mr = 366.42F(000) = 384
Triclinic, P1Dx = 1.369 Mg m3
a = 8.5344 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8477 (3) ÅCell parameters from 4151 reflections
c = 12.4383 (4) Åθ = 0.4–28.3°
α = 77.924 (2)°µ = 0.21 mm1
β = 75.382 (2)°T = 123 K
γ = 86.537 (2)°Block, colourless
V = 888.67 (5) Å30.32 × 0.20 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer with Bruker APEXII detector
3122 independent reflections
Radiation source: fine-focus sealed tube2591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.675, Tmax = 0.746k = 1010
11971 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0225P)2 + 0.7958P]
where P = (Fo2 + 2Fc2)/3
3122 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H18N2O3Sγ = 86.537 (2)°
Mr = 366.42V = 888.67 (5) Å3
Triclinic, P1Z = 2
a = 8.5344 (2) ÅMo Kα radiation
b = 8.8477 (3) ŵ = 0.21 mm1
c = 12.4383 (4) ÅT = 123 K
α = 77.924 (2)°0.32 × 0.20 × 0.16 mm
β = 75.382 (2)°
Data collection top
Nonius KappaCCD
diffractometer with Bruker APEXII detector
3122 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2591 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.746Rint = 0.040
11971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
3122 reflectionsΔρmin = 0.41 e Å3
242 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C280.6233 (2)0.8118 (2)1.16798 (16)0.0171 (4)
C290.6766 (2)0.6615 (2)1.21654 (17)0.0204 (4)
H290.60330.57691.20930.024*
C300.8372 (2)0.6356 (3)1.27566 (18)0.0246 (5)
H300.87360.53331.30980.030*
C310.9443 (2)0.7590 (3)1.28473 (17)0.0257 (5)
H311.05490.74071.32290.031*
C320.8910 (2)0.9090 (3)1.23850 (18)0.0260 (5)
H320.96460.99331.24580.031*
C330.7305 (2)0.9358 (2)1.18166 (17)0.0204 (4)
H330.69321.03871.15190.025*
C260.4514 (2)0.8461 (2)1.10486 (16)0.0167 (4)
C220.2076 (2)0.7276 (2)0.99572 (16)0.0152 (4)
C230.0888 (2)0.7983 (2)1.02747 (17)0.0180 (4)
H230.11900.85891.08430.022*
C240.0732 (2)0.7796 (2)0.97568 (17)0.0176 (4)
H240.15450.82730.99680.021*
C190.1162 (2)0.6904 (2)0.89228 (16)0.0155 (4)
C200.0010 (2)0.6204 (2)0.86079 (17)0.0176 (4)
H200.02930.55950.80420.021*
C210.1630 (2)0.6395 (2)0.91227 (16)0.0177 (4)
H210.24390.59230.89040.021*
C50.3326 (2)0.9120 (2)0.65597 (16)0.0192 (4)
C60.3642 (2)1.0699 (2)0.62394 (17)0.0220 (4)
H60.41851.11680.66630.026*
C10.3176 (2)1.1604 (3)0.53119 (18)0.0276 (5)
C1B0.3540 (3)1.3306 (3)0.4984 (2)0.0390 (6)
H1B10.43561.35190.42600.058*
H1B20.39551.36170.55710.058*
H1B30.25481.38900.49090.058*
C20.2371 (3)1.0896 (3)0.47118 (19)0.0326 (6)
H20.20381.14920.40780.039*
C30.2051 (3)0.9333 (3)0.50290 (19)0.0321 (5)
H30.14920.88700.46120.039*
C40.2530 (2)0.8425 (3)0.59478 (17)0.0251 (5)
H40.23170.73470.61530.030*
N250.37393 (19)0.73597 (19)1.04858 (14)0.0174 (4)
N70.39203 (18)0.82946 (19)0.74938 (14)0.0172 (4)
O270.38543 (16)0.96655 (15)1.10373 (12)0.0208 (3)
O170.41159 (15)0.63241 (15)0.91408 (11)0.0196 (3)
O180.33106 (15)0.55489 (15)0.75619 (12)0.0204 (3)
S160.32251 (5)0.66440 (5)0.82764 (4)0.01601 (14)
H70.415 (2)0.887 (2)0.7913 (17)0.019*
H250.430 (2)0.668 (2)1.0390 (18)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C280.0168 (10)0.0206 (10)0.0157 (10)0.0016 (8)0.0056 (8)0.0060 (8)
C290.0170 (10)0.0216 (10)0.0235 (11)0.0017 (8)0.0045 (8)0.0075 (9)
C300.0206 (11)0.0283 (12)0.0251 (12)0.0053 (9)0.0024 (9)0.0081 (9)
C310.0157 (10)0.0428 (13)0.0197 (11)0.0004 (9)0.0019 (8)0.0114 (10)
C320.0205 (11)0.0363 (13)0.0235 (12)0.0122 (9)0.0070 (9)0.0126 (10)
C330.0226 (10)0.0221 (10)0.0172 (10)0.0051 (8)0.0064 (8)0.0051 (8)
C260.0179 (10)0.0181 (10)0.0147 (10)0.0022 (8)0.0062 (8)0.0023 (8)
C220.0150 (9)0.0134 (9)0.0158 (10)0.0007 (7)0.0032 (7)0.0000 (8)
C230.0201 (10)0.0163 (10)0.0192 (10)0.0025 (8)0.0060 (8)0.0066 (8)
C240.0164 (10)0.0160 (10)0.0218 (11)0.0003 (8)0.0069 (8)0.0044 (8)
C190.0139 (9)0.0161 (9)0.0146 (10)0.0002 (7)0.0017 (7)0.0007 (8)
C200.0180 (10)0.0172 (10)0.0185 (10)0.0002 (8)0.0038 (8)0.0060 (8)
C210.0164 (10)0.0169 (10)0.0215 (11)0.0022 (8)0.0067 (8)0.0042 (8)
C50.0127 (9)0.0245 (11)0.0169 (10)0.0040 (8)0.0001 (8)0.0022 (8)
C60.0177 (10)0.0236 (11)0.0201 (11)0.0026 (8)0.0021 (8)0.0033 (9)
C10.0200 (11)0.0306 (12)0.0227 (12)0.0089 (9)0.0048 (9)0.0012 (9)
C1B0.0414 (14)0.0288 (13)0.0329 (14)0.0107 (11)0.0030 (11)0.0064 (11)
C20.0221 (11)0.0484 (15)0.0206 (12)0.0082 (10)0.0036 (9)0.0031 (10)
C30.0228 (11)0.0491 (15)0.0244 (12)0.0033 (10)0.0073 (9)0.0048 (11)
C40.0209 (11)0.0307 (12)0.0226 (12)0.0027 (9)0.0044 (9)0.0034 (9)
N250.0131 (8)0.0159 (8)0.0241 (9)0.0008 (7)0.0027 (7)0.0083 (7)
N70.0161 (8)0.0172 (9)0.0190 (9)0.0018 (7)0.0052 (7)0.0038 (7)
O270.0210 (7)0.0163 (7)0.0256 (8)0.0022 (6)0.0036 (6)0.0073 (6)
O170.0158 (7)0.0213 (7)0.0223 (8)0.0018 (6)0.0071 (6)0.0032 (6)
O180.0183 (7)0.0191 (7)0.0249 (8)0.0006 (6)0.0026 (6)0.0100 (6)
S160.0132 (2)0.0155 (2)0.0188 (3)0.00087 (18)0.00303 (18)0.00364 (19)
Geometric parameters (Å, º) top
C28—C291.392 (3)C20—C211.386 (3)
C28—C331.396 (3)C20—H200.9500
C28—C261.495 (3)C21—H210.9500
C29—C301.390 (3)C5—C41.388 (3)
C29—H290.9500C5—C61.394 (3)
C30—C311.385 (3)C5—N71.428 (3)
C30—H300.9500C6—C11.391 (3)
C31—C321.386 (3)C6—H60.9500
C31—H310.9500C1—C21.389 (3)
C32—C331.383 (3)C1—C1B1.506 (3)
C32—H320.9500C1B—H1B10.9800
C33—H330.9500C1B—H1B20.9800
C26—O271.231 (2)C1B—H1B30.9800
C26—N251.360 (2)C2—C31.380 (3)
C22—C211.390 (3)C2—H20.9500
C22—C231.400 (3)C3—C41.390 (3)
C22—N251.410 (2)C3—H30.9500
C23—C241.386 (3)C4—H40.9500
C23—H230.9500N25—H250.835 (15)
C24—C191.396 (3)N7—S161.6280 (16)
C24—H240.9500N7—H70.861 (15)
C19—C201.383 (3)O17—S161.4400 (14)
C19—S161.7642 (18)O18—S161.4328 (14)
C29—C28—C33119.77 (18)C22—C21—H21119.8
C29—C28—C26121.93 (17)C4—C5—C6119.79 (19)
C33—C28—C26118.25 (18)C4—C5—N7123.68 (18)
C30—C29—C28119.81 (18)C6—C5—N7116.48 (18)
C30—C29—H29120.1C1—C6—C5121.3 (2)
C28—C29—H29120.1C1—C6—H6119.3
C31—C30—C29120.0 (2)C5—C6—H6119.3
C31—C30—H30120.0C2—C1—C6118.3 (2)
C29—C30—H30120.0C2—C1—C1B121.6 (2)
C30—C31—C32120.40 (19)C6—C1—C1B120.1 (2)
C30—C31—H31119.8C1—C1B—H1B1109.5
C32—C31—H31119.8C1—C1B—H1B2109.5
C33—C32—C31119.89 (19)H1B1—C1B—H1B2109.5
C33—C32—H32120.1C1—C1B—H1B3109.5
C31—C32—H32120.1H1B1—C1B—H1B3109.5
C32—C33—C28120.08 (19)H1B2—C1B—H1B3109.5
C32—C33—H33120.0C3—C2—C1120.6 (2)
C28—C33—H33120.0C3—C2—H2119.7
O27—C26—N25122.61 (17)C1—C2—H2119.7
O27—C26—C28121.90 (17)C2—C3—C4121.2 (2)
N25—C26—C28115.48 (16)C2—C3—H3119.4
C21—C22—C23119.99 (17)C4—C3—H3119.4
C21—C22—N25117.37 (16)C5—C4—C3118.8 (2)
C23—C22—N25122.59 (17)C5—C4—H4120.6
C24—C23—C22119.69 (18)C3—C4—H4120.6
C24—C23—H23120.2C26—N25—C22127.54 (16)
C22—C23—H23120.2C26—N25—H25118.0 (15)
C23—C24—C19119.67 (17)C22—N25—H25114.2 (15)
C23—C24—H24120.2C5—N7—S16124.74 (13)
C19—C24—H24120.2C5—N7—H7114.5 (14)
C20—C19—C24120.72 (17)S16—N7—H7109.6 (14)
C20—C19—S16119.57 (15)O18—S16—O17118.60 (8)
C24—C19—S16119.70 (14)O18—S16—N7109.02 (8)
C19—C20—C21119.61 (18)O17—S16—N7104.61 (8)
C19—C20—H20120.2O18—S16—C19107.45 (8)
C21—C20—H20120.2O17—S16—C19108.77 (8)
C20—C21—C22120.32 (17)N7—S16—C19107.99 (8)
C20—C21—H21119.8
C33—C28—C29—C301.8 (3)C5—C6—C1—C20.6 (3)
C26—C28—C29—C30179.18 (18)C5—C6—C1—C1B179.75 (18)
C28—C29—C30—C310.9 (3)C6—C1—C2—C30.3 (3)
C29—C30—C31—C322.2 (3)C1B—C1—C2—C3180.0 (2)
C30—C31—C32—C330.8 (3)C1—C2—C3—C40.4 (3)
C31—C32—C33—C281.9 (3)C6—C5—C4—C30.6 (3)
C29—C28—C33—C323.2 (3)N7—C5—C4—C3177.87 (18)
C26—C28—C33—C32179.34 (18)C2—C3—C4—C50.9 (3)
C29—C28—C26—O27148.36 (19)O27—C26—N25—C229.8 (3)
C33—C28—C26—O2729.1 (3)C28—C26—N25—C22170.63 (17)
C29—C28—C26—N2532.1 (3)C21—C22—N25—C26158.59 (19)
C33—C28—C26—N25150.49 (18)C23—C22—N25—C2624.1 (3)
C21—C22—C23—C240.3 (3)C4—C5—N7—S1624.1 (3)
N25—C22—C23—C24177.01 (17)C6—C5—N7—S16158.56 (14)
C22—C23—C24—C190.0 (3)C5—N7—S16—O1855.80 (17)
C23—C24—C19—C200.0 (3)C5—N7—S16—O17176.39 (15)
C23—C24—C19—S16179.17 (14)C5—N7—S16—C1960.64 (17)
C24—C19—C20—C210.3 (3)C20—C19—S16—O185.69 (18)
S16—C19—C20—C21179.41 (15)C24—C19—S16—O18173.47 (15)
C19—C20—C21—C220.5 (3)C20—C19—S16—O17135.24 (15)
C23—C22—C21—C200.5 (3)C24—C19—S16—O1743.92 (18)
N25—C22—C21—C20176.90 (17)C20—C19—S16—N7111.78 (16)
C4—C5—C6—C10.1 (3)C24—C19—S16—N769.07 (17)
N7—C5—C6—C1177.35 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O27i0.86 (2)1.99 (2)2.813 (2)160 (2)
N25—H25···O17ii0.84 (2)2.38 (2)3.062 (2)140 (2)
C4—H4···O180.952.403.047 (3)125
C20—H20···O180.952.492.884 (2)105
C23—H23···O270.952.392.907 (2)114
Symmetry codes: (i) x, y+2, z+2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18N2O3S
Mr366.42
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.5344 (2), 8.8477 (3), 12.4383 (4)
α, β, γ (°)77.924 (2), 75.382 (2), 86.537 (2)
V3)888.67 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.32 × 0.20 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer with Bruker APEXII detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.675, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11971, 3122, 2591
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.04
No. of reflections3122
No. of parameters242
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.41

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1997; Otwinowski et al. 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O27i0.863 (19)1.987 (19)2.813 (2)159.9 (17)
N25—H25···O17ii0.836 (18)2.379 (19)3.062 (2)139.5 (17)
C4—H4···O180.952.403.047 (3)125
Symmetry codes: (i) x, y+2, z+2; (ii) x1, y, z.
 

References

First citationAziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Shahzaman, Akkurt, M., Abbasi, M. A. & Khan, I. U. (2010c). Acta Cryst. E66, o2855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYasmeen, S., Murtaza, S., Akkurt, M., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o2264.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds