metal-organic compounds
μ4-Orthothiocarbonato-tetrakis[tricarbonyliron(I)](2 Fe—Fe)
aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and cHubei Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn
The fused bis-butterfly-shaped title compound, [Fe4(CS4)(CO)12], possesses an orthothiocarbonate (CS44−) ligand that acts as a bridge between two Fe2(CO)6 units. A short intramolecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S2Fe2(CO)6 fragment.
Related literature
For general background to related complexes, see: Mathur et al. (2009). For uses of R3P/CS2 in coordination chemistry and organometallic chemistry, see: Galindo et al. (1999). For the synthesis of butterfly S2Fe2(CO)6 complexes, see: Song (2005). For related structures, see: Shaver et al. (1979); Ortega-Alfaro et al. (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811041936/ng5239sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811041936/ng5239Isup2.hkl
A THF solution of Et3P/CS2 (1 mmol) and Fe3(CO)12 (1 mmol) under inert atmosphere is stirred for 24 h at room temperature. After removal of the solvent, the mixture was purified by
on silica gel with dichloromethane-petroleum ether (v/v, 1:3) as eluant to give the red-orange solid. Single crystals were grown from ether solution of the title compound.Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Fe4(CS4)(CO)12] | Z = 2 |
Mr = 699.81 | F(000) = 684 |
Triclinic, P1 | Dx = 2.035 Mg m−3 |
a = 9.0875 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.9002 (11) Å | Cell parameters from 4237 reflections |
c = 12.6448 (13) Å | θ = 1.7–27.5° |
α = 101.8859 (12)° | µ = 2.91 mm−1 |
β = 92.4964 (12)° | T = 296 K |
γ = 110.0857 (12)° | Prism, red |
V = 1142.2 (2) Å3 | 0.15 × 0.12 × 0.11 mm |
Bruker SMART APEX CCD diffractometer | 5128 independent reflections |
Radiation source: fine-focus sealed tube | 4237 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω and ϕ scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −11→11 |
Tmin = 0.658, Tmax = 0.721 | k = −14→14 |
10006 measured reflections | l = −16→16 |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.026 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5128 reflections | Δρmax = 0.35 e Å−3 |
298 parameters | Δρmin = −0.27 e Å−3 |
[Fe4(CS4)(CO)12] | γ = 110.0857 (12)° |
Mr = 699.81 | V = 1142.2 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0875 (9) Å | Mo Kα radiation |
b = 10.9002 (11) Å | µ = 2.91 mm−1 |
c = 12.6448 (13) Å | T = 296 K |
α = 101.8859 (12)° | 0.15 × 0.12 × 0.11 mm |
β = 92.4964 (12)° |
Bruker SMART APEX CCD diffractometer | 5128 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 4237 reflections with I > 2σ(I) |
Tmin = 0.658, Tmax = 0.721 | Rint = 0.025 |
10006 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 298 parameters |
wR(F2) = 0.070 | 6 restraints |
S = 1.04 | Δρmax = 0.35 e Å−3 |
5128 reflections | Δρmin = −0.27 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6561 (3) | 0.7935 (2) | 0.77984 (18) | 0.0440 (5) | |
C2 | 0.8526 (3) | 0.8863 (3) | 0.6347 (2) | 0.0506 (6) | |
C3 | 0.9578 (3) | 0.9654 (3) | 0.8400 (2) | 0.0495 (6) | |
C4 | 1.1219 (3) | 0.7705 (3) | 0.5832 (2) | 0.0576 (7) | |
C5 | 1.2260 (3) | 0.8567 (3) | 0.7869 (2) | 0.0499 (6) | |
C6 | 1.1533 (3) | 0.5863 (3) | 0.6883 (2) | 0.0520 (6) | |
C7 | 0.7715 (3) | 0.4656 (3) | 1.0044 (2) | 0.0518 (6) | |
C8 | 0.6869 (3) | 0.2015 (3) | 0.9062 (2) | 0.0571 (7) | |
C9 | 0.4644 (3) | 0.2955 (2) | 0.94124 (17) | 0.0461 (6) | |
C10 | 0.5449 (3) | 0.1072 (3) | 0.6532 (2) | 0.0533 (6) | |
C11 | 0.3306 (3) | 0.2117 (3) | 0.69401 (19) | 0.0538 (6) | |
C12 | 0.5320 (3) | 0.3000 (2) | 0.54991 (19) | 0.0461 (5) | |
C13 | 0.7801 (2) | 0.5349 (2) | 0.75626 (15) | 0.0326 (4) | |
Fe1 | 0.85275 (4) | 0.80727 (3) | 0.74597 (2) | 0.03532 (9) | |
Fe2 | 1.06610 (4) | 0.71578 (3) | 0.70503 (2) | 0.03858 (9) | |
Fe3 | 0.64765 (4) | 0.34558 (3) | 0.88425 (2) | 0.03604 (9) | |
Fe4 | 0.54035 (4) | 0.27424 (3) | 0.68685 (2) | 0.03649 (9) | |
O1 | 0.5347 (2) | 0.7883 (2) | 0.80095 (16) | 0.0652 (5) | |
O2 | 0.8523 (3) | 0.9343 (2) | 0.56303 (17) | 0.0808 (7) | |
O3 | 1.0252 (3) | 1.0659 (2) | 0.89976 (17) | 0.0801 (6) | |
O4 | 1.1562 (3) | 0.8060 (3) | 0.50561 (17) | 0.0906 (8) | |
O5 | 1.3234 (2) | 0.9495 (2) | 0.83931 (18) | 0.0764 (6) | |
O6 | 1.2101 (3) | 0.5078 (2) | 0.67522 (19) | 0.0802 (6) | |
O7 | 0.8437 (3) | 0.5364 (2) | 1.08183 (16) | 0.0849 (7) | |
O8 | 0.7108 (3) | 0.1096 (2) | 0.9194 (2) | 0.0923 (7) | |
O9 | 0.3472 (2) | 0.2622 (2) | 0.97500 (15) | 0.0716 (6) | |
O10 | 0.5481 (3) | 0.0019 (2) | 0.63331 (18) | 0.0840 (7) | |
O11 | 0.1982 (3) | 0.1726 (3) | 0.69931 (18) | 0.0901 (7) | |
O12 | 0.5245 (2) | 0.3122 (2) | 0.46352 (14) | 0.0717 (6) | |
S1 | 0.92568 (6) | 0.68363 (5) | 0.84778 (4) | 0.03454 (12) | |
S2 | 0.80928 (7) | 0.60300 (6) | 0.63482 (4) | 0.03789 (13) | |
S3 | 0.80213 (6) | 0.37272 (5) | 0.74843 (4) | 0.03674 (12) | |
S4 | 0.57807 (6) | 0.47963 (5) | 0.79267 (4) | 0.03420 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0464 (14) | 0.0398 (13) | 0.0478 (12) | 0.0174 (11) | 0.0032 (10) | 0.0116 (10) |
C2 | 0.0482 (15) | 0.0460 (14) | 0.0586 (14) | 0.0159 (12) | 0.0062 (12) | 0.0168 (12) |
C3 | 0.0446 (14) | 0.0430 (14) | 0.0568 (14) | 0.0113 (12) | 0.0098 (11) | 0.0103 (12) |
C4 | 0.0577 (17) | 0.0620 (17) | 0.0653 (17) | 0.0292 (14) | 0.0259 (14) | 0.0241 (14) |
C5 | 0.0368 (14) | 0.0484 (15) | 0.0656 (16) | 0.0140 (12) | 0.0142 (12) | 0.0163 (13) |
C6 | 0.0452 (15) | 0.0523 (15) | 0.0623 (15) | 0.0179 (12) | 0.0168 (12) | 0.0189 (13) |
C7 | 0.0536 (16) | 0.0528 (15) | 0.0469 (13) | 0.0150 (13) | 0.0004 (11) | 0.0155 (12) |
C8 | 0.0601 (17) | 0.0545 (16) | 0.0633 (16) | 0.0241 (14) | 0.0094 (13) | 0.0218 (13) |
C9 | 0.0510 (15) | 0.0453 (14) | 0.0360 (11) | 0.0114 (12) | 0.0063 (10) | 0.0065 (10) |
C10 | 0.0601 (17) | 0.0402 (14) | 0.0502 (14) | 0.0095 (12) | 0.0063 (12) | 0.0057 (11) |
C11 | 0.0481 (16) | 0.0526 (16) | 0.0440 (13) | 0.0020 (13) | 0.0040 (11) | 0.0040 (11) |
C12 | 0.0436 (14) | 0.0401 (13) | 0.0434 (13) | 0.0046 (11) | 0.0000 (10) | 0.0049 (10) |
C13 | 0.0291 (11) | 0.0319 (10) | 0.0341 (10) | 0.0089 (9) | 0.0031 (8) | 0.0057 (8) |
Fe1 | 0.03283 (18) | 0.03237 (17) | 0.03938 (17) | 0.00973 (13) | 0.00397 (13) | 0.00912 (13) |
Fe2 | 0.03253 (18) | 0.03943 (18) | 0.04416 (18) | 0.01127 (14) | 0.01067 (13) | 0.01241 (14) |
Fe3 | 0.03703 (18) | 0.03452 (17) | 0.03534 (16) | 0.01093 (14) | 0.00442 (13) | 0.00903 (13) |
Fe4 | 0.03603 (18) | 0.03052 (17) | 0.03559 (16) | 0.00580 (13) | 0.00263 (13) | 0.00313 (13) |
O1 | 0.0438 (11) | 0.0676 (13) | 0.0955 (14) | 0.0303 (10) | 0.0199 (10) | 0.0237 (11) |
O2 | 0.0919 (17) | 0.0883 (16) | 0.0771 (13) | 0.0311 (14) | 0.0146 (12) | 0.0530 (13) |
O3 | 0.0750 (15) | 0.0484 (12) | 0.0894 (15) | 0.0052 (11) | 0.0037 (12) | −0.0119 (11) |
O4 | 0.112 (2) | 0.112 (2) | 0.0796 (14) | 0.0537 (16) | 0.0579 (14) | 0.0566 (15) |
O5 | 0.0456 (12) | 0.0589 (13) | 0.1025 (16) | 0.0024 (10) | 0.0007 (11) | 0.0014 (12) |
O6 | 0.0805 (16) | 0.0736 (15) | 0.1125 (17) | 0.0495 (13) | 0.0371 (13) | 0.0347 (13) |
O7 | 0.0857 (16) | 0.0882 (16) | 0.0530 (11) | 0.0075 (13) | −0.0226 (11) | 0.0045 (11) |
O8 | 0.1114 (19) | 0.0722 (15) | 0.1227 (19) | 0.0545 (15) | 0.0225 (15) | 0.0475 (15) |
O9 | 0.0573 (13) | 0.0795 (15) | 0.0636 (12) | 0.0077 (11) | 0.0265 (10) | 0.0115 (11) |
O10 | 0.1131 (19) | 0.0391 (11) | 0.0960 (16) | 0.0283 (12) | 0.0166 (14) | 0.0056 (11) |
O11 | 0.0473 (13) | 0.1058 (19) | 0.0861 (15) | −0.0053 (12) | 0.0126 (11) | 0.0119 (14) |
O12 | 0.0788 (14) | 0.0732 (14) | 0.0428 (10) | 0.0033 (11) | −0.0061 (9) | 0.0147 (9) |
S1 | 0.0314 (3) | 0.0334 (3) | 0.0332 (2) | 0.0058 (2) | 0.0010 (2) | 0.0063 (2) |
S2 | 0.0398 (3) | 0.0375 (3) | 0.0317 (3) | 0.0086 (2) | 0.0031 (2) | 0.0077 (2) |
S3 | 0.0338 (3) | 0.0338 (3) | 0.0430 (3) | 0.0135 (2) | 0.0070 (2) | 0.0071 (2) |
S4 | 0.0298 (3) | 0.0309 (3) | 0.0400 (3) | 0.0097 (2) | 0.0045 (2) | 0.0062 (2) |
C1—O1 | 1.131 (3) | C10—Fe4 | 1.798 (3) |
C1—Fe1 | 1.819 (3) | C11—O11 | 1.140 (3) |
C2—O2 | 1.136 (3) | C11—Fe4 | 1.804 (3) |
C2—Fe1 | 1.795 (2) | C12—O12 | 1.129 (3) |
C3—O3 | 1.142 (3) | C12—Fe4 | 1.813 (2) |
C3—Fe1 | 1.796 (3) | C13—S1 | 1.827 (2) |
C4—O4 | 1.145 (3) | C13—S2 | 1.8300 (19) |
C4—Fe2 | 1.795 (3) | C13—S3 | 1.830 (2) |
C5—O5 | 1.142 (3) | C13—S4 | 1.837 (2) |
C5—Fe2 | 1.795 (3) | Fe1—S1 | 2.2730 (6) |
C6—O6 | 1.130 (3) | Fe1—S2 | 2.2688 (7) |
C6—Fe2 | 1.824 (3) | Fe1—Fe2 | 2.4949 (5) |
C7—O7 | 1.127 (3) | Fe2—S1 | 2.2723 (6) |
C7—Fe3 | 1.818 (3) | Fe2—S2 | 2.2685 (7) |
C8—O8 | 1.138 (3) | Fe3—S3 | 2.2676 (6) |
C8—Fe3 | 1.796 (3) | Fe3—S4 | 2.2680 (6) |
C9—O9 | 1.134 (3) | Fe3—Fe4 | 2.5007 (5) |
C9—Fe3 | 1.798 (3) | Fe4—S3 | 2.2712 (7) |
C10—O10 | 1.135 (3) | Fe4—S4 | 2.2626 (6) |
S1···S2 | 2.6984 (8) | S3···S4 | 2.6977 (8) |
O1—C1—Fe1 | 178.3 (2) | C6—Fe2—Fe1 | 154.51 (8) |
O2—C2—Fe1 | 178.8 (2) | S2—Fe2—Fe1 | 56.649 (18) |
O3—C3—Fe1 | 179.6 (3) | S1—Fe2—Fe1 | 56.723 (17) |
O4—C4—Fe2 | 179.2 (3) | C8—Fe3—C9 | 91.66 (12) |
O5—C5—Fe2 | 177.0 (2) | C8—Fe3—C7 | 97.13 (12) |
O6—C6—Fe2 | 177.6 (2) | C9—Fe3—C7 | 98.48 (11) |
O7—C7—Fe3 | 176.7 (2) | C8—Fe3—S3 | 93.97 (9) |
O8—C8—Fe3 | 179.5 (3) | C9—Fe3—S3 | 155.51 (7) |
O9—C9—Fe3 | 178.5 (2) | C7—Fe3—S3 | 104.42 (8) |
O10—C10—Fe4 | 179.2 (3) | C8—Fe3—S4 | 158.63 (9) |
O11—C11—Fe4 | 179.5 (3) | C9—Fe3—S4 | 93.86 (8) |
O12—C12—Fe4 | 178.0 (2) | C7—Fe3—S4 | 102.43 (8) |
S1—C13—S3 | 118.10 (10) | S3—Fe3—S4 | 72.99 (2) |
S1—C13—S2 | 95.10 (10) | C8—Fe3—Fe4 | 102.35 (9) |
S3—C13—S2 | 117.13 (11) | C9—Fe3—Fe4 | 98.88 (7) |
S1—C13—S4 | 116.95 (11) | C7—Fe3—Fe4 | 153.39 (8) |
S3—C13—S4 | 94.73 (9) | S3—Fe3—Fe4 | 56.635 (18) |
S2—C13—S4 | 116.62 (10) | S4—Fe3—Fe4 | 56.394 (17) |
C2—Fe1—C3 | 92.20 (12) | C10—Fe4—C11 | 92.11 (13) |
C2—Fe1—C1 | 97.54 (11) | C10—Fe4—C12 | 97.98 (11) |
C3—Fe1—C1 | 96.81 (11) | C11—Fe4—C12 | 97.54 (11) |
C2—Fe1—S2 | 93.44 (9) | C10—Fe4—S4 | 157.10 (8) |
C3—Fe1—S2 | 158.89 (8) | C11—Fe4—S4 | 93.60 (9) |
C1—Fe1—S2 | 102.58 (8) | C12—Fe4—S4 | 103.21 (8) |
C2—Fe1—S1 | 156.74 (8) | C10—Fe4—S3 | 94.03 (9) |
C3—Fe1—S1 | 94.58 (8) | C11—Fe4—S3 | 157.73 (8) |
C1—Fe1—S1 | 103.69 (7) | C12—Fe4—S3 | 102.76 (8) |
S2—Fe1—S1 | 72.90 (2) | S4—Fe4—S3 | 73.03 (2) |
C2—Fe1—Fe2 | 100.11 (8) | C10—Fe4—Fe3 | 100.52 (8) |
C3—Fe1—Fe2 | 102.33 (8) | C11—Fe4—Fe3 | 101.33 (8) |
C1—Fe1—Fe2 | 153.30 (7) | C12—Fe4—Fe3 | 152.93 (8) |
S2—Fe1—Fe2 | 56.636 (18) | S4—Fe4—Fe3 | 56.600 (16) |
S1—Fe1—Fe2 | 56.695 (17) | S3—Fe4—Fe3 | 56.499 (16) |
C5—Fe2—C4 | 91.26 (13) | C13—S1—Fe2 | 88.02 (6) |
C5—Fe2—C6 | 100.64 (12) | C13—S1—Fe1 | 87.12 (6) |
C4—Fe2—C6 | 96.91 (11) | Fe2—S1—Fe1 | 66.582 (18) |
C5—Fe2—S2 | 153.65 (8) | C13—S2—Fe2 | 88.06 (7) |
C4—Fe2—S2 | 93.88 (9) | C13—S2—Fe1 | 87.17 (7) |
C6—Fe2—S2 | 104.35 (9) | Fe2—S2—Fe1 | 66.715 (19) |
C5—Fe2—S1 | 93.23 (8) | C13—S3—Fe3 | 87.77 (7) |
C4—Fe2—S1 | 157.61 (9) | C13—S3—Fe4 | 87.52 (7) |
C6—Fe2—S1 | 103.77 (8) | Fe3—S3—Fe4 | 66.867 (19) |
S2—Fe2—S1 | 72.92 (2) | C13—S4—Fe4 | 87.60 (7) |
C5—Fe2—Fe1 | 97.00 (8) | C13—S4—Fe3 | 87.58 (6) |
C4—Fe2—Fe1 | 100.96 (8) | Fe4—S4—Fe3 | 67.006 (19) |
Experimental details
Crystal data | |
Chemical formula | [Fe4(CS4)(CO)12] |
Mr | 699.81 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.0875 (9), 10.9002 (11), 12.6448 (13) |
α, β, γ (°) | 101.8859 (12), 92.4964 (12), 110.0857 (12) |
V (Å3) | 1142.2 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.91 |
Crystal size (mm) | 0.15 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.658, 0.721 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10006, 5128, 4237 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.070, 1.04 |
No. of reflections | 5128 |
No. of parameters | 298 |
No. of restraints | 6 |
Δρmax, Δρmin (e Å−3) | 0.35, −0.27 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).
C13—S1 | 1.827 (2) | Fe2—S1 | 2.2723 (6) |
C13—S2 | 1.8300 (19) | Fe2—S2 | 2.2685 (7) |
C13—S3 | 1.830 (2) | Fe3—S3 | 2.2676 (6) |
C13—S4 | 1.837 (2) | Fe3—S4 | 2.2680 (6) |
Fe1—S1 | 2.2730 (6) | Fe3—Fe4 | 2.5007 (5) |
Fe1—S2 | 2.2688 (7) | Fe4—S3 | 2.2712 (7) |
Fe1—Fe2 | 2.4949 (5) | Fe4—S4 | 2.2626 (6) |
S1—C13—S2 | 95.10 (10) | S3—C13—S4 | 94.73 (9) |
Acknowledgements
The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.
References
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Galindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193–195, 643–690. Web of Science CrossRef CAS Google Scholar
Mathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043–3045. Web of Science CSD CrossRef CAS Google Scholar
Ortega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885–893. CAS Google Scholar
Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, L.-C. (2005). Acc. Chem. Res. 38, 21–28. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The activation and cleavage of selected bonds of small molecules by transition metal complexes is one of the challenging subjects of recent researches. CS2 has been shown to undergo a variety of reactions with transition metals, including insertion and disproportionation, and there is a growing interest in the activation of CS2 from catalytic and biological points of view. The cleavage of the C—S bonds is often observed in various transition metal complexes in which chemistry has been explored for the hydrosulfurization of fossil products. In these complexes, the S2- ion derived from the C—S bond scission functions as a bridging ligand to link metal ions and metal cluster fragments and is generally of use in various cluster growth processes (Mathur et al., 2009).
Interestingly, the reaction of Et3P/CS2 and Fe3(CO)12 in THF under inert atmosphere at room temperature leads to the formation of a novel complex (Scheme 1). The molecular structure of the novel complex (Fig. 1) consists of two butterfly Fe2(CO)6 units connected by a bridging CS4 ligand in axial C—S bond fashions similar to the related complex Fe2(CO)6(µ-S)2CH2 (Shaver et al., 1979). The Fe—Fe bond lengths are 2.4949 (5) and 2.5007 (5) Å and close to 2.485 (1) Å in Fe2(CO)6(µ-S)2CH2, but slightly shorter than 2.511 (1) Å in the complex Fe2(CO)6(µ-SCH3)2 (Table 1) (Ortega-Alfaro et al., 2004), the corresponding C—S bond lengths are 1.827 (2), 1.830 (2) and 1.830 (2), 1.837 (2)°, respectively, which are longer than those in the complex Fe2(CO)6(µ-SCH3)2. For each S2Fe2(CO)6 butterfly core, the S—C—S bond angle is 95.10 (10) and 94.73 (9)° and close to 94.55 (3)° in Fe2(CO)6(µ-S)2CH2 (Table 1). As compared with 2.744 (1)–2.773 (1) Å in Fe2(CO)6(µ-SCH3)2, the S···S distance (2.6984 (8) and 2.6977 (8) Å) indicates an intramolecular short contact in each S2Fe2(CO)6 butterfly core.