metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ4-Ortho­thio­carbonato-tetra­kis­[tri­carbonyl­iron(I)](2 FeFe)

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, bTesting Center, Yangzhou University, Yangzhou 225009, People's Republic of China, and cHubei Research Institue of Geophysics Survey and Design, Wuhan 430056, People's Republic of China
*Correspondence e-mail: ycshi@yzu.edu.cn

(Received 28 September 2011; accepted 11 October 2011; online 12 October 2011)

The fused bis-butterfly-shaped title compound, [Fe4(CS4)(CO)12], possesses an orthothio­carbonate (CS44−) ligand that acts as a bridge between two Fe2(CO)6 units. A short intra­molecular S⋯S contact [2.6984 (8) and 2.6977 (8) Å] occurs in each S2Fe2(CO)6 fragment.

Related literature

For general background to related complexes, see: Mathur et al. (2009[Mathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043-3045.]). For uses of R3P/CS2 in coordination chemistry and organometallic chemistry, see: Galindo et al. (1999[Galindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193-195, 643-690.]). For the synthesis of butterfly S2Fe2(CO)6 complexes, see: Song (2005[Song, L.-C. (2005). Acc. Chem. Res. 38, 21-28.]). For related structures, see: Shaver et al. (1979[Shaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313-1315.]); Ortega-Alfaro et al. (2004[Ortega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885-893.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(CS4)(CO)12]

  • Mr = 699.81

  • Triclinic, [P \overline 1]

  • a = 9.0875 (9) Å

  • b = 10.9002 (11) Å

  • c = 12.6448 (13) Å

  • α = 101.8859 (12)°

  • β = 92.4964 (12)°

  • γ = 110.0857 (12)°

  • V = 1142.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.658, Tmax = 0.721

  • 10006 measured reflections

  • 5128 independent reflections

  • 4237 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.070

  • S = 1.04

  • 5128 reflections

  • 298 parameters

  • 6 restraints

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

C13—S1 1.827 (2)
C13—S2 1.8300 (19)
C13—S3 1.830 (2)
C13—S4 1.837 (2)
Fe1—S1 2.2730 (6)
Fe1—S2 2.2688 (7)
Fe1—Fe2 2.4949 (5)
Fe2—S1 2.2723 (6)
Fe2—S2 2.2685 (7)
Fe3—S3 2.2676 (6)
Fe3—S4 2.2680 (6)
Fe3—Fe4 2.5007 (5)
Fe4—S3 2.2712 (7)
Fe4—S4 2.2626 (6)
S1—C13—S2 95.10 (10)
S3—C13—S4 94.73 (9)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The activation and cleavage of selected bonds of small molecules by transition metal complexes is one of the challenging subjects of recent researches. CS2 has been shown to undergo a variety of reactions with transition metals, including insertion and disproportionation, and there is a growing interest in the activation of CS2 from catalytic and biological points of view. The cleavage of the C—S bonds is often observed in various transition metal complexes in which chemistry has been explored for the hydrosulfurization of fossil products. In these complexes, the S2- ion derived from the C—S bond scission functions as a bridging ligand to link metal ions and metal cluster fragments and is generally of use in various cluster growth processes (Mathur et al., 2009).

Interestingly, the reaction of Et3P/CS2 and Fe3(CO)12 in THF under inert atmosphere at room temperature leads to the formation of a novel complex (Scheme 1). The molecular structure of the novel complex (Fig. 1) consists of two butterfly Fe2(CO)6 units connected by a bridging CS4 ligand in axial C—S bond fashions similar to the related complex Fe2(CO)6(µ-S)2CH2 (Shaver et al., 1979). The Fe—Fe bond lengths are 2.4949 (5) and 2.5007 (5) Å and close to 2.485 (1) Å in Fe2(CO)6(µ-S)2CH2, but slightly shorter than 2.511 (1) Å in the complex Fe2(CO)6(µ-SCH3)2 (Table 1) (Ortega-Alfaro et al., 2004), the corresponding C—S bond lengths are 1.827 (2), 1.830 (2) and 1.830 (2), 1.837 (2)°, respectively, which are longer than those in the complex Fe2(CO)6(µ-SCH3)2. For each S2Fe2(CO)6 butterfly core, the S—C—S bond angle is 95.10 (10) and 94.73 (9)° and close to 94.55 (3)° in Fe2(CO)6(µ-S)2CH2 (Table 1). As compared with 2.744 (1)–2.773 (1) Å in Fe2(CO)6(µ-SCH3)2, the S···S distance (2.6984 (8) and 2.6977 (8) Å) indicates an intramolecular short contact in each S2Fe2(CO)6 butterfly core.

Related literature top

For general background to related complexes, see: Mathur et al. (2009). For uses of R3P/CS2 in coordination chemistry and organometallic chemistry, see: Galindo et al. (1999). For the synthesis of butterfly S2Fe2(CO)6 complexes, see: Song (2005). For related structures, see: Shaver et al. (1979); Ortega-Alfaro et al. (2004).

Experimental top

A THF solution of Et3P/CS2 (1 mmol) and Fe3(CO)12 (1 mmol) under inert atmosphere is stirred for 24 h at room temperature. After removal of the solvent, the mixture was purified by chromatography on silica gel with dichloromethane-petroleum ether (v/v, 1:3) as eluant to give the red-orange solid. Single crystals were grown from ether solution of the title compound.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
µ4-Orthothiocarbonato-tetrakis[tricarbonyliron(I)](2 FeFe) top
Crystal data top
[Fe4(CS4)(CO)12]Z = 2
Mr = 699.81F(000) = 684
Triclinic, P1Dx = 2.035 Mg m3
a = 9.0875 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9002 (11) ÅCell parameters from 4237 reflections
c = 12.6448 (13) Åθ = 1.7–27.5°
α = 101.8859 (12)°µ = 2.91 mm1
β = 92.4964 (12)°T = 296 K
γ = 110.0857 (12)°Prism, red
V = 1142.2 (2) Å30.15 × 0.12 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5128 independent reflections
Radiation source: fine-focus sealed tube4237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.658, Tmax = 0.721k = 1414
10006 measured reflectionsl = 1616
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026Secondary atom site location: difference Fourier map
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5128 reflectionsΔρmax = 0.35 e Å3
298 parametersΔρmin = 0.27 e Å3
Crystal data top
[Fe4(CS4)(CO)12]γ = 110.0857 (12)°
Mr = 699.81V = 1142.2 (2) Å3
Triclinic, P1Z = 2
a = 9.0875 (9) ÅMo Kα radiation
b = 10.9002 (11) ŵ = 2.91 mm1
c = 12.6448 (13) ÅT = 296 K
α = 101.8859 (12)°0.15 × 0.12 × 0.11 mm
β = 92.4964 (12)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5128 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4237 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.721Rint = 0.025
10006 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026298 parameters
wR(F2) = 0.0706 restraints
S = 1.04Δρmax = 0.35 e Å3
5128 reflectionsΔρmin = 0.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6561 (3)0.7935 (2)0.77984 (18)0.0440 (5)
C20.8526 (3)0.8863 (3)0.6347 (2)0.0506 (6)
C30.9578 (3)0.9654 (3)0.8400 (2)0.0495 (6)
C41.1219 (3)0.7705 (3)0.5832 (2)0.0576 (7)
C51.2260 (3)0.8567 (3)0.7869 (2)0.0499 (6)
C61.1533 (3)0.5863 (3)0.6883 (2)0.0520 (6)
C70.7715 (3)0.4656 (3)1.0044 (2)0.0518 (6)
C80.6869 (3)0.2015 (3)0.9062 (2)0.0571 (7)
C90.4644 (3)0.2955 (2)0.94124 (17)0.0461 (6)
C100.5449 (3)0.1072 (3)0.6532 (2)0.0533 (6)
C110.3306 (3)0.2117 (3)0.69401 (19)0.0538 (6)
C120.5320 (3)0.3000 (2)0.54991 (19)0.0461 (5)
C130.7801 (2)0.5349 (2)0.75626 (15)0.0326 (4)
Fe10.85275 (4)0.80727 (3)0.74597 (2)0.03532 (9)
Fe21.06610 (4)0.71578 (3)0.70503 (2)0.03858 (9)
Fe30.64765 (4)0.34558 (3)0.88425 (2)0.03604 (9)
Fe40.54035 (4)0.27424 (3)0.68685 (2)0.03649 (9)
O10.5347 (2)0.7883 (2)0.80095 (16)0.0652 (5)
O20.8523 (3)0.9343 (2)0.56303 (17)0.0808 (7)
O31.0252 (3)1.0659 (2)0.89976 (17)0.0801 (6)
O41.1562 (3)0.8060 (3)0.50561 (17)0.0906 (8)
O51.3234 (2)0.9495 (2)0.83931 (18)0.0764 (6)
O61.2101 (3)0.5078 (2)0.67522 (19)0.0802 (6)
O70.8437 (3)0.5364 (2)1.08183 (16)0.0849 (7)
O80.7108 (3)0.1096 (2)0.9194 (2)0.0923 (7)
O90.3472 (2)0.2622 (2)0.97500 (15)0.0716 (6)
O100.5481 (3)0.0019 (2)0.63331 (18)0.0840 (7)
O110.1982 (3)0.1726 (3)0.69931 (18)0.0901 (7)
O120.5245 (2)0.3122 (2)0.46352 (14)0.0717 (6)
S10.92568 (6)0.68363 (5)0.84778 (4)0.03454 (12)
S20.80928 (7)0.60300 (6)0.63482 (4)0.03789 (13)
S30.80213 (6)0.37272 (5)0.74843 (4)0.03674 (12)
S40.57807 (6)0.47963 (5)0.79267 (4)0.03420 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (14)0.0398 (13)0.0478 (12)0.0174 (11)0.0032 (10)0.0116 (10)
C20.0482 (15)0.0460 (14)0.0586 (14)0.0159 (12)0.0062 (12)0.0168 (12)
C30.0446 (14)0.0430 (14)0.0568 (14)0.0113 (12)0.0098 (11)0.0103 (12)
C40.0577 (17)0.0620 (17)0.0653 (17)0.0292 (14)0.0259 (14)0.0241 (14)
C50.0368 (14)0.0484 (15)0.0656 (16)0.0140 (12)0.0142 (12)0.0163 (13)
C60.0452 (15)0.0523 (15)0.0623 (15)0.0179 (12)0.0168 (12)0.0189 (13)
C70.0536 (16)0.0528 (15)0.0469 (13)0.0150 (13)0.0004 (11)0.0155 (12)
C80.0601 (17)0.0545 (16)0.0633 (16)0.0241 (14)0.0094 (13)0.0218 (13)
C90.0510 (15)0.0453 (14)0.0360 (11)0.0114 (12)0.0063 (10)0.0065 (10)
C100.0601 (17)0.0402 (14)0.0502 (14)0.0095 (12)0.0063 (12)0.0057 (11)
C110.0481 (16)0.0526 (16)0.0440 (13)0.0020 (13)0.0040 (11)0.0040 (11)
C120.0436 (14)0.0401 (13)0.0434 (13)0.0046 (11)0.0000 (10)0.0049 (10)
C130.0291 (11)0.0319 (10)0.0341 (10)0.0089 (9)0.0031 (8)0.0057 (8)
Fe10.03283 (18)0.03237 (17)0.03938 (17)0.00973 (13)0.00397 (13)0.00912 (13)
Fe20.03253 (18)0.03943 (18)0.04416 (18)0.01127 (14)0.01067 (13)0.01241 (14)
Fe30.03703 (18)0.03452 (17)0.03534 (16)0.01093 (14)0.00442 (13)0.00903 (13)
Fe40.03603 (18)0.03052 (17)0.03559 (16)0.00580 (13)0.00263 (13)0.00313 (13)
O10.0438 (11)0.0676 (13)0.0955 (14)0.0303 (10)0.0199 (10)0.0237 (11)
O20.0919 (17)0.0883 (16)0.0771 (13)0.0311 (14)0.0146 (12)0.0530 (13)
O30.0750 (15)0.0484 (12)0.0894 (15)0.0052 (11)0.0037 (12)0.0119 (11)
O40.112 (2)0.112 (2)0.0796 (14)0.0537 (16)0.0579 (14)0.0566 (15)
O50.0456 (12)0.0589 (13)0.1025 (16)0.0024 (10)0.0007 (11)0.0014 (12)
O60.0805 (16)0.0736 (15)0.1125 (17)0.0495 (13)0.0371 (13)0.0347 (13)
O70.0857 (16)0.0882 (16)0.0530 (11)0.0075 (13)0.0226 (11)0.0045 (11)
O80.1114 (19)0.0722 (15)0.1227 (19)0.0545 (15)0.0225 (15)0.0475 (15)
O90.0573 (13)0.0795 (15)0.0636 (12)0.0077 (11)0.0265 (10)0.0115 (11)
O100.1131 (19)0.0391 (11)0.0960 (16)0.0283 (12)0.0166 (14)0.0056 (11)
O110.0473 (13)0.1058 (19)0.0861 (15)0.0053 (12)0.0126 (11)0.0119 (14)
O120.0788 (14)0.0732 (14)0.0428 (10)0.0033 (11)0.0061 (9)0.0147 (9)
S10.0314 (3)0.0334 (3)0.0332 (2)0.0058 (2)0.0010 (2)0.0063 (2)
S20.0398 (3)0.0375 (3)0.0317 (3)0.0086 (2)0.0031 (2)0.0077 (2)
S30.0338 (3)0.0338 (3)0.0430 (3)0.0135 (2)0.0070 (2)0.0071 (2)
S40.0298 (3)0.0309 (3)0.0400 (3)0.0097 (2)0.0045 (2)0.0062 (2)
Geometric parameters (Å, º) top
C1—O11.131 (3)C10—Fe41.798 (3)
C1—Fe11.819 (3)C11—O111.140 (3)
C2—O21.136 (3)C11—Fe41.804 (3)
C2—Fe11.795 (2)C12—O121.129 (3)
C3—O31.142 (3)C12—Fe41.813 (2)
C3—Fe11.796 (3)C13—S11.827 (2)
C4—O41.145 (3)C13—S21.8300 (19)
C4—Fe21.795 (3)C13—S31.830 (2)
C5—O51.142 (3)C13—S41.837 (2)
C5—Fe21.795 (3)Fe1—S12.2730 (6)
C6—O61.130 (3)Fe1—S22.2688 (7)
C6—Fe21.824 (3)Fe1—Fe22.4949 (5)
C7—O71.127 (3)Fe2—S12.2723 (6)
C7—Fe31.818 (3)Fe2—S22.2685 (7)
C8—O81.138 (3)Fe3—S32.2676 (6)
C8—Fe31.796 (3)Fe3—S42.2680 (6)
C9—O91.134 (3)Fe3—Fe42.5007 (5)
C9—Fe31.798 (3)Fe4—S32.2712 (7)
C10—O101.135 (3)Fe4—S42.2626 (6)
S1···S22.6984 (8)S3···S42.6977 (8)
O1—C1—Fe1178.3 (2)C6—Fe2—Fe1154.51 (8)
O2—C2—Fe1178.8 (2)S2—Fe2—Fe156.649 (18)
O3—C3—Fe1179.6 (3)S1—Fe2—Fe156.723 (17)
O4—C4—Fe2179.2 (3)C8—Fe3—C991.66 (12)
O5—C5—Fe2177.0 (2)C8—Fe3—C797.13 (12)
O6—C6—Fe2177.6 (2)C9—Fe3—C798.48 (11)
O7—C7—Fe3176.7 (2)C8—Fe3—S393.97 (9)
O8—C8—Fe3179.5 (3)C9—Fe3—S3155.51 (7)
O9—C9—Fe3178.5 (2)C7—Fe3—S3104.42 (8)
O10—C10—Fe4179.2 (3)C8—Fe3—S4158.63 (9)
O11—C11—Fe4179.5 (3)C9—Fe3—S493.86 (8)
O12—C12—Fe4178.0 (2)C7—Fe3—S4102.43 (8)
S1—C13—S3118.10 (10)S3—Fe3—S472.99 (2)
S1—C13—S295.10 (10)C8—Fe3—Fe4102.35 (9)
S3—C13—S2117.13 (11)C9—Fe3—Fe498.88 (7)
S1—C13—S4116.95 (11)C7—Fe3—Fe4153.39 (8)
S3—C13—S494.73 (9)S3—Fe3—Fe456.635 (18)
S2—C13—S4116.62 (10)S4—Fe3—Fe456.394 (17)
C2—Fe1—C392.20 (12)C10—Fe4—C1192.11 (13)
C2—Fe1—C197.54 (11)C10—Fe4—C1297.98 (11)
C3—Fe1—C196.81 (11)C11—Fe4—C1297.54 (11)
C2—Fe1—S293.44 (9)C10—Fe4—S4157.10 (8)
C3—Fe1—S2158.89 (8)C11—Fe4—S493.60 (9)
C1—Fe1—S2102.58 (8)C12—Fe4—S4103.21 (8)
C2—Fe1—S1156.74 (8)C10—Fe4—S394.03 (9)
C3—Fe1—S194.58 (8)C11—Fe4—S3157.73 (8)
C1—Fe1—S1103.69 (7)C12—Fe4—S3102.76 (8)
S2—Fe1—S172.90 (2)S4—Fe4—S373.03 (2)
C2—Fe1—Fe2100.11 (8)C10—Fe4—Fe3100.52 (8)
C3—Fe1—Fe2102.33 (8)C11—Fe4—Fe3101.33 (8)
C1—Fe1—Fe2153.30 (7)C12—Fe4—Fe3152.93 (8)
S2—Fe1—Fe256.636 (18)S4—Fe4—Fe356.600 (16)
S1—Fe1—Fe256.695 (17)S3—Fe4—Fe356.499 (16)
C5—Fe2—C491.26 (13)C13—S1—Fe288.02 (6)
C5—Fe2—C6100.64 (12)C13—S1—Fe187.12 (6)
C4—Fe2—C696.91 (11)Fe2—S1—Fe166.582 (18)
C5—Fe2—S2153.65 (8)C13—S2—Fe288.06 (7)
C4—Fe2—S293.88 (9)C13—S2—Fe187.17 (7)
C6—Fe2—S2104.35 (9)Fe2—S2—Fe166.715 (19)
C5—Fe2—S193.23 (8)C13—S3—Fe387.77 (7)
C4—Fe2—S1157.61 (9)C13—S3—Fe487.52 (7)
C6—Fe2—S1103.77 (8)Fe3—S3—Fe466.867 (19)
S2—Fe2—S172.92 (2)C13—S4—Fe487.60 (7)
C5—Fe2—Fe197.00 (8)C13—S4—Fe387.58 (6)
C4—Fe2—Fe1100.96 (8)Fe4—S4—Fe367.006 (19)

Experimental details

Crystal data
Chemical formula[Fe4(CS4)(CO)12]
Mr699.81
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0875 (9), 10.9002 (11), 12.6448 (13)
α, β, γ (°)101.8859 (12), 92.4964 (12), 110.0857 (12)
V3)1142.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.15 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.658, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
10006, 5128, 4237
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.04
No. of reflections5128
No. of parameters298
No. of restraints6
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SIR2004 (Burla et al., 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
C13—S11.827 (2)Fe2—S12.2723 (6)
C13—S21.8300 (19)Fe2—S22.2685 (7)
C13—S31.830 (2)Fe3—S32.2676 (6)
C13—S41.837 (2)Fe3—S42.2680 (6)
Fe1—S12.2730 (6)Fe3—Fe42.5007 (5)
Fe1—S22.2688 (7)Fe4—S32.2712 (7)
Fe1—Fe22.4949 (5)Fe4—S42.2626 (6)
S1—C13—S295.10 (10)S3—C13—S494.73 (9)
 

Acknowledgements

The authors thank the Natural Science Foundation of China (No. 20572091) and the Natural Science Foundation of Jiangsu Province (No. 05KJB150151) for financial support of this work.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalindo, A., Miguel, D. & Perez, J. (1999). Coord. Chem. Rev. 193–195, 643–690.  Web of Science CrossRef CAS Google Scholar
First citationMathur, P., Boodida, S., Ji, R. S. & Mobin, S. M. (2009). J. Organomet. Chem. 694, 3043–3045.  Web of Science CSD CrossRef CAS Google Scholar
First citationOrtega-Alfaro, M. C., Hernández, N., Cerna, I., López-Cortés, J. G., Gómez, E., Toscano, R. A. & Alvarez-Toledano, C. (2004). J. Organomet. Chem. 689, 885–893.  CAS Google Scholar
First citationShaver, A., Fitzpatrick, P. J., Steliou, K. & Butler, I. S. (1979). J. Am. Chem. Soc. 101, 1313–1315.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C. (2005). Acc. Chem. Res. 38, 21–28.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds