organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Eth­­oxy-2-hy­dr­oxy­benz­yl­idene)-N-phenyl­hydrazinecarboxamide

aDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka, and bDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, India
*Correspondence e-mail: eesans@yahoo.com

(Received 4 October 2011; accepted 11 October 2011; online 22 October 2011)

The title compound, C16H17N3O3, exists in the E configuration with respect to the azomethine double bond. The mol­ecule is close to planar, with a dihedral angle of 6.7 (1)° between the aromatic rings. The phenolic O atom functions as donor and acceptor by forming intramolec­ular O—H⋯O and inter­molecular N—H⋯O hydrogen bonds, respectively. Two-dimensional packing is fashioned through an inter­molecular hydrogen bonding network in an offset manner.

Related literature

For background to N-phenyl­hydrazinecarboxamides and their complexes, see: Reena et al. (2008[Reena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 3461-3466.]). For the synthesis of related compounds, see: Siji et al. (2010[Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22-28.]). For related structures, see: Kayed et al. (2011[Kayed, S. F., Farina, Y., Simpson, J. & Baba, I. (2011). Acta Cryst. E67, o2687-o2688.]); Kala et al. (2007[Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427-1435.]); Kurup et al. (2011[Kurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70-78.]); Reena & Kurup (2010[Reena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927-932.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N3O3

  • Mr = 299.33

  • Monoclinic, C 2/c

  • a = 30.1352 (13) Å

  • b = 5.5552 (3) Å

  • c = 18.2232 (8) Å

  • β = 92.753 (2)°

  • V = 3047.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.30 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.967, Tmax = 0.991

  • 10811 measured reflections

  • 2687 independent reflections

  • 2066 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.137

  • S = 1.06

  • 2687 reflections

  • 213 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O2i 0.86 (2) 2.13 (2) 2.8799 (19) 145.9 (18)
N3—H3′⋯N1 0.85 (1) 2.25 (2) 2.6604 (17) 110.0 (14)
O2—H2⋯O3i 0.87 (2) 2.28 (2) 2.8867 (16) 127.1 (18)
O2—H2⋯O1 0.87 (2) 2.14 (2) 2.6206 (16) 114.2 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound crystallizes into a monoclinic space group C2/c. The molecule is almost planar with maximum deviation of 0.218 (1) Å for the atom N1. The dihedral angle between the two aromatic rings is 6.70°. The molecule exists in the E configuration with respect to C7=N1 bond (Fig. 1). A torsion angle value of -176.4 (1)° corresponding to O3–C8–N2–N1 moiety confirms the trans configuration of the O3 atom with respect to hydrazine nitrogen atom N1. As a result, the atom N1 lies cis to N3, with an N1–N2–C8–N3 torsion angle of 3.6 (2). This arrangement favours the intramolecular hydrogen bond interaction between N1 and H attached to N3 atom. Similarly O1 and O2 lie cis to each other with an torsion angle of -0.4 (2) and it favours the intramolecular hydrogen bond interaction between O1 and the H on O2 atom. These two intramolecular hydrogen bonding interactions play an important role by stabilizing this conformation. The C8–N2 bond distance [1.3656 (19) Å] is appreciably close to that of C–N single bond [1.351 (2) Å], confirming the keto form of the ligand (Reena & Kurup, 2010). The existence of 2-(3-ethoxy-2-hydroxybenzyl)-N-phenylhydrazinecarboxamide in the keto form in the solid state is evidenced by the C8–O2 bond distance of 1.2233 (19) Å, which is very close to a formal C=O bond length [1.21 Å] (Kala et al., 2007).

The neighbouring molecules are interconnected by intermolecular hydrogen bonding (Table 1). The molecular array involes two types of hydrogen bonding interactions where the O1 and O3 function as acceptors while the atom O2 acts as donor and acceptor.

In the crystal lattice (Fig. 2), two-dimensional packing is fashioned by the network of intermolecular hydrogen bonding interactions. The repeating units of two adjacent molecules are aligned in offset manner. The distance between two consecutive parallel rings is more than 5 Å and therefore there are very weak π···π or C–H···π interactions between the adjacent molecules. However, the hydrogen bonding plays key role in packing of molecules in the unit cell.

Related literature top

For background to N-phenylhydrazinecarboxamides and their complexes, see: Reena et al. (2008). For the synthesis of related compounds, see: Siji et al. (2010). For related structures, see: Kayed et al. (2011); Kala et al. (2007); Kurup et al. (2011); Reena & Kurup (2010).

Experimental top

The title compound was prepared by adapting a reported procedure (Siji et al., 2010). A methanolic solution (30 ml) of N-phenylhydrazinecarboxamide (1.511 g, 10 mmol) was added to a solution of 3-ethoxy-2-hydroxybenzaldehyde (1.662 g, 10 mmol) in methanol and the reaction mixture was refluxed for 2 h after adding a few drops of dilute acetic acid. On cooling the solution, very pale yellow block-shaped crystals suitable for single-crystal analysis were obtained.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N3—H3' and O2—H2 H atoms were located from difference maps and restrained using DFIX instructions. N2—H2' hydrogen is located from difference maps and was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of 2-(3-ethoxy-2-hydroxybenzyl)-N-phenylhydrazinecarboxamide with 50% probability ellipsoid.
[Figure 2] Fig. 2. Packing diagram of 2-(3-ethoxy-2-hydroxybenzyl)-N-phenylhydrazinecarboxamide along b axis.
2-(3-Ethoxy-2-hydroxybenzylidene)-N-phenylhydrazinecarboxamide top
Crystal data top
C16H17N3O3F(000) = 1264.0
Mr = 299.33Dx = 1.305 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3454 reflections
a = 30.1352 (13) Åθ = 1.4–27.5°
b = 5.5552 (3) ŵ = 0.09 mm1
c = 18.2232 (8) ÅT = 296 K
β = 92.753 (2)°Block, pale yellow
V = 3047.2 (2) Å30.50 × 0.30 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2687 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3535
Tmin = 0.967, Tmax = 0.991k = 46
10811 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.6395P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
2687 reflectionsΔρmax = 0.16 e Å3
213 parametersΔρmin = 0.13 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1996), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0055 (9)
Crystal data top
C16H17N3O3V = 3047.2 (2) Å3
Mr = 299.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.1352 (13) ŵ = 0.09 mm1
b = 5.5552 (3) ÅT = 296 K
c = 18.2232 (8) Å0.50 × 0.30 × 0.10 mm
β = 92.753 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2687 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2066 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.991Rint = 0.035
10811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
2687 reflectionsΔρmin = 0.13 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37161 (4)0.1876 (2)0.50043 (7)0.0781 (4)
O20.42932 (4)0.1621 (2)0.48991 (6)0.0703 (4)
O30.61791 (4)0.7085 (2)0.64595 (7)0.0800 (4)
N10.53666 (4)0.2594 (3)0.62904 (7)0.0621 (4)
N20.56032 (5)0.4651 (3)0.61776 (8)0.0726 (4)
N30.61370 (4)0.3406 (2)0.70231 (8)0.0626 (4)
C10.43561 (5)0.0007 (3)0.54552 (8)0.0563 (4)
C20.40572 (5)0.1888 (3)0.55286 (9)0.0611 (4)
C30.41199 (6)0.3509 (3)0.60918 (10)0.0719 (5)
H30.39240.47840.61390.086*
C40.44794 (6)0.3228 (3)0.65907 (10)0.0773 (5)
H40.45210.43150.69760.093*
C50.47737 (6)0.1374 (3)0.65230 (9)0.0691 (5)
H50.50130.12190.68610.083*
C60.47181 (5)0.0285 (3)0.59510 (8)0.0567 (4)
C70.50174 (5)0.2319 (3)0.58751 (8)0.0616 (4)
H70.49520.34560.55110.074*
C80.59928 (5)0.5163 (3)0.65588 (9)0.0616 (4)
C90.65140 (5)0.3413 (3)0.75132 (8)0.0542 (4)
C100.68369 (5)0.5188 (3)0.75262 (9)0.0626 (4)
H100.68120.64810.72030.075*
C110.71966 (5)0.5025 (3)0.80230 (10)0.0691 (5)
H110.74130.62170.80300.083*
C120.72396 (6)0.3148 (3)0.85037 (10)0.0743 (5)
H120.74840.30570.88340.089*
C130.69195 (7)0.1402 (3)0.84939 (11)0.0818 (6)
H130.69460.01220.88220.098*
C140.65571 (6)0.1520 (3)0.80001 (10)0.0702 (5)
H140.63420.03190.79970.084*
C150.33793 (6)0.3673 (4)0.50345 (11)0.0823 (6)
H15A0.32580.37020.55180.099*
H15B0.35020.52480.49350.099*
C160.30266 (7)0.3044 (5)0.44677 (14)0.1099 (8)
H16A0.29000.15140.45840.165*
H16B0.27990.42560.44580.165*
H16C0.31530.29560.39950.165*
H20.4079 (6)0.112 (4)0.4600 (11)0.093 (6)*
H3'0.5986 (5)0.2112 (18)0.7011 (10)0.074 (5)*
H2'0.5514 (7)0.570 (4)0.5859 (12)0.096 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0642 (7)0.0915 (9)0.0775 (8)0.0189 (6)0.0083 (6)0.0033 (6)
O20.0683 (7)0.0755 (8)0.0652 (7)0.0102 (6)0.0178 (6)0.0151 (6)
O30.0740 (7)0.0724 (8)0.0912 (9)0.0133 (6)0.0211 (6)0.0243 (7)
N10.0565 (7)0.0674 (8)0.0616 (8)0.0023 (6)0.0046 (6)0.0058 (6)
N20.0641 (8)0.0762 (10)0.0754 (9)0.0100 (7)0.0171 (7)0.0225 (8)
N30.0582 (7)0.0607 (8)0.0676 (8)0.0071 (6)0.0094 (6)0.0085 (7)
C10.0559 (8)0.0610 (9)0.0521 (8)0.0027 (7)0.0015 (6)0.0008 (7)
C20.0578 (8)0.0666 (10)0.0591 (9)0.0032 (8)0.0058 (7)0.0045 (8)
C30.0784 (11)0.0679 (11)0.0700 (10)0.0114 (9)0.0102 (9)0.0017 (8)
C40.0940 (13)0.0763 (12)0.0616 (10)0.0024 (10)0.0035 (9)0.0163 (9)
C50.0743 (10)0.0764 (11)0.0558 (9)0.0008 (9)0.0055 (8)0.0073 (8)
C60.0573 (8)0.0618 (9)0.0508 (8)0.0019 (7)0.0007 (6)0.0000 (7)
C70.0592 (8)0.0702 (10)0.0546 (8)0.0008 (8)0.0053 (7)0.0076 (7)
C80.0572 (8)0.0668 (10)0.0600 (9)0.0011 (8)0.0045 (7)0.0079 (8)
C90.0538 (8)0.0535 (8)0.0551 (8)0.0036 (7)0.0007 (6)0.0019 (7)
C100.0634 (9)0.0609 (9)0.0627 (9)0.0027 (7)0.0062 (7)0.0058 (7)
C110.0637 (9)0.0672 (11)0.0751 (10)0.0052 (8)0.0108 (8)0.0029 (8)
C120.0738 (10)0.0710 (11)0.0758 (11)0.0095 (9)0.0216 (9)0.0042 (9)
C130.0960 (13)0.0626 (11)0.0844 (12)0.0049 (10)0.0221 (10)0.0147 (9)
C140.0728 (10)0.0567 (10)0.0796 (11)0.0039 (8)0.0104 (9)0.0088 (8)
C150.0652 (10)0.0861 (13)0.0963 (14)0.0172 (9)0.0108 (9)0.0240 (11)
C160.0634 (11)0.157 (2)0.1087 (16)0.0202 (13)0.0018 (11)0.0364 (16)
Geometric parameters (Å, º) top
O1—C21.3693 (19)C5—H50.9300
O1—C151.426 (2)C6—C71.456 (2)
O2—C11.3598 (18)C7—H70.9300
O2—H20.870 (15)C9—C141.378 (2)
O3—C81.2239 (19)C9—C101.385 (2)
N1—C71.2758 (19)C10—C111.381 (2)
N1—N21.368 (2)C10—H100.9300
N2—C81.365 (2)C11—C121.364 (3)
N2—H2'0.86 (2)C11—H110.9300
N3—C81.350 (2)C12—C131.368 (3)
N3—C91.4109 (19)C12—H120.9300
N3—H3'0.8500 (11)C13—C141.383 (2)
C1—C61.391 (2)C13—H130.9300
C1—C21.396 (2)C14—H140.9300
C2—C31.371 (2)C15—C161.488 (3)
C3—C41.389 (2)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.369 (2)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.396 (2)C16—H16C0.9600
C2—O1—C15118.77 (14)N3—C8—N2114.31 (15)
C1—O2—H2109.1 (15)C14—C9—C10119.20 (15)
C7—N1—N2115.60 (13)C14—C9—N3116.98 (14)
C8—N2—N1122.63 (14)C10—C9—N3123.82 (14)
C8—N2—H2'116.0 (14)C11—C10—C9119.55 (15)
N1—N2—H2'121.4 (14)C11—C10—H10120.2
C8—N3—C9128.31 (14)C9—C10—H10120.2
C8—N3—H3'116.1 (12)C12—C11—C10121.22 (16)
C9—N3—H3'115.5 (12)C12—C11—H11119.4
O2—C1—C6119.17 (14)C10—C11—H11119.4
O2—C1—C2120.09 (13)C11—C12—C13119.26 (16)
C6—C1—C2120.74 (14)C11—C12—H12120.4
O1—C2—C3126.67 (15)C13—C12—H12120.4
O1—C2—C1113.30 (14)C12—C13—C14120.60 (16)
C3—C2—C1120.02 (15)C12—C13—H13119.7
C2—C3—C4119.42 (16)C14—C13—H13119.7
C2—C3—H3120.3C9—C14—C13120.16 (16)
C4—C3—H3120.3C9—C14—H14119.9
C5—C4—C3120.92 (16)C13—C14—H14119.9
C5—C4—H4119.5O1—C15—C16107.15 (18)
C3—C4—H4119.5O1—C15—H15A110.3
C4—C5—C6120.61 (16)C16—C15—H15A110.3
C4—C5—H5119.7O1—C15—H15B110.3
C6—C5—H5119.7C16—C15—H15B110.3
C1—C6—C5118.29 (15)H15A—C15—H15B108.5
C1—C6—C7119.64 (13)C15—C16—H16A109.5
C5—C6—C7122.04 (14)C15—C16—H16B109.5
N1—C7—C6122.26 (14)H16A—C16—H16B109.5
N1—C7—H7118.9C15—C16—H16C109.5
C6—C7—H7118.9H16A—C16—H16C109.5
O3—C8—N3125.98 (14)H16B—C16—H16C109.5
O3—C8—N2119.71 (15)
C7—N1—N2—C8177.55 (15)C1—C6—C7—N1176.32 (14)
C15—O1—C2—C31.3 (3)C5—C6—C7—N15.7 (2)
C15—O1—C2—C1177.82 (14)C9—N3—C8—O33.1 (3)
O2—C1—C2—O10.5 (2)C9—N3—C8—N2177.15 (15)
C6—C1—C2—O1178.87 (13)N1—N2—C8—O3176.50 (15)
O2—C1—C2—C3179.69 (15)N1—N2—C8—N33.7 (2)
C6—C1—C2—C30.4 (2)C8—N3—C9—C14171.60 (17)
O1—C2—C3—C4178.35 (16)C8—N3—C9—C108.7 (3)
C1—C2—C3—C40.8 (3)C14—C9—C10—C110.3 (2)
C2—C3—C4—C50.7 (3)N3—C9—C10—C11179.42 (14)
C3—C4—C5—C60.2 (3)C9—C10—C11—C120.2 (3)
O2—C1—C6—C5179.23 (14)C10—C11—C12—C130.2 (3)
C2—C1—C6—C50.1 (2)C11—C12—C13—C140.4 (3)
O2—C1—C6—C71.2 (2)C10—C9—C14—C130.1 (3)
C2—C1—C6—C7178.15 (13)N3—C9—C14—C13179.66 (16)
C4—C5—C6—C10.2 (2)C12—C13—C14—C90.3 (3)
C4—C5—C6—C7178.16 (16)C2—O1—C15—C16172.82 (16)
N2—N1—C7—C6176.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.86 (2)2.13 (2)2.8799 (19)145.9 (18)
N3—H3···N10.85 (1)2.25 (2)2.6604 (17)110 (1)
O2—H2···O3i0.87 (2)2.28 (2)2.8867 (16)127 (2)
O2—H2···O10.87 (2)2.14 (2)2.6206 (16)114 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H17N3O3
Mr299.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)30.1352 (13), 5.5552 (3), 18.2232 (8)
β (°) 92.753 (2)
V3)3047.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10811, 2687, 2066
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.137, 1.06
No. of reflections2687
No. of parameters213
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O2i0.86 (2)2.13 (2)2.8799 (19)145.9 (18)
N3—H3'···N10.8500 (11)2.247 (17)2.6604 (17)110.0 (14)
O2—H2···O3i0.870 (15)2.28 (2)2.8867 (16)127.1 (18)
O2—H2···O10.870 (15)2.14 (2)2.6206 (16)114.2 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are thankful to the SAIF, CUSAT, Kochi-22, for providing the single-crystal XRD data.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKala, U. L., Suma, S., Kurup, M. R. P., Suja, K. & John, R. P. (2007). Polyhedron, 26, 1427–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationKayed, S. F., Farina, Y., Simpson, J. & Baba, I. (2011). Acta Cryst. E67, o2687–o2688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationReena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927–932.  Web of Science CSD CrossRef CAS Google Scholar
First citationReena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 3461–3466.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22–28.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds