organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Imidazol-1-yl)-4,6-di­methyl­pyrimidine

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 12 October 2011; accepted 25 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, C9H10N4, consists of two mol­ecules in which the dihedral angles between the planes of the imidazole and pyrimidine rings are 4.8 (1) and 2.1 (1)°.

Related literature

For related pyrimidine derivatives, see: Wu et al. (2008[Wu, F., Zhang, Y.-Q., Zhu, Q.-J., Xue, S.-F. & Tao, Z. (2008). Acta Cryst. E64, o1488.]); Cetina et al. (2005[Cetina, M., Nagl, A., Prekupec, S., Raić-Malić, S. & Mintas, M. (2005). Acta Cryst. C61, o158-o160.]); Liu et al. (2007[Liu, Z. J., Chen, T., Liu, B., Huang, Z. L., Huang, T., Li, S. Y., Xu, Y. X. & Qin, J. G. (2007). J. Mater. Chem. 17, 4685-4689.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N4

  • Mr = 174.21

  • Monoclinic, P 21 /c

  • a = 9.304 (5) Å

  • b = 26.756 (5) Å

  • c = 7.129 (5) Å

  • β = 91.259 (5)°

  • V = 1774.2 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • 11971 measured reflections

  • 3091 independent reflections

  • 2365 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.197

  • S = 1.14

  • 3091 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years,pyrimidine-based materials had been widely investigated for their high electron affinity in the area of nonlinear optical materials (Liu et al., 2007); the crystal structures of a small number of pyrimidine derivatives have been widely reported (Wu et al., 2008; Cetina et al., 2005). The title molecule is a contribution to this topic. In (I), (Fig.1), the dihedral angles between imidazole and pyrimidine rings of the two molecules are only 4.8 (1) and 2.1 (1) °, which indicate that the molecules are almost co-planar. In the crystal structure, neighboring molecules are connected through weak intermolecular C—H···N interactions (Fig. 2).

Related literature top

For related pyrimidine derivatives, see: Wu et al. (2008); Cetina et al. (2005); Liu et al. (2007).

Experimental top

CuI (0.19 g,1 mmol), 1,10-phenanthroline (0.6 g,3 mmol) and DMF (5 ml) were added to a three-necked flask equipped with a magnetic stirrer and a reflux condenser. The reaction mixture turned brown and was kept stirred for 5 min. Then, t-BuOK (1.12 g,10 mmol), imidazole (1.36 g, 20 mmol), 2-iodo-4,6-dimethylpyrimidine (0.46 g, 2 mmol) and a catalytic amount of 18-crown-6 were added in sequentially. After complete addition, the mixture was heated under nitrogen for about 2 h, then cooled to room temperature. The residue was extracted with 200 ml of dichloromethane, washed four times with distilled water, and dried with anhydrous MgSO4. Then it was filtered and concentrated and purified by flash column- chromatography on silica. Elution with petroleum/ethyl acetate (2:1) gave colorless crystals. Yield: 0.2 g (60%).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, Uiso(H) = 1.2 - 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule(I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound(I). H atoms not involved in hydrogen bonds are omitted.
2-(1H-Imidazol-1-yl)-4,6-dimethylpyrimidine top
Crystal data top
C9H10N4F(000) = 736
Mr = 174.21Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3786 reflections
a = 9.304 (5) Åθ = 2.7–25.4°
b = 26.756 (5) ŵ = 0.09 mm1
c = 7.129 (5) ÅT = 296 K
β = 91.259 (5)°Needle, white
V = 1774.2 (16) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART
diffractometer
2365 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.040
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω scansh = 1110
11971 measured reflectionsk = 2631
3091 independent reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.9302P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3091 reflectionsΔρmax = 0.25 e Å3
240 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C9H10N4V = 1774.2 (16) Å3
Mr = 174.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.304 (5) ŵ = 0.09 mm1
b = 26.756 (5) ÅT = 296 K
c = 7.129 (5) Å0.20 × 0.10 × 0.10 mm
β = 91.259 (5)°
Data collection top
Bruker SMART
diffractometer
2365 reflections with I > 2σ(I)
11971 measured reflectionsRint = 0.040
3091 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.14Δρmax = 0.25 e Å3
3091 reflectionsΔρmin = 0.19 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N70.3875 (2)0.45208 (8)0.7788 (3)0.0472 (6)
N20.1912 (2)0.21267 (8)0.6762 (3)0.0493 (6)
N40.0469 (2)0.22566 (9)0.5881 (3)0.0483 (6)
N80.5461 (2)0.52131 (8)0.7336 (3)0.0461 (6)
N60.3095 (2)0.53376 (8)0.8162 (3)0.0465 (6)
C130.4215 (3)0.50025 (10)0.7736 (4)0.0420 (6)
C140.4946 (3)0.42061 (10)0.7404 (4)0.0471 (7)
N30.1114 (2)0.29410 (9)0.6535 (3)0.0513 (6)
C150.6291 (3)0.43849 (11)0.6982 (4)0.0517 (7)
H150.70340.41640.67270.062*
C40.0780 (3)0.24630 (10)0.6363 (4)0.0453 (7)
N50.0973 (3)0.56080 (10)0.9067 (4)0.0649 (8)
C50.0032 (3)0.32600 (11)0.6131 (4)0.0539 (8)
C160.6525 (3)0.48921 (11)0.6942 (4)0.0474 (7)
C70.1541 (3)0.25785 (11)0.5495 (4)0.0494 (7)
C60.1306 (3)0.30860 (11)0.5581 (4)0.0550 (8)
H60.20410.33090.52710.066*
C100.1743 (3)0.52165 (12)0.8750 (4)0.0552 (8)
H100.14200.48900.89030.066*
N10.4063 (3)0.18529 (10)0.7662 (5)0.0728 (9)
C110.3144 (3)0.58522 (11)0.8102 (4)0.0548 (8)
H110.39140.60510.77550.066*
C90.2980 (3)0.23589 (13)0.4997 (5)0.0647 (9)
H9A0.28730.21140.40270.097*
H9B0.36150.26190.45600.097*
H9C0.33730.22030.60860.097*
C30.3271 (3)0.22439 (12)0.7368 (5)0.0622 (9)
H30.35930.25700.75510.075*
C180.7944 (3)0.51142 (13)0.6463 (5)0.0625 (9)
H18A0.78120.53520.54640.094*
H18B0.85820.48540.60700.094*
H18C0.83510.52790.75460.094*
C170.4608 (4)0.36581 (11)0.7441 (5)0.0664 (9)
H17A0.37080.36070.80440.100*
H17B0.53560.34840.81230.100*
H17C0.45450.35330.61800.100*
C10.1867 (3)0.16122 (11)0.6687 (5)0.0629 (9)
H10.10880.14130.63280.076*
C120.1844 (3)0.60062 (12)0.8651 (5)0.0647 (9)
H120.15690.63390.87380.078*
C80.0358 (4)0.38062 (12)0.6319 (6)0.0768 (11)
H8A0.00520.39230.75200.115*
H8B0.01430.39870.53440.115*
H8C0.13740.38590.62140.115*
C20.3180 (3)0.14584 (13)0.7239 (6)0.0734 (10)
H20.34560.11250.73230.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N70.0400 (13)0.0420 (13)0.0596 (14)0.0005 (10)0.0030 (10)0.0009 (10)
N20.0380 (13)0.0443 (14)0.0659 (15)0.0011 (10)0.0068 (11)0.0059 (11)
N40.0401 (13)0.0492 (14)0.0559 (14)0.0035 (10)0.0065 (10)0.0015 (10)
N80.0342 (12)0.0457 (14)0.0583 (14)0.0013 (10)0.0026 (10)0.0007 (10)
N60.0354 (12)0.0439 (13)0.0601 (14)0.0023 (10)0.0018 (10)0.0037 (10)
C130.0358 (14)0.0414 (15)0.0485 (15)0.0028 (11)0.0041 (11)0.0017 (11)
C140.0433 (15)0.0424 (15)0.0553 (16)0.0035 (12)0.0057 (12)0.0024 (12)
N30.0425 (13)0.0436 (14)0.0681 (15)0.0002 (11)0.0125 (11)0.0031 (11)
C150.0395 (15)0.0509 (18)0.0645 (18)0.0094 (13)0.0011 (13)0.0025 (13)
C40.0387 (15)0.0454 (16)0.0522 (16)0.0021 (12)0.0109 (12)0.0040 (12)
N50.0360 (13)0.0625 (17)0.096 (2)0.0053 (12)0.0027 (13)0.0125 (14)
C50.0479 (17)0.0472 (17)0.0672 (18)0.0042 (13)0.0165 (14)0.0047 (13)
C160.0366 (14)0.0505 (17)0.0548 (17)0.0018 (12)0.0038 (12)0.0009 (12)
C70.0404 (15)0.0578 (18)0.0504 (16)0.0026 (13)0.0092 (12)0.0050 (13)
C60.0411 (16)0.0547 (19)0.0694 (19)0.0047 (13)0.0094 (14)0.0074 (14)
C100.0357 (15)0.0547 (18)0.075 (2)0.0004 (13)0.0035 (13)0.0041 (14)
N10.0422 (15)0.0608 (18)0.115 (2)0.0029 (13)0.0018 (15)0.0157 (16)
C110.0427 (16)0.0431 (16)0.078 (2)0.0040 (13)0.0000 (14)0.0005 (14)
C90.0428 (17)0.081 (2)0.071 (2)0.0022 (16)0.0011 (14)0.0004 (17)
C30.0402 (17)0.0538 (19)0.093 (2)0.0027 (14)0.0002 (15)0.0081 (16)
C180.0376 (16)0.064 (2)0.086 (2)0.0005 (14)0.0039 (15)0.0028 (16)
C170.0557 (19)0.0439 (18)0.100 (2)0.0009 (15)0.0019 (17)0.0026 (16)
C10.0459 (17)0.0442 (17)0.099 (2)0.0030 (14)0.0063 (16)0.0055 (16)
C120.0490 (18)0.0501 (19)0.095 (2)0.0104 (15)0.0030 (16)0.0094 (16)
C80.060 (2)0.0479 (19)0.124 (3)0.0022 (16)0.015 (2)0.0013 (19)
C20.0458 (18)0.0491 (19)0.126 (3)0.0060 (15)0.0120 (18)0.0158 (19)
Geometric parameters (Å, º) top
N7—C131.328 (3)C7—C91.497 (4)
N7—C141.337 (4)C6—H60.9300
N2—C31.363 (4)C10—H100.9300
N2—C11.378 (4)N1—C31.294 (4)
N2—C41.410 (4)N1—C21.367 (4)
N4—C41.325 (4)C11—C121.344 (4)
N4—C71.342 (4)C11—H110.9300
N8—C131.326 (3)C9—H9A0.9600
N8—C161.345 (3)C9—H9B0.9600
N6—C101.373 (4)C9—H9C0.9600
N6—C111.379 (4)C3—H30.9300
N6—C131.413 (3)C18—H18A0.9600
C14—C151.379 (4)C18—H18B0.9600
C14—C171.500 (4)C18—H18C0.9600
N3—C41.321 (4)C17—H17A0.9600
N3—C51.347 (4)C17—H17B0.9600
C15—C161.375 (4)C17—H17C0.9600
C15—H150.9300C1—C21.340 (5)
N5—C101.292 (4)C1—H10.9300
N5—C121.375 (4)C12—H120.9300
C5—C61.378 (4)C8—H8A0.9600
C5—C81.498 (4)C8—H8B0.9600
C16—C181.495 (4)C8—H8C0.9600
C7—C61.377 (4)C2—H20.9300
C13—N7—C14115.3 (2)C12—C11—N6105.5 (3)
C3—N2—C1105.6 (2)C12—C11—H11127.3
C3—N2—C4126.9 (3)N6—C11—H11127.3
C1—N2—C4127.4 (2)C7—C9—H9A109.5
C4—N4—C7115.4 (2)C7—C9—H9B109.5
C13—N8—C16115.1 (2)H9A—C9—H9B109.5
C10—N6—C11106.0 (2)C7—C9—H9C109.5
C10—N6—C13126.9 (2)H9A—C9—H9C109.5
C11—N6—C13127.0 (2)H9B—C9—H9C109.5
N8—C13—N7128.9 (2)N1—C3—N2112.7 (3)
N8—C13—N6115.4 (2)N1—C3—H3123.6
N7—C13—N6115.6 (2)N2—C3—H3123.6
N7—C14—C15120.7 (3)C16—C18—H18A109.5
N7—C14—C17117.0 (3)C16—C18—H18B109.5
C15—C14—C17122.3 (3)H18A—C18—H18B109.5
C4—N3—C5114.8 (3)C16—C18—H18C109.5
C16—C15—C14119.5 (3)H18A—C18—H18C109.5
C16—C15—H15120.3H18B—C18—H18C109.5
C14—C15—H15120.3C14—C17—H17A109.5
N3—C4—N4129.1 (3)C14—C17—H17B109.5
N3—C4—N2115.2 (2)H17A—C17—H17B109.5
N4—C4—N2115.7 (2)C14—C17—H17C109.5
C10—N5—C12105.0 (3)H17A—C17—H17C109.5
N3—C5—C6120.9 (3)H17B—C17—H17C109.5
N3—C5—C8116.8 (3)C2—C1—N2105.5 (3)
C6—C5—C8122.4 (3)C2—C1—H1127.2
N8—C16—C15120.6 (2)N2—C1—H1127.2
N8—C16—C18116.9 (2)C11—C12—N5111.3 (3)
C15—C16—C18122.6 (3)C11—C12—H12124.3
N4—C7—C6120.5 (3)N5—C12—H12124.3
N4—C7—C9116.9 (3)C5—C8—H8A109.5
C6—C7—C9122.6 (3)C5—C8—H8B109.5
C7—C6—C5119.2 (3)H8A—C8—H8B109.5
C7—C6—H6120.4C5—C8—H8C109.5
C5—C6—H6120.4H8A—C8—H8C109.5
N5—C10—N6112.2 (3)H8B—C8—H8C109.5
N5—C10—H10123.9C1—C2—N1111.6 (3)
N6—C10—H10123.9C1—C2—H2124.2
C3—N1—C2104.5 (3)N1—C2—H2124.2
C16—N8—C13—N70.5 (4)C13—N8—C16—C18179.4 (3)
C16—N8—C13—N6179.7 (2)C14—C15—C16—N80.9 (4)
C14—N7—C13—N80.9 (4)C14—C15—C16—C18178.9 (3)
C14—N7—C13—N6179.3 (2)C4—N4—C7—C61.0 (4)
C10—N6—C13—N8175.0 (3)C4—N4—C7—C9178.3 (2)
C11—N6—C13—N83.8 (4)N4—C7—C6—C52.2 (4)
C10—N6—C13—N75.2 (4)C9—C7—C6—C5177.1 (3)
C11—N6—C13—N7176.0 (3)N3—C5—C6—C71.7 (4)
C13—N7—C14—C150.3 (4)C8—C5—C6—C7178.0 (3)
C13—N7—C14—C17179.9 (3)C12—N5—C10—N60.7 (4)
N7—C14—C15—C160.6 (4)C11—N6—C10—N50.5 (4)
C17—C14—C15—C16179.0 (3)C13—N6—C10—N5178.5 (3)
C5—N3—C4—N41.2 (4)C10—N6—C11—C120.1 (3)
C5—N3—C4—N2179.3 (2)C13—N6—C11—C12178.9 (3)
C7—N4—C4—N30.8 (4)C2—N1—C3—N20.3 (4)
C7—N4—C4—N2179.7 (2)C1—N2—C3—N10.3 (4)
C3—N2—C4—N32.8 (4)C4—N2—C3—N1178.3 (3)
C1—N2—C4—N3179.7 (3)C3—N2—C1—C20.2 (4)
C3—N2—C4—N4176.8 (3)C4—N2—C1—C2178.1 (3)
C1—N2—C4—N40.8 (4)N6—C11—C12—N50.3 (4)
C4—N3—C5—C60.1 (4)C10—N5—C12—C110.6 (4)
C4—N3—C5—C8179.6 (3)N2—C1—C2—N10.0 (4)
C13—N8—C16—C150.4 (4)C3—N1—C2—C10.2 (4)

Experimental details

Crystal data
Chemical formulaC9H10N4
Mr174.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.304 (5), 26.756 (5), 7.129 (5)
β (°) 91.259 (5)
V3)1774.2 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11971, 3091, 2365
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.197, 1.14
No. of reflections3091
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071001), the Education Committee of Anhui Province (grant No. KJ2010A030) and the Graduate Students Academic Innovation Research Project of Anhui University (grant No. yqh090019).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCetina, M., Nagl, A., Prekupec, S., Raić-Malić, S. & Mintas, M. (2005). Acta Cryst. C61, o158–o160.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Z. J., Chen, T., Liu, B., Huang, Z. L., Huang, T., Li, S. Y., Xu, Y. X. & Qin, J. G. (2007). J. Mater. Chem. 17, 4685–4689.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, F., Zhang, Y.-Q., Zhu, Q.-J., Xue, S.-F. & Tao, Z. (2008). Acta Cryst. E64, o1488.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds