organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (Z)-2-(2-fluoro­benzyl­­idene)-7-methyl-3-oxo-5-phenyl-3,5-di­hydro-2H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aInstitute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People's Republic of China, and bSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province 325035, People's Republic of China
*Correspondence e-mail: shulin_yang@126.com

(Received 13 October 2011; accepted 17 October 2011; online 22 October 2011)

The title compound, C23H19FN2O3S, a fused-pyrimidine derivative, displays dihedral angles between the thia­zole ring and the benzene ring and substituted benzene ring of 7.10 (14) and 3.48 (12)°, respectively. The dihydro­pyrimidine ring adopts a flattened boat conformation. The olefinic double bond is in a Z configuration.

Related literature

For related crystal structures, see: Hou (2009[Hou, Z.-H. (2009). Acta Cryst. E65, o235.]); Kulakov et al. (2009[Kulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856-859.]). For background to the biological properties of fused-pyrimidine derivatives, see: Alam et al. (2010[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245-1258.]); Al-Rashood & Abdel-Aziz (2010[Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775-3815.]); Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]); Jang et al. (2011[Jang, M. Y., Lin, Y., De Jonghe, S., Gao, L. J., Vanderhoydonck, B., Froeyen, M., Rozenski, J., Herman, J., Louat, T., Van Belle, K., Waer, M. & Herdewijn, P. (2011). J. Med. Chem. 54, 655-668.]); Wichmann et al. (1999[Wichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573-1576.]);. Zhou et al. (2011[Zhou, B., Li, X., Li, Y., Xu, Y., Zhang, Z., Zhou, M., Zhang, X., Liu, Z., Zhou, J., Cao, C., Yu, B. & Wang, R. (2011). ChemMedChem, 6, 904-921.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19FN2O3S

  • Mr = 422.46

  • Monoclinic, P 21 /n

  • a = 9.3230 (19) Å

  • b = 10.170 (2) Å

  • c = 21.862 (4) Å

  • β = 96.33 (3)°

  • V = 2060.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.26 × 0.17 × 0.13 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.831, Tmax = 1.000

  • 10963 measured reflections

  • 4040 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.147

  • S = 1.04

  • 4040 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidine derivatives are important molecules owing to their useful biological and therapeutic activities (Ashok et al., 2007; Zhou et al., 2011). Thiazole derivatives have similar useful activity (Jang et al., 2011). Such structural units are found in a vast number of naturally-occurring compounds and pharmaceuticals, so that the presence of both pyrimidine and thiazole rings give rise to enhanced activity (Al-Rashood & Abdel-Aziz, 2010; Wichmann et al., 1999; Alam et al., 2010).

In continuation of our studies on heterocyclic compounds, we report the crystal structure of (I). The fused thiazole ring has usual geometry as observed in other fused thiazolopyrimidine compounds (Hou, 2009; Kulakov et al., 2009). The thiazole ring makes dihedral angles of 87.10 (14) and 3.48 (12) ° with the benzene rings C14–C17 and C8–C13, respectively. The pyrimidine ring adopts a flattened boat conformation. The C2—C7 double bond exist in the Z configuration. The crystal packing is stabilized by π-π stacking interactions. (Fig. 1).

Related literature top

For related crystal structures, see: Hou, (2009); Kulakov et al. (2009). For background to the biological properties of fused-pyrimidine derivatives, see: Alam et al. (2010); Al-Rashood & Abdel-Aziz (2010); Ashok et al. (2007); Jang et al. (2011); Wichmann et al. (1999);. Zhou et al. (2011).

Experimental top

In a one-pot Biginelli reaction, a mixture of 5 mmol of benzaldehyde, 6 mmol e thyl acetoacetate, 7.5 mmol thiourea and 10 ml of EtOH was stirred at 50°C in presence of sulfamic acid catalyst for 3 h to obtain 6-methyl-4-phenyl-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate. The product (2 mmol) was reacted with ethyl chloroacetate (2 mmol) in presence of pyridine for 4 h; 2-fluorobenzaldehyde (2 mmol) and piperidine were added, and and the mixture refluxed for 4 h until the TLC assay indicated that the reaction was completed. The reaction mixture was cooled and filtered to give the crude product. The solid was recystallized from acetic acid, and single crystals were grown in a CH2Cl2/CH3OH mixture (5:2 v/v)..

Refinement top

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHEXLTL (Bruker, 2002).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
Ethyl (Z)-2-(2-fluorobenzylidene)-7-methyl-3-oxo-5-phenyl-3,5-dihydro- 2H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C23H19FN2O3SF(000) = 880
Mr = 422.46Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3230 (19) ÅCell parameters from 2127 reflections
b = 10.170 (2) Åθ = 2.5–24.0°
c = 21.862 (4) ŵ = 0.19 mm1
β = 96.33 (3)°T = 293 K
V = 2060.3 (7) Å3Prismatic, green
Z = 40.26 × 0.17 × 0.13 mm
Data collection top
Bruker SMART
diffractometer
4040 independent reflections
Radiation source: fine-focus sealed tube2918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.831, Tmax = 1.000k = 1112
10963 measured reflectionsl = 2126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.4206P]
where P = (Fo2 + 2Fc2)/3
4040 reflections(Δ/σ)max = 0.009
273 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C23H19FN2O3SV = 2060.3 (7) Å3
Mr = 422.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3230 (19) ŵ = 0.19 mm1
b = 10.170 (2) ÅT = 293 K
c = 21.862 (4) Å0.26 × 0.17 × 0.13 mm
β = 96.33 (3)°
Data collection top
Bruker SMART
diffractometer
4040 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2918 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.000Rint = 0.027
10963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
4040 reflectionsΔρmin = 0.17 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12550 (6)0.33812 (6)1.02831 (3)0.0515 (2)
N10.00474 (18)0.31076 (17)0.91699 (8)0.0421 (4)
N20.0764 (2)0.16406 (19)0.98954 (9)0.0551 (5)
F10.46561 (19)0.74388 (17)0.96836 (8)0.0873 (5)
O10.10315 (17)0.47535 (17)0.86461 (7)0.0571 (4)
O20.3636 (2)0.0068 (2)0.83596 (11)0.0977 (7)
O30.28690 (19)0.1748 (2)0.78413 (9)0.0721 (5)
C10.0939 (2)0.4181 (2)0.91203 (10)0.0423 (5)
C20.1745 (2)0.4481 (2)0.97289 (9)0.0431 (5)
C30.0027 (2)0.2577 (2)0.97443 (10)0.0455 (5)
C40.0700 (2)0.2454 (2)0.86253 (10)0.0476 (5)
H40.12030.31210.83580.057*
C50.1807 (2)0.1507 (2)0.88343 (11)0.0499 (6)
C60.1772 (2)0.1125 (2)0.94227 (12)0.0536 (6)
C70.2703 (2)0.5462 (2)0.97837 (10)0.0475 (5)
H70.27810.59300.94240.057*
C80.3638 (2)0.5912 (2)1.03149 (11)0.0496 (6)
C90.3658 (3)0.5407 (3)1.09065 (12)0.0632 (7)
H90.30310.47271.09790.076*
C100.4586 (3)0.5889 (3)1.13895 (13)0.0768 (9)
H100.45780.55341.17810.092*
C110.5515 (3)0.6883 (3)1.12944 (16)0.0795 (9)
H110.61400.72021.16220.095*
C120.5536 (3)0.7414 (3)1.07228 (15)0.0747 (8)
H120.61640.80961.06570.090*
C130.4611 (3)0.6919 (3)1.02485 (13)0.0588 (6)
C140.0385 (3)0.1753 (3)0.82699 (11)0.0574 (7)
C150.0600 (3)0.2140 (3)0.76873 (13)0.0809 (9)
H150.00880.28470.75040.097*
C160.1604 (5)0.1456 (5)0.73671 (18)0.1075 (14)
H160.17540.17070.69700.129*
C170.2346 (4)0.0434 (5)0.7641 (2)0.1163 (17)
H170.30040.00130.74280.140*
C180.2155 (3)0.0046 (4)0.8219 (2)0.1027 (13)
H180.26840.06530.84020.123*
C190.1160 (3)0.0704 (3)0.85343 (15)0.0768 (9)
H190.10140.04340.89290.092*
C200.2869 (3)0.1001 (3)0.83382 (14)0.0605 (7)
C210.3860 (3)0.1400 (4)0.73092 (15)0.0931 (11)
H21A0.34720.06740.70920.112*
H21B0.47770.11280.74390.112*
C220.4067 (5)0.2525 (5)0.69102 (16)0.1257 (15)
H22A0.44010.32540.71350.189*
H22B0.47690.23200.65690.189*
H22C0.31690.27510.67610.189*
C230.2756 (3)0.0149 (3)0.96687 (15)0.0743 (8)
H23A0.36390.01000.93990.111*
H23B0.29610.04181.00710.111*
H23C0.23000.06990.96950.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0556 (4)0.0553 (4)0.0424 (3)0.0045 (3)0.0004 (3)0.0014 (3)
N10.0425 (10)0.0440 (10)0.0396 (9)0.0018 (8)0.0034 (7)0.0048 (8)
N20.0538 (12)0.0497 (12)0.0619 (13)0.0032 (10)0.0064 (10)0.0065 (10)
F10.0901 (12)0.0884 (12)0.0848 (12)0.0292 (10)0.0158 (9)0.0101 (9)
O10.0642 (10)0.0621 (10)0.0435 (9)0.0110 (8)0.0008 (7)0.0053 (8)
O20.0845 (15)0.0827 (15)0.1215 (19)0.0357 (12)0.0082 (13)0.0088 (13)
O30.0576 (11)0.0893 (14)0.0668 (12)0.0195 (10)0.0052 (9)0.0159 (10)
C10.0424 (12)0.0417 (12)0.0423 (12)0.0036 (9)0.0027 (9)0.0044 (10)
C20.0434 (12)0.0439 (12)0.0413 (12)0.0118 (10)0.0023 (9)0.0061 (9)
C30.0439 (12)0.0443 (12)0.0487 (13)0.0104 (10)0.0063 (10)0.0013 (10)
C40.0418 (12)0.0527 (13)0.0473 (12)0.0001 (10)0.0004 (10)0.0083 (10)
C50.0360 (12)0.0456 (12)0.0684 (16)0.0033 (10)0.0076 (11)0.0087 (11)
C60.0433 (13)0.0409 (12)0.0772 (18)0.0069 (10)0.0091 (12)0.0008 (12)
C70.0472 (12)0.0469 (12)0.0475 (12)0.0075 (10)0.0009 (10)0.0060 (10)
C80.0432 (12)0.0501 (13)0.0542 (14)0.0116 (10)0.0009 (10)0.0119 (11)
C90.0656 (16)0.0600 (16)0.0605 (16)0.0053 (13)0.0085 (12)0.0130 (12)
C100.081 (2)0.082 (2)0.0614 (17)0.0164 (17)0.0211 (15)0.0173 (15)
C110.0549 (17)0.088 (2)0.090 (2)0.0123 (16)0.0197 (15)0.0418 (18)
C120.0486 (15)0.0779 (19)0.095 (2)0.0000 (14)0.0020 (15)0.0379 (17)
C130.0459 (13)0.0580 (15)0.0719 (17)0.0036 (12)0.0041 (12)0.0179 (13)
C140.0435 (13)0.0694 (16)0.0598 (15)0.0153 (12)0.0084 (11)0.0282 (13)
C150.080 (2)0.098 (2)0.0684 (18)0.0322 (17)0.0249 (15)0.0315 (16)
C160.106 (3)0.132 (3)0.094 (3)0.059 (3)0.053 (2)0.055 (3)
C170.075 (2)0.128 (4)0.155 (4)0.037 (2)0.056 (3)0.087 (3)
C180.0606 (19)0.109 (3)0.140 (3)0.0046 (18)0.020 (2)0.057 (3)
C190.0515 (15)0.085 (2)0.094 (2)0.0080 (15)0.0098 (14)0.0357 (17)
C200.0411 (13)0.0565 (15)0.0834 (19)0.0013 (12)0.0050 (12)0.0158 (14)
C210.071 (2)0.121 (3)0.081 (2)0.0205 (19)0.0181 (17)0.026 (2)
C220.160 (4)0.138 (4)0.069 (2)0.015 (3)0.030 (2)0.018 (2)
C230.0620 (17)0.0546 (16)0.107 (2)0.0019 (13)0.0147 (15)0.0184 (15)
Geometric parameters (Å, º) top
S1—C21.746 (2)C10—C111.361 (4)
S1—C31.752 (2)C10—H100.9300
N1—C31.369 (3)C11—C121.364 (4)
N1—C11.384 (3)C11—H110.9300
N1—C41.470 (3)C12—C131.369 (4)
N2—C31.270 (3)C12—H120.9300
N2—C61.418 (3)C14—C151.368 (4)
F1—C131.348 (3)C14—C191.379 (4)
O1—C11.201 (3)C15—C161.413 (5)
O2—C201.192 (3)C15—H150.9300
O3—C201.326 (3)C16—C171.351 (6)
O3—C211.448 (3)C16—H160.9300
C1—C21.486 (3)C17—C181.353 (6)
C2—C71.336 (3)C17—H170.9300
C4—C51.518 (3)C18—C191.387 (4)
C4—C141.520 (3)C18—H180.9300
C4—H40.9800C19—H190.9300
C5—C61.341 (3)C21—C221.438 (5)
C5—C201.478 (3)C21—H21A0.9700
C6—C231.492 (3)C21—H21B0.9700
C7—C81.447 (3)C22—H22A0.9600
C7—H70.9300C22—H22B0.9600
C8—C131.387 (4)C22—H22C0.9600
C8—C91.390 (4)C23—H23A0.9600
C9—C101.379 (4)C23—H23B0.9600
C9—H90.9300C23—H23C0.9600
C2—S1—C391.96 (11)C13—C12—H12120.8
C3—N1—C1116.89 (18)F1—C13—C12118.0 (3)
C3—N1—C4120.74 (18)F1—C13—C8118.2 (2)
C1—N1—C4121.90 (18)C12—C13—C8123.8 (3)
C3—N2—C6116.4 (2)C15—C14—C19119.3 (3)
C20—O3—C21117.4 (2)C15—C14—C4121.0 (3)
O1—C1—N1123.46 (19)C19—C14—C4119.7 (2)
O1—C1—C2126.6 (2)C14—C15—C16119.5 (4)
N1—C1—C2109.93 (19)C14—C15—H15120.2
C7—C2—C1120.1 (2)C16—C15—H15120.2
C7—C2—S1129.77 (17)C17—C16—C15119.6 (4)
C1—C2—S1110.16 (16)C17—C16—H16120.2
N2—C3—N1127.0 (2)C15—C16—H16120.2
N2—C3—S1122.04 (18)C16—C17—C18121.7 (4)
N1—C3—S1111.00 (16)C16—C17—H17119.2
N1—C4—C5108.68 (18)C18—C17—H17119.2
N1—C4—C14110.08 (17)C17—C18—C19119.1 (4)
C5—C4—C14111.69 (19)C17—C18—H18120.4
N1—C4—H4108.8C19—C18—H18120.4
C5—C4—H4108.8C14—C19—C18120.9 (4)
C14—C4—H4108.8C14—C19—H19119.6
C6—C5—C20123.1 (2)C18—C19—H19119.6
C6—C5—C4121.8 (2)O2—C20—O3122.9 (3)
C20—C5—C4115.0 (2)O2—C20—C5127.2 (3)
C5—C6—N2122.4 (2)O3—C20—C5109.9 (2)
C5—C6—C23126.0 (2)C22—C21—O3108.9 (3)
N2—C6—C23111.6 (2)C22—C21—H21A109.9
C2—C7—C8130.2 (2)O3—C21—H21A109.9
C2—C7—H7114.9C22—C21—H21B109.9
C8—C7—H7114.9O3—C21—H21B109.9
C13—C8—C9115.4 (2)H21A—C21—H21B108.3
C13—C8—C7119.5 (2)C21—C22—H22A109.5
C9—C8—C7125.1 (2)C21—C22—H22B109.5
C10—C9—C8121.6 (3)H22A—C22—H22B109.5
C10—C9—H9119.2C21—C22—H22C109.5
C8—C9—H9119.2H22A—C22—H22C109.5
C11—C10—C9120.2 (3)H22B—C22—H22C109.5
C11—C10—H10119.9C6—C23—H23A109.5
C9—C10—H10119.9C6—C23—H23B109.5
C10—C11—C12120.5 (3)H23A—C23—H23B109.5
C10—C11—H11119.7C6—C23—H23C109.5
C12—C11—H11119.7H23A—C23—H23C109.5
C11—C12—C13118.5 (3)H23B—C23—H23C109.5
C11—C12—H12120.8
C3—N1—C1—O1178.3 (2)S1—C2—C7—C80.6 (4)
C4—N1—C1—O19.5 (3)C2—C7—C8—C13176.4 (2)
C3—N1—C1—C22.4 (2)C2—C7—C8—C93.3 (4)
C4—N1—C1—C2169.82 (17)C13—C8—C9—C100.2 (4)
O1—C1—C2—C71.2 (3)C7—C8—C9—C10179.9 (2)
N1—C1—C2—C7178.14 (18)C8—C9—C10—C110.1 (4)
O1—C1—C2—S1179.97 (19)C9—C10—C11—C120.2 (4)
N1—C1—C2—S10.6 (2)C10—C11—C12—C130.4 (4)
C3—S1—C2—C7179.4 (2)C11—C12—C13—F1179.1 (2)
C3—S1—C2—C10.79 (16)C11—C12—C13—C80.6 (4)
C6—N2—C3—N12.6 (3)C9—C8—C13—F1179.2 (2)
C6—N2—C3—S1176.41 (16)C7—C8—C13—F10.5 (3)
C1—N1—C3—N2176.1 (2)C9—C8—C13—C120.5 (4)
C4—N1—C3—N211.6 (3)C7—C8—C13—C12179.8 (2)
C1—N1—C3—S13.0 (2)N1—C4—C14—C15115.2 (2)
C4—N1—C3—S1169.30 (15)C5—C4—C14—C15124.0 (2)
C2—S1—C3—N2177.05 (19)N1—C4—C14—C1965.4 (3)
C2—S1—C3—N12.07 (16)C5—C4—C14—C1955.4 (3)
C3—N1—C4—C519.3 (3)C19—C14—C15—C160.2 (4)
C1—N1—C4—C5168.82 (18)C4—C14—C15—C16179.2 (2)
C3—N1—C4—C14103.3 (2)C14—C15—C16—C170.4 (5)
C1—N1—C4—C1468.6 (3)C15—C16—C17—C180.1 (6)
N1—C4—C5—C616.0 (3)C16—C17—C18—C190.8 (5)
C14—C4—C5—C6105.6 (2)C15—C14—C19—C180.4 (4)
N1—C4—C5—C20166.70 (18)C4—C14—C19—C18179.8 (2)
C14—C4—C5—C2071.7 (2)C17—C18—C19—C140.9 (5)
C20—C5—C6—N2178.7 (2)C21—O3—C20—O20.4 (4)
C4—C5—C6—N24.3 (3)C21—O3—C20—C5179.5 (2)
C20—C5—C6—C230.5 (4)C6—C5—C20—O213.9 (4)
C4—C5—C6—C23176.5 (2)C4—C5—C20—O2163.4 (3)
C3—N2—C6—C56.2 (3)C6—C5—C20—O3166.0 (2)
C3—N2—C6—C23173.1 (2)C4—C5—C20—O316.8 (3)
C1—C2—C7—C8177.9 (2)C20—O3—C21—C22160.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O1i0.932.623.410 (5)144
C23—H23C···S1ii0.962.903.851 (3)173
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC23H19FN2O3S
Mr422.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.3230 (19), 10.170 (2), 21.862 (4)
β (°) 96.33 (3)
V3)2060.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.17 × 0.13
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.831, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10963, 4040, 2918
Rint0.027
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.147, 1.04
No. of reflections4040
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2002), SHEXLTL (Bruker, 2002).

 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y4110197) and the Project of Wenzhou Science and Technology Bureau (grant No. Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences is gratefully acknowledged.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationAl-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815.  Web of Science CAS PubMed Google Scholar
First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, Z.-H. (2009). Acta Cryst. E65, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJang, M. Y., Lin, Y., De Jonghe, S., Gao, L. J., Vanderhoydonck, B., Froeyen, M., Rozenski, J., Herman, J., Louat, T., Van Belle, K., Waer, M. & Herdewijn, P. (2011). J. Med. Chem. 54, 655–668.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKulakov, I., Nurkenov, O., Turdybekov, D., Issabaeva, G., Mahmutova, A. & Turdybekov, K. (2009). Chem. Heterocycl. Compd, 45, 856–859.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWichmann, J., Adam, G., Kolczewski, S., Mutel, V. & Woltering, T. (1999). Bioorg. Med. Chem. Lett. 9, 1573–1576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, B., Li, X., Li, Y., Xu, Y., Zhang, Z., Zhou, M., Zhang, X., Liu, Z., Zhou, J., Cao, C., Yu, B. & Wang, R. (2011). ChemMedChem, 6, 904–921.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds