organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,2-Di­methyl-1H-indol-3-yl)-1-{5-[3-(1,3-dioxolan-2-yl)phen­yl]-2-methyl­thio­phen-3-yl}-3,3,4,4,5,5-hexa­fluoro­cyclo­pent-1-ene

aCollege of Environmental and Chemical Engineering, Applied Chemistry, Nanchang Hangkong University, Nanchang 330034, People's Republic of China, and bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: fan200203@163.com

(Received 14 October 2011; accepted 20 October 2011; online 29 October 2011)

The title compound, C29H23F6NO2S, a member of a new family of photochromic diaryl­ethene compounds having an unsymmetrically substituted hexa­fluoro­cyclo­pentene unit, displays dihedral angles between the indole and thio­phene rings of 52.5 (4)°, and between the indole ring and the planar C—C=C—C unit of the cyclopentene ring of 53.8 (6)°. The distance between the potentially reactive C atoms from the two heteroaryl substituents of 3.817 (6) Å is proven to be short enough for photocyclization to occur.

Related literature

For literature on photochromic diaryl­ethene compounds, see: Pu et al. (2007[Pu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett. 9, 2139-2142.], 2010[Pu, S.-Z., Fan, C.-B., Miao, W.-J. & Liu, G. (2010). Dyes Pigments, 84, 25-35.]); Yamamoto et al. (2003[Yamamoto, S., Matsuda, K. & Irie, M. (2003). Angew. Chem. Int. Ed. Engl. 42, 1636-1639.]).

[Scheme 1]

Experimental

Crystal data
  • C29H23F6NO2S

  • Mr = 563.54

  • Monoclinic, P 21 /c

  • a = 10.7364 (13) Å

  • b = 9.8983 (12) Å

  • c = 24.020 (3) Å

  • β = 93.151 (1)°

  • V = 2548.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.50 × 0.38 × 0.30 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.942

  • 22213 measured reflections

  • 5816 independent reflections

  • 4512 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.126

  • S = 1.03

  • 5816 reflections

  • 355 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound when dissolved in hexane shows photochromism. Upon irradiation with 297 nm light, the colorless hexane solution turns blue rapidly. The blue compound displays an absorption maximum at 592 nm. Upon irradiation with visible light with wavelength longer than 510 nm, the blue hexane solution reverts to its initial colorless state; a colorless hexane solution of the title compound has an absorption maximum at 278 nm. In a polymethylmethacrylate amorphous film, the title diarylethene also exhibits photochromism similar to that in hexane.

Related literature top

For literature on photochromic diarylethene compounds, see: Pu et al. (2007, 2010); Irie et al. (2003).

Experimental top

To a tetrahydrofuran solution of 1,2-dimethyl-3-bromoindole (1.12 g, 5 mmol) was added a hexane solution of n-butyl lithium 2.5 M (2.0 ml, 5 mmol) at 195 K under a nitrogen atmosphere. The mixture was stirred for half an hour. An excess of octafluorocyclopentene (1.5 ml, 10 mmol) was added and stirring was continued for another 2 h at this temperature. The reaction was then quenched by the addition of water. The product, 1,3,3,4,4,5,5-heptafluoro- 2-(1,2-dimethyl-3-indolyl)-3,3,4,4,5,5-hexafluorocyclopent-1-ene (0.76 g, 2.25 mmol), was collected and dried (yield 45.0%). This compound (0.76 g, 2.25 mmol) was reacted with 3-bromo-5-(3-(2,5-dioxolanyl)phenyl)-2-methylthiophene (0.73 g, 2.25 mmol; Irie et al., 2003) in the presence of n-butyl lithium 2.5 M (0.90 ml, 2.25 mmol) at 195 K under a nitrogen atmosphere. After an hour, the reaction was quenched by the addition of water. The solid product was purified by column chromatography on silica using petroleum ether as the eluant to give the title compound (yield 0.47 g, 0.83 mmol, 37.0%).Crystals suitable for analysis were obtained by slow evaporation of a solution in hexane. Analysis: calculated for C29H13F6NO2S:C 61.81, H 4.11%; found C 61.84, H 4.20%.

Refinement top

All H atoms were placed in calculated positions with C—H equal 0.93 Å for aromatic and 0.96 Å for CH3 groups. They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to 1.2Ueq(C) and 1.5Ueq(C) of the carrier atom for the aromatic and methyl H atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
2-(1,2-Dimethyl-1H-indol-3-yl)-1-{5-[3-(1,3-dioxolan-2-yl)phenyl]- 2-methylthiophen-3-yl}-3,3,4,4,5,5-hexafluorocyclopent-1-ene top
Crystal data top
C29H23F6NO2SF(000) = 1160
Mr = 563.54Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7364 (13) ÅCell parameters from 8530 reflections
b = 9.8983 (12) Åθ = 2.5–28.0°
c = 24.020 (3) ŵ = 0.20 mm1
β = 93.151 (1)°T = 296 K
V = 2548.8 (5) Å3Block, yellow
Z = 40.50 × 0.38 × 0.30 mm
Data collection top
Bruker SMART APEX
diffractometer
5816 independent reflections
Radiation source: fine-focus sealed tube4512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.906, Tmax = 0.942k = 1212
22213 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.789P]
where P = (Fo2 + 2Fc2)/3
5816 reflections(Δ/σ)max = 0.011
355 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C29H23F6NO2SV = 2548.8 (5) Å3
Mr = 563.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7364 (13) ŵ = 0.20 mm1
b = 9.8983 (12) ÅT = 296 K
c = 24.020 (3) Å0.50 × 0.38 × 0.30 mm
β = 93.151 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5816 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4512 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.942Rint = 0.024
22213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5816 reflectionsΔρmin = 0.26 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46926 (4)0.75926 (5)0.44072 (2)0.05075 (14)
C20.5797 (3)1.4850 (2)0.26912 (11)0.0767 (7)
H2A0.54681.51240.23240.092*
H2B0.67011.48590.26960.092*
C10.5343 (2)1.5767 (2)0.31281 (11)0.0697 (6)
H1A0.59361.64860.32150.084*
H1B0.45431.61620.30120.084*
C30.4832 (2)1.3650 (2)0.33581 (9)0.0574 (5)
H30.39191.36420.33110.069*
O10.52349 (16)1.48886 (14)0.35886 (7)0.0691 (4)
O20.53560 (19)1.35553 (16)0.28268 (7)0.0788 (5)
C90.44801 (16)1.14124 (17)0.38049 (7)0.0424 (4)
H90.36741.14220.36420.051*
C80.48836 (15)1.03020 (17)0.41218 (7)0.0394 (4)
C70.60943 (17)1.0324 (2)0.43654 (8)0.0477 (4)
H70.63810.95960.45810.057*
C60.68702 (18)1.1412 (2)0.42901 (8)0.0550 (5)
H60.76761.14090.44540.066*
C40.52623 (17)1.25041 (18)0.37281 (8)0.0453 (4)
C50.64630 (18)1.2503 (2)0.39749 (8)0.0523 (5)
H50.69891.32350.39270.063*
C100.40687 (16)0.91279 (16)0.41941 (7)0.0392 (4)
C130.32653 (16)0.68064 (17)0.43779 (7)0.0438 (4)
C120.23425 (15)0.76930 (16)0.42070 (7)0.0372 (3)
C110.28040 (15)0.90194 (16)0.41100 (7)0.0390 (4)
H110.22930.97410.40000.047*
C140.3162 (2)0.5367 (2)0.45587 (10)0.0615 (5)
H14A0.23820.52350.47280.092*
H14B0.38370.51570.48240.092*
H14C0.32010.47850.42400.092*
C190.04988 (15)0.62631 (16)0.38624 (6)0.0351 (3)
C150.10223 (15)0.72872 (15)0.41630 (6)0.0357 (3)
C180.08018 (16)0.60133 (17)0.40400 (7)0.0412 (4)
C160.00880 (17)0.79637 (17)0.45098 (7)0.0419 (4)
C170.11661 (17)0.73266 (19)0.43227 (8)0.0467 (4)
C270.09376 (15)0.40600 (16)0.33100 (7)0.0388 (3)
C210.15871 (16)0.60655 (17)0.29688 (7)0.0394 (4)
C200.10126 (15)0.54940 (16)0.34138 (6)0.0367 (3)
C260.05000 (19)0.29491 (18)0.35967 (8)0.0495 (4)
H260.01450.30590.39380.059*
C220.14977 (16)0.38410 (17)0.28003 (7)0.0424 (4)
C230.1598 (2)0.25562 (19)0.25678 (9)0.0539 (5)
H230.19630.24290.22300.065*
C250.0604 (2)0.16781 (19)0.33630 (10)0.0590 (5)
H250.03080.09320.35510.071*
C240.1139 (2)0.1490 (2)0.28563 (10)0.0604 (5)
H240.11860.06230.27100.072*
C280.17998 (19)0.75138 (18)0.28411 (8)0.0500 (4)
H28A0.26670.77250.29100.075*
H28B0.13090.80660.30740.075*
H28C0.15610.76860.24570.075*
C290.2481 (2)0.5262 (2)0.20780 (8)0.0638 (6)
H29A0.30580.45390.20250.096*
H29B0.29190.61080.20860.096*
H29C0.18550.52650.17770.096*
N10.18883 (14)0.50697 (15)0.26043 (6)0.0442 (3)
F60.08404 (11)0.49895 (11)0.44167 (5)0.0586 (3)
F50.16255 (10)0.56709 (13)0.36180 (5)0.0624 (3)
F40.19297 (12)0.71618 (14)0.47397 (6)0.0710 (4)
F20.00594 (12)0.93212 (11)0.44437 (6)0.0672 (3)
F10.03219 (11)0.77538 (14)0.50619 (4)0.0639 (3)
F30.17684 (12)0.81256 (14)0.39387 (6)0.0727 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0373 (2)0.0444 (3)0.0708 (3)0.00047 (18)0.0052 (2)0.0026 (2)
C20.0806 (16)0.0674 (15)0.0844 (16)0.0038 (12)0.0267 (13)0.0159 (12)
C10.0631 (14)0.0481 (11)0.0991 (18)0.0011 (10)0.0144 (12)0.0125 (11)
C30.0507 (11)0.0501 (11)0.0722 (13)0.0103 (9)0.0109 (10)0.0030 (9)
O10.0832 (11)0.0417 (7)0.0850 (11)0.0074 (7)0.0272 (9)0.0044 (7)
O20.1211 (15)0.0564 (9)0.0603 (9)0.0133 (9)0.0182 (9)0.0006 (7)
C90.0356 (8)0.0440 (9)0.0476 (9)0.0075 (7)0.0042 (7)0.0071 (7)
C80.0384 (8)0.0429 (9)0.0374 (8)0.0070 (7)0.0063 (6)0.0094 (7)
C70.0415 (9)0.0552 (11)0.0461 (9)0.0045 (8)0.0002 (7)0.0056 (8)
C60.0385 (9)0.0708 (13)0.0552 (11)0.0129 (9)0.0019 (8)0.0087 (10)
C40.0434 (9)0.0431 (9)0.0502 (10)0.0082 (7)0.0109 (7)0.0078 (7)
C50.0448 (10)0.0540 (11)0.0589 (11)0.0199 (8)0.0092 (8)0.0110 (9)
C100.0411 (9)0.0377 (8)0.0391 (8)0.0045 (7)0.0053 (7)0.0053 (6)
C130.0425 (9)0.0388 (9)0.0508 (10)0.0024 (7)0.0091 (7)0.0007 (7)
C120.0391 (8)0.0367 (8)0.0361 (8)0.0040 (6)0.0060 (6)0.0034 (6)
C110.0392 (8)0.0352 (8)0.0425 (8)0.0029 (6)0.0013 (7)0.0012 (6)
C140.0535 (12)0.0451 (11)0.0870 (15)0.0018 (9)0.0132 (11)0.0143 (10)
C190.0383 (8)0.0342 (8)0.0330 (7)0.0025 (6)0.0045 (6)0.0039 (6)
C150.0383 (8)0.0343 (8)0.0349 (7)0.0024 (6)0.0059 (6)0.0021 (6)
C180.0384 (9)0.0442 (9)0.0409 (8)0.0072 (7)0.0021 (7)0.0051 (7)
C160.0494 (10)0.0380 (8)0.0391 (8)0.0008 (7)0.0109 (7)0.0005 (7)
C170.0409 (9)0.0526 (10)0.0476 (9)0.0046 (8)0.0105 (7)0.0065 (8)
C270.0403 (9)0.0367 (8)0.0393 (8)0.0028 (7)0.0003 (7)0.0005 (6)
C210.0408 (9)0.0404 (9)0.0373 (8)0.0059 (7)0.0040 (7)0.0007 (6)
C200.0395 (8)0.0350 (8)0.0358 (8)0.0060 (6)0.0030 (6)0.0002 (6)
C260.0570 (11)0.0399 (9)0.0515 (10)0.0055 (8)0.0033 (8)0.0063 (8)
C220.0433 (9)0.0405 (9)0.0431 (9)0.0005 (7)0.0004 (7)0.0043 (7)
C230.0571 (11)0.0481 (10)0.0564 (11)0.0054 (9)0.0019 (9)0.0123 (8)
C250.0664 (13)0.0358 (9)0.0739 (13)0.0056 (9)0.0037 (11)0.0095 (9)
C240.0649 (13)0.0373 (10)0.0779 (14)0.0043 (9)0.0067 (11)0.0090 (9)
C280.0606 (11)0.0437 (10)0.0465 (10)0.0117 (8)0.0104 (8)0.0052 (7)
C290.0730 (14)0.0741 (14)0.0465 (10)0.0085 (11)0.0246 (10)0.0059 (10)
N10.0489 (8)0.0463 (8)0.0385 (7)0.0040 (6)0.0108 (6)0.0025 (6)
F60.0633 (7)0.0500 (6)0.0646 (7)0.0054 (5)0.0230 (6)0.0172 (5)
F50.0442 (6)0.0782 (8)0.0638 (7)0.0133 (5)0.0051 (5)0.0084 (6)
F40.0568 (7)0.0845 (9)0.0753 (8)0.0072 (6)0.0349 (6)0.0066 (7)
F20.0781 (8)0.0367 (6)0.0900 (9)0.0017 (5)0.0336 (7)0.0054 (6)
F10.0649 (8)0.0909 (9)0.0365 (5)0.0039 (6)0.0086 (5)0.0064 (5)
F30.0695 (8)0.0693 (8)0.0777 (8)0.0233 (7)0.0101 (7)0.0093 (7)
Geometric parameters (Å, º) top
S1—C131.7167 (18)C19—C201.453 (2)
S1—C101.7269 (18)C19—C181.503 (2)
C2—O21.411 (3)C15—C161.497 (2)
C2—C11.490 (4)C18—F51.351 (2)
C2—H2A0.9700C18—F61.3608 (19)
C2—H2B0.9700C18—C171.527 (3)
C1—O11.417 (3)C16—F11.352 (2)
C1—H1A0.9700C16—F21.353 (2)
C1—H1B0.9700C16—C171.532 (3)
C3—O11.404 (2)C17—F41.339 (2)
C3—O21.426 (3)C17—F31.352 (2)
C3—C41.498 (3)C27—C261.393 (2)
C3—H30.9800C27—C221.410 (2)
C9—C41.387 (2)C27—C201.443 (2)
C9—C81.392 (2)C21—N11.369 (2)
C9—H90.9300C21—C201.384 (2)
C8—C71.396 (2)C21—C281.486 (2)
C8—C101.471 (2)C26—C251.385 (3)
C7—C61.380 (3)C26—H260.9300
C7—H70.9300C22—N11.378 (2)
C6—C51.376 (3)C22—C231.395 (2)
C6—H60.9300C23—C241.369 (3)
C4—C51.389 (3)C23—H230.9300
C5—H50.9300C25—C241.387 (3)
C10—C111.366 (2)C25—H250.9300
C13—C121.369 (2)C24—H240.9300
C13—C141.496 (2)C28—H28A0.9600
C12—C111.427 (2)C28—H28B0.9600
C12—C151.471 (2)C28—H28C0.9600
C11—H110.9300C29—N11.458 (2)
C14—H14A0.9600C29—H29A0.9600
C14—H14B0.9600C29—H29B0.9600
C14—H14C0.9600C29—H29C0.9600
C19—C151.349 (2)
C13—S1—C1093.21 (8)C19—C15—C12127.95 (15)
O2—C2—C1105.30 (19)C19—C15—C16111.21 (14)
O2—C2—H2A110.7C12—C15—C16120.68 (14)
C1—C2—H2A110.7F5—C18—F6105.62 (13)
O2—C2—H2B110.7F5—C18—C19114.11 (14)
C1—C2—H2B110.7F6—C18—C19111.96 (14)
H2A—C2—H2B108.8F5—C18—C17111.96 (15)
O1—C1—C2102.70 (18)F6—C18—C17108.68 (14)
O1—C1—H1A111.2C19—C18—C17104.53 (13)
C2—C1—H1A111.2F1—C16—F2105.63 (14)
O1—C1—H1B111.2F1—C16—C15112.52 (15)
C2—C1—H1B111.2F2—C16—C15112.99 (13)
H1A—C1—H1B109.1F1—C16—C17109.72 (14)
O1—C3—O2106.39 (15)F2—C16—C17111.13 (15)
O1—C3—C4110.41 (17)C15—C16—C17104.93 (14)
O2—C3—C4110.92 (17)F4—C17—F3106.98 (15)
O1—C3—H3109.7F4—C17—C18114.29 (15)
O2—C3—H3109.7F3—C17—C18108.60 (15)
C4—C3—H3109.7F4—C17—C16113.28 (15)
C3—O1—C1105.36 (17)F3—C17—C16109.82 (15)
C2—O2—C3107.51 (17)C18—C17—C16103.79 (14)
C4—C9—C8121.01 (17)C26—C27—C22118.65 (16)
C4—C9—H9119.5C26—C27—C20135.12 (16)
C8—C9—H9119.5C22—C27—C20106.19 (14)
C9—C8—C7118.14 (16)N1—C21—C20109.31 (14)
C9—C8—C10121.28 (15)N1—C21—C28121.21 (15)
C7—C8—C10120.58 (16)C20—C21—C28129.32 (16)
C6—C7—C8120.79 (19)C21—C20—C27106.96 (14)
C6—C7—H7119.6C21—C20—C19124.20 (15)
C8—C7—H7119.6C27—C20—C19128.61 (14)
C7—C6—C5120.59 (18)C25—C26—C27118.68 (18)
C7—C6—H6119.7C25—C26—H26120.7
C5—C6—H6119.7C27—C26—H26120.7
C9—C4—C5119.80 (18)N1—C22—C23129.50 (17)
C9—C4—C3119.96 (17)N1—C22—C27108.26 (14)
C5—C4—C3120.18 (17)C23—C22—C27122.24 (17)
C6—C5—C4119.67 (17)C24—C23—C22117.54 (19)
C6—C5—H5120.2C24—C23—H23121.2
C4—C5—H5120.2C22—C23—H23121.2
C11—C10—C8129.61 (16)C26—C25—C24121.65 (19)
C11—C10—S1109.93 (12)C26—C25—H25119.2
C8—C10—S1120.45 (13)C24—C25—H25119.2
C12—C13—C14129.32 (17)C23—C24—C25121.21 (18)
C12—C13—S1110.56 (13)C23—C24—H24119.4
C14—C13—S1120.02 (14)C25—C24—H24119.4
C13—C12—C11112.74 (15)C21—C28—H28A109.5
C13—C12—C15121.65 (15)C21—C28—H28B109.5
C11—C12—C15125.54 (15)H28A—C28—H28B109.5
C10—C11—C12113.54 (15)C21—C28—H28C109.5
C10—C11—H11123.2H28A—C28—H28C109.5
C12—C11—H11123.2H28B—C28—H28C109.5
C13—C14—H14A109.5N1—C29—H29A109.5
C13—C14—H14B109.5N1—C29—H29B109.5
H14A—C14—H14B109.5H29A—C29—H29B109.5
C13—C14—H14C109.5N1—C29—H29C109.5
H14A—C14—H14C109.5H29A—C29—H29C109.5
H14B—C14—H14C109.5H29B—C29—H29C109.5
C15—C19—C20128.81 (15)C21—N1—C22109.27 (13)
C15—C19—C18109.75 (14)C21—N1—C29126.17 (16)
C20—C19—C18121.40 (14)C22—N1—C29124.52 (15)
O2—C2—C1—O126.9 (3)C19—C15—C16—F2128.64 (16)
O2—C3—O1—C131.8 (2)C12—C15—C16—F255.7 (2)
C4—C3—O1—C1152.24 (17)C19—C15—C16—C177.41 (18)
C2—C1—O1—C335.9 (2)C12—C15—C16—C17176.91 (14)
C1—C2—O2—C38.2 (3)F5—C18—C17—F488.26 (18)
O1—C3—O2—C214.1 (3)F6—C18—C17—F428.0 (2)
C4—C3—O2—C2134.2 (2)C19—C18—C17—F4147.72 (15)
C4—C9—C8—C70.7 (2)F5—C18—C17—F331.07 (19)
C4—C9—C8—C10178.57 (15)F6—C18—C17—F3147.36 (14)
C9—C8—C7—C60.5 (3)C19—C18—C17—F392.94 (16)
C10—C8—C7—C6178.79 (16)F5—C18—C17—C16147.87 (14)
C8—C7—C6—C50.3 (3)F6—C18—C17—C1695.84 (15)
C8—C9—C4—C50.7 (3)C19—C18—C17—C1623.86 (16)
C8—C9—C4—C3176.42 (16)F1—C16—C17—F422.7 (2)
O1—C3—C4—C9140.83 (17)F2—C16—C17—F493.70 (18)
O2—C3—C4—C9101.5 (2)C15—C16—C17—F4143.86 (15)
O1—C3—C4—C542.0 (2)F1—C16—C17—F3142.28 (15)
O2—C3—C4—C575.6 (2)F2—C16—C17—F325.83 (19)
C7—C6—C5—C40.3 (3)C15—C16—C17—F396.61 (16)
C9—C4—C5—C60.5 (3)F1—C16—C17—C18101.77 (15)
C3—C4—C5—C6176.59 (18)F2—C16—C17—C18141.78 (14)
C9—C8—C10—C1117.9 (3)C15—C16—C17—C1819.34 (17)
C7—C8—C10—C11162.90 (17)N1—C21—C20—C271.06 (19)
C9—C8—C10—S1161.20 (13)C28—C21—C20—C27174.27 (18)
C7—C8—C10—S118.0 (2)N1—C21—C20—C19176.00 (15)
C13—S1—C10—C110.47 (13)C28—C21—C20—C190.7 (3)
C13—S1—C10—C8178.77 (14)C26—C27—C20—C21178.3 (2)
C10—S1—C13—C120.33 (14)C22—C27—C20—C210.73 (19)
C10—S1—C13—C14176.36 (16)C26—C27—C20—C197.1 (3)
C14—C13—C12—C11175.27 (19)C22—C27—C20—C19175.36 (16)
S1—C13—C12—C111.02 (19)C15—C19—C20—C2147.4 (3)
C14—C13—C12—C151.8 (3)C18—C19—C20—C21130.03 (17)
S1—C13—C12—C15178.09 (12)C15—C19—C20—C27138.83 (19)
C8—C10—C11—C12178.01 (15)C18—C19—C20—C2743.8 (2)
S1—C10—C11—C121.14 (18)C22—C27—C26—C251.6 (3)
C13—C12—C11—C101.4 (2)C20—C27—C26—C25178.92 (19)
C15—C12—C11—C10178.36 (15)C26—C27—C22—N1178.17 (16)
C20—C19—C15—C1215.4 (3)C20—C27—C22—N10.14 (19)
C18—C19—C15—C12166.98 (15)C26—C27—C22—C231.7 (3)
C20—C19—C15—C16169.35 (16)C20—C27—C22—C23179.72 (17)
C18—C19—C15—C168.30 (19)N1—C22—C23—C24179.24 (19)
C13—C12—C15—C1956.5 (2)C27—C22—C23—C240.6 (3)
C11—C12—C15—C19126.83 (19)C27—C26—C25—C240.5 (3)
C13—C12—C15—C16118.39 (18)C22—C23—C24—C250.6 (3)
C11—C12—C15—C1658.3 (2)C26—C25—C24—C230.6 (3)
C15—C19—C18—F5143.23 (15)C20—C21—N1—C221.0 (2)
C20—C19—C18—F534.6 (2)C28—C21—N1—C22174.78 (17)
C15—C19—C18—F696.87 (17)C20—C21—N1—C29178.59 (18)
C20—C19—C18—F685.28 (18)C28—C21—N1—C292.8 (3)
C15—C19—C18—C1720.60 (18)C23—C22—N1—C21179.63 (19)
C20—C19—C18—C17157.26 (15)C27—C22—N1—C210.52 (19)
C19—C15—C16—F1111.83 (16)C23—C22—N1—C292.0 (3)
C12—C15—C16—F163.85 (19)C27—C22—N1—C29178.16 (18)

Experimental details

Crystal data
Chemical formulaC29H23F6NO2S
Mr563.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7364 (13), 9.8983 (12), 24.020 (3)
β (°) 93.151 (1)
V3)2548.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.38 × 0.30
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.906, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
22213, 5816, 4512
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.126, 1.03
No. of reflections5816
No. of parameters355
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1997).

 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Jiangxi Province (grant No. 2009GZH0034).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPu, S.-Z., Fan, C.-B., Miao, W.-J. & Liu, G. (2010). Dyes Pigments, 84, 25–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationPu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett. 9, 2139–2142.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, S., Matsuda, K. & Irie, M. (2003). Angew. Chem. Int. Ed. Engl. 42, 1636–1639.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds