metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Tricarbon­yl(pyridine-κN)(1,1,1-tri­fluoro­acetyl­acetonato-κ2O,O′)rhenium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bPetlabs, Little Company of Mary Hospital, Pretoria 0001 9300, South Africa
*Correspondence e-mail: visserhg@ufs.ac.za

(Received 24 October 2011; accepted 26 October 2011; online 29 October 2011)

In the title compound, [Re(C5H4F3O2)(C5H5N)(CO)3], the ReI atom is six-coordinated owing to bonding by three carbonyl ligands arranged in a fac configuration, two O atoms from the bidentate 1,1,1-trifluoro­acetyl­acetonate ligand and an N atom from a pyridine ligand. In the crystal, the mol­ecules pack in layers, diagonally, in a head-to-tail fashion across the ab plane. These layers are stabilsed by inter­molecular C—H⋯O and C—H⋯F hydrogen bonds.

Related literature

For the synthesis of the Re(I)-tricarbonyl synthon, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). For related rhenium–tricarbonyl complexes, see: Brink et al. (2009[Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175-o3176.], 2011[Brink, A., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, m34-m35.]); Mundwiler et al. (2004[Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]); Schutte et al. (2010[Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859-m860.]). For a review on structure–reactivity relationships, see: Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.]).

[Scheme 1]

Experimental

Crystal data
  • [Re(C5H4F3O2)(C5H5N)(CO)3]

  • Mr = 502.41

  • Monoclinic, P 21 /c

  • a = 15.561 (2) Å

  • b = 6.982 (3) Å

  • c = 14.082 (5) Å

  • β = 103.271 (5)°

  • V = 1489.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.22 mm−1

  • T = 100 K

  • 0.15 × 0.10 × 0.03 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.328, Tmax = 0.778

  • 17351 measured reflections

  • 3603 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.06

  • 3603 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F3i 0.93 2.55 3.407 (6) 153
C22—H22⋯O1ii 0.93 2.58 3.360 (5) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This work forms part of our ongoing research in structure/reactivity relationships (Roodt et al., 2011) and the applications of rhenium- tricarbonyl complexes in the radiopharmaceutical industry (Brink et al., 2009, 2011; Schutte et al., 2010).

In the title Rhenium(I) compound, [Re(C5F3H4O2)(CO)3(py)], each rhenium atom is six-coordinated to three carbonyl ligands, two oxygen atoms from the bidentate 1,1,1-trifluoroacetylacetonato ligand and a nitrogen atom from a pyridine ligand to form a slightly distorted octahedron (see Figure 1). This is illustrated by the small deviations from 90 °, with the O1—Re1—N1 being the furthest outlier (82.72 (11) Å. All the bonding distances and angles are considered normal (Mundwiler et al. 2004); Brink et al. 2009, 2011). The three carbonyl ligands are arranged in a facial configuration around the Re atom.

Interestingly, it does not seem as if the electronwithdrawing properties of the fluorine molecules on the bidentate ligand backbone have any effect on bonding distances in the molecule (as opposed to the methyl group). The trans Re—C bonding distances are exactly the same (Re1—C12; Re1—C13; 1.906 (4) Å) while the Re1—O2 distance of 2.117 (3) Å is similar to Re1—O1 within experimental error (2.135 (3) Å).

The molecules pack in layers, diagonally, in a head-to-tail fashion across the ab plane. These layers are stabilsed by intermolecular CH–O and CH–F hydrogen bonds (see Figure 2).

Related literature top

For the synthesis of the Re(I)-tricarbonyl synthon, see: Alberto et al. (1996). For related rhenium–tricarbonyl complexes, see: Brink et al. (2009, 2011); Mundwiler et al. (2004); Schutte et al. (2010). For a review on structure–reactivity relationships, see: Roodt et al. (2011).

Experimental top

[Re(CO)3(Br)3] (500 mg; 0.648 mmol) was prepared according to the method of Alberto (Alberto et al., 1996) and was dissolved in 10 ml water (pH 2.2) while stirring for 30 min. To this solution, AgNO3 (330 mg; 1.945 mmol) was added and stirred for 24 h at room temperature. The precipitate, AgBr, was filtered off after which trifluoroacetylacetone (0.1 g; 0.649 mmol) was added to the filtrate and stirred for another 48 hrs. To the yellow solution, pyridine (0.0512 g; 0.648 mmol) was added and stirred for 10 min. at room temperature. A bright yellow precipitate formed which was filtered off and recrystallized from acetone (3 ml). Yellow needles were obtained (yield = 0.292 g; 89%)

Refinement top

The methine and methylene H atoms were placed in geometrically idealized positions at C—H = 0.93 and 0.97 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.79 Å from Re1 and the deepest hole is situated 0.95 Å from Re1.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing and hydrogen bonding as observed across the ab plane. Symmetry codes: (i) 1 - x, 1 - y, -z, (ii) x, y + 1, z.
fac-Tricarbonyl(pyridine-κN)(1,1,1-trifluoroacetylacetonato- κ2O,O')rhenium(I) top
Crystal data top
[Re(C5H4F3O2)(C5H5N)(CO)3]F(000) = 944
Mr = 502.41Dx = 2.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7262 reflections
a = 15.561 (2) Åθ = 2.7–28.2°
b = 6.982 (3) ŵ = 8.22 mm1
c = 14.082 (5) ÅT = 100 K
β = 103.271 (5)°Needle, yellow
V = 1489.1 (9) Å30.15 × 0.1 × 0.03 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3603 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2020
Tmin = 0.328, Tmax = 0.778k = 99
17351 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0265P)2 + 2.5868P]
where P = (Fo2 + 2Fc2)/3
3603 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Re(C5H4F3O2)(C5H5N)(CO)3]V = 1489.1 (9) Å3
Mr = 502.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.561 (2) ŵ = 8.22 mm1
b = 6.982 (3) ÅT = 100 K
c = 14.082 (5) Å0.15 × 0.1 × 0.03 mm
β = 103.271 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
3603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3104 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 0.778Rint = 0.040
17351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.06Δρmax = 1.43 e Å3
3603 reflectionsΔρmin = 1.09 e Å3
209 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 40 s/frame. A total of 1709 frames were collected with a frame width of 0.5° covering up to θ = 28.39° with 99.9% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3352 (3)0.1319 (6)0.0313 (3)0.0209 (9)
C20.3897 (3)0.2909 (6)0.0641 (3)0.0233 (9)
H20.4360.31530.03410.028*
C30.3793 (3)0.4120 (6)0.1371 (3)0.0211 (9)
C40.3568 (3)0.0060 (7)0.0476 (3)0.0289 (10)
H4A0.30440.01470.09780.043*
H4B0.37910.11480.01990.043*
H4C0.40060.06770.07510.043*
C50.4426 (3)0.5780 (7)0.1659 (4)0.0292 (10)
C110.2715 (3)0.0553 (6)0.2774 (3)0.0224 (9)
C120.1608 (3)0.3619 (6)0.2583 (3)0.0193 (8)
C130.1142 (3)0.0508 (6)0.1529 (3)0.0178 (8)
C210.1734 (3)0.5963 (6)0.0479 (3)0.0189 (8)
H210.21290.64780.10150.023*
C220.1372 (3)0.7145 (5)0.0285 (3)0.0205 (9)
H220.15240.84360.02640.025*
C230.0777 (3)0.6403 (6)0.1093 (3)0.0205 (9)
H230.05270.7180.16210.025*
C240.0567 (3)0.4488 (6)0.1089 (3)0.0187 (8)
H240.01640.39540.16130.022*
C250.0959 (3)0.3368 (6)0.0305 (3)0.0178 (8)
H250.08190.20720.03180.021*
N10.1538 (2)0.4066 (5)0.0481 (2)0.0149 (7)
O10.26931 (19)0.0826 (4)0.0638 (2)0.0193 (6)
O20.32142 (19)0.4095 (4)0.1875 (2)0.0192 (6)
O110.3032 (2)0.0437 (5)0.3404 (2)0.0356 (8)
O120.1301 (2)0.4540 (4)0.3090 (2)0.0274 (7)
O130.0548 (2)0.0508 (4)0.1444 (2)0.0237 (7)
F10.4843 (2)0.5667 (5)0.2568 (2)0.0587 (10)
F20.3971 (3)0.7446 (4)0.1556 (3)0.0615 (11)
F30.5014 (2)0.5958 (6)0.1124 (3)0.0682 (11)
Re10.213272 (11)0.21860 (2)0.171210 (11)0.01468 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.020 (2)0.019 (2)0.0079 (17)0.0038 (17)0.0041 (17)
C20.017 (2)0.031 (2)0.024 (2)0.0022 (18)0.0096 (19)0.0017 (18)
C30.017 (2)0.022 (2)0.024 (2)0.0005 (17)0.0029 (18)0.0071 (17)
C40.032 (3)0.029 (2)0.029 (2)0.005 (2)0.015 (2)0.0023 (19)
C50.026 (3)0.031 (2)0.033 (3)0.010 (2)0.011 (2)0.001 (2)
C110.022 (2)0.020 (2)0.025 (2)0.0016 (17)0.0051 (19)0.0013 (17)
C120.022 (2)0.0168 (19)0.020 (2)0.0029 (16)0.0072 (17)0.0033 (16)
C130.024 (2)0.0153 (19)0.015 (2)0.0023 (16)0.0068 (17)0.0007 (15)
C210.021 (2)0.0140 (18)0.022 (2)0.0033 (16)0.0064 (18)0.0050 (16)
C220.025 (2)0.0113 (17)0.027 (2)0.0011 (16)0.0108 (19)0.0009 (16)
C230.026 (2)0.0166 (19)0.020 (2)0.0018 (17)0.0068 (18)0.0042 (16)
C240.020 (2)0.021 (2)0.015 (2)0.0006 (16)0.0035 (17)0.0022 (15)
C250.022 (2)0.0154 (17)0.017 (2)0.0015 (16)0.0072 (17)0.0024 (16)
N10.0179 (18)0.0149 (15)0.0124 (16)0.0004 (13)0.0049 (14)0.0005 (12)
O10.0229 (16)0.0155 (13)0.0214 (15)0.0009 (12)0.0093 (13)0.0006 (11)
O20.0173 (15)0.0203 (14)0.0205 (15)0.0051 (11)0.0056 (12)0.0016 (12)
O110.039 (2)0.0347 (19)0.0300 (19)0.0023 (15)0.0004 (16)0.0119 (15)
O120.036 (2)0.0215 (15)0.0304 (18)0.0001 (13)0.0198 (15)0.0045 (13)
O130.0219 (17)0.0196 (15)0.0309 (17)0.0074 (13)0.0089 (14)0.0033 (13)
F10.059 (2)0.057 (2)0.050 (2)0.0246 (18)0.0092 (18)0.0007 (17)
F20.050 (2)0.0276 (16)0.104 (3)0.0086 (15)0.011 (2)0.0036 (18)
F30.060 (2)0.070 (2)0.088 (3)0.034 (2)0.045 (2)0.019 (2)
Re10.01714 (10)0.01195 (8)0.01581 (9)0.00153 (6)0.00557 (6)0.00083 (6)
Geometric parameters (Å, º) top
C1—O11.263 (5)C13—O131.150 (5)
C1—C21.409 (6)C13—Re11.906 (4)
C1—C41.513 (6)C21—N11.360 (5)
C2—C31.369 (6)C21—C221.370 (6)
C2—H20.93C21—H210.93
C3—O21.269 (5)C22—C231.392 (6)
C3—C51.514 (6)C22—H220.93
C4—H4A0.96C23—C241.377 (6)
C4—H4B0.96C23—H230.93
C4—H4C0.96C24—C251.376 (6)
C5—F11.298 (6)C24—H240.93
C5—F31.317 (5)C25—N11.347 (5)
C5—F21.353 (6)C25—H250.93
C11—O111.144 (5)N1—Re12.202 (3)
C11—Re11.932 (5)O1—Re12.135 (3)
C12—O121.143 (5)O2—Re12.117 (3)
C12—Re11.906 (4)
O1—C1—C2125.0 (4)C24—C23—C22118.2 (4)
O1—C1—C4116.3 (4)C24—C23—H23120.9
C2—C1—C4118.7 (4)C22—C23—H23120.9
C3—C2—C1124.6 (4)C25—C24—C23119.6 (4)
C3—C2—H2117.7C25—C24—H24120.2
C1—C2—H2117.7C23—C24—H24120.2
O2—C3—C2129.2 (4)N1—C25—C24122.9 (4)
O2—C3—C5111.3 (4)N1—C25—H25118.6
C2—C3—C5119.5 (4)C24—C25—H25118.6
C1—C4—H4A109.5C25—N1—C21117.3 (3)
C1—C4—H4B109.5C25—N1—Re1120.8 (3)
H4A—C4—H4B109.5C21—N1—Re1121.9 (3)
C1—C4—H4C109.5C1—O1—Re1129.3 (3)
H4A—C4—H4C109.5C3—O2—Re1126.7 (3)
H4B—C4—H4C109.5C12—Re1—C1387.55 (17)
F1—C5—F3108.3 (4)C12—Re1—C1190.32 (18)
F1—C5—F2106.8 (4)C13—Re1—C1187.88 (18)
F3—C5—F2105.9 (4)C12—Re1—O292.70 (14)
F1—C5—C3111.4 (4)C13—Re1—O2178.20 (14)
F3—C5—C3114.4 (4)C11—Re1—O293.89 (15)
F2—C5—C3109.7 (4)C12—Re1—O1174.14 (14)
O11—C11—Re1177.7 (4)C13—Re1—O194.59 (14)
O12—C12—Re1177.4 (3)C11—Re1—O195.20 (15)
O13—C13—Re1178.3 (4)O2—Re1—O184.99 (11)
N1—C21—C22122.5 (4)C12—Re1—N191.68 (15)
N1—C21—H21118.8C13—Re1—N194.55 (15)
C22—C21—H21118.8C11—Re1—N1176.91 (15)
C21—C22—C23119.6 (4)O2—Re1—N183.67 (12)
C21—C22—H22120.2O1—Re1—N182.72 (11)
C23—C22—H22120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F3i0.932.553.407 (6)153
C22—H22···O1ii0.932.583.360 (5)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Re(C5H4F3O2)(C5H5N)(CO)3]
Mr502.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.561 (2), 6.982 (3), 14.082 (5)
β (°) 103.271 (5)
V3)1489.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)8.22
Crystal size (mm)0.15 × 0.1 × 0.03
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.328, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
17351, 3603, 3104
Rint0.040
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.06
No. of reflections3603
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 1.09

Computer programs: APEX2 (Bruker, 2010), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F3i0.932.553.407 (6)152.9
C22—H22···O1ii0.932.583.360 (5)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

Financial assistance from the University of the Free State and Ntembi is gratefully acknowledged.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrink, A., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, m34–m35.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280.  Web of Science CrossRef CAS Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds