organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Trityl-2-(tritylsulfan­yl)aniline

aDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 13 April 2011; accepted 23 September 2011; online 8 October 2011)

The title compound, C44H35NS, is a derivative of amino­thio­phenol and possesses a protected S-triphenyl­methyl thio­ether and an N-triphenyl­methyl­amine functional group. The trityl groups show an anti orientation, with C—C—N—C and C—C—S—C torsion angles of −151.0 (3) and −105.3 (2)°, respectively. There is an intra­molecular N—H⋯S hydrogen bond.

Related literature

For the synthesis, see: Neuba et al. (2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. Int. Ed. 50, 4503-4507.]). For a related structure, see: Neuba et al. (2007[Neuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, o4683.]). For background to complexes of amine guanidine hybrides with first row transition elements, see: Börner et al. (2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]); Herres et al. (2005[Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089-1095.]); Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.], 2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Neuba et al. (2007[Neuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, o4683.], 2008[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.], 2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. Int. Ed. 50, 4503-4507.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]).

[Scheme 1]

Experimental

Crystal data
  • C44H35NS

  • Mr = 609.79

  • Monoclinic, P 21

  • a = 8.2377 (10) Å

  • b = 23.513 (3) Å

  • c = 9.0894 (10) Å

  • β = 113.512 (3)°

  • V = 1614.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 120 K

  • 0.36 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.974

  • 13465 measured reflections

  • 7059 independent reflections

  • 5106 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.099

  • S = 0.91

  • 7059 reflections

  • 419 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3130 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1 0.81 (3) 2.46 (3) 2.984 (3) 123 (1)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper-sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Pohl et al., 2000; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008; 2010; Börner et al. 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007; Neuba et al. 2011). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase. In the course of these experiments we synthesized the title compound as a by-product from the reaction of 1,1,3,3-tetramethyl-2-(2-(tritylthio)phenyl)guanidine with [Cu(MeCN)4]PF6 in MeCN (Neuba et al., 2011). The molecular structure of C44H35NS shows two trityl units with dihedral angles between the phenyl planes C11—C16, C21—C26 and C31—C36 of 84.7 (1)°, 68.2 (1)° and 80.9 (1)° and for planes C41—C46, C51—C56 and C61—C66 the angles measure 88.7 (1)°, 77.6 (1)° and 74.5 (1)°, respectively. Orientation of the trityl groups relative to the C1—C6 ring is indicated from the torsion angles C1—C6—N1—C8 of 151.0 (3)° and C6—C1—S1—C7 of 105.3 (2)°. The title compound shows an intramolecular N—H···S bond with H···S 2.46 Å and N—H···S angle of 122°.

Related literature top

For a the synthesis, see: Neuba et al. (2011). For a related structure, see: Neuba et al. (2007). For background to complexes of amine guanidine hybrides with first row transition elements, see: Börner et al. (2009); Herres et al. (2005); Herres-Pawlis et al. (2005, 2009); Neuba et al. (2007, 2008, 2010, 2011); Pohl et al. (2000); Wittmann et al. (2001).

Experimental top

Full synthetic details and spectroscopic as well as analytical characterization is given in Neuba et al. (2011).

Refinement top

H atoms were clearly identified in difference syntheses, idealized and refined riding on the carbon atoms with C—H = 0.95 Å, and with isotropic displacement parameters Uiso(H) = 1.2U(C/Neq). The N-bound H atom was refined freely. The value of the Flack parameter (0.03 (7)) was determined from 3130 Friedel pairs.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level. Aromatic-H atoms omitted for clarity.
N-Trityl-2-(tritylsulfanyl)aniline top
Crystal data top
C44H35NSF(000) = 644
Mr = 609.79Dx = 1.254 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 756 reflections
a = 8.2377 (10) Åθ = 2.6–25.0°
b = 23.513 (3) ŵ = 0.13 mm1
c = 9.0894 (10) ÅT = 120 K
β = 113.512 (3)°Prism, colourless
V = 1614.4 (3) Å30.36 × 0.23 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
7059 independent reflections
Radiation source: sealed tube5106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.953, Tmax = 0.974k = 3030
13465 measured reflectionsl = 119
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0245P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
7059 reflectionsΔρmax = 0.36 e Å3
419 parametersΔρmin = 0.33 e Å3
1 restraintAbsolute structure: Flack (1983), 3130 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C44H35NSV = 1614.4 (3) Å3
Mr = 609.79Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.2377 (10) ŵ = 0.13 mm1
b = 23.513 (3) ÅT = 120 K
c = 9.0894 (10) Å0.36 × 0.23 × 0.20 mm
β = 113.512 (3)°
Data collection top
Bruker SMART APEX
diffractometer
7059 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5106 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.974Rint = 0.086
13465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.36 e Å3
S = 0.91Δρmin = 0.33 e Å3
7059 reflectionsAbsolute structure: Flack (1983), 3130 Friedel pairs
419 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84857 (9)0.45253 (3)0.53668 (8)0.02420 (17)
N10.8060 (3)0.53874 (10)0.7596 (3)0.0266 (6)
C11.0204 (4)0.47875 (11)0.7141 (3)0.0254 (7)
C21.1929 (4)0.46002 (13)0.7572 (4)0.0309 (7)
H2A1.21920.43340.69110.037*
C31.3274 (4)0.47992 (13)0.8964 (4)0.0380 (9)
H3A1.44550.46690.92680.046*
C41.2869 (4)0.51873 (13)0.9892 (4)0.0384 (9)
H4A1.37770.53181.08590.046*
C51.1180 (4)0.53900 (12)0.9452 (4)0.0329 (8)
H5A1.09470.56651.01090.039*
C60.9796 (4)0.52008 (11)0.8058 (3)0.0253 (7)
C70.7929 (3)0.37851 (11)0.5851 (3)0.0183 (6)
C80.7459 (4)0.59533 (11)0.7893 (3)0.0240 (7)
C110.6271 (3)0.36367 (11)0.4338 (3)0.0199 (6)
C120.4949 (4)0.40342 (12)0.3586 (4)0.0294 (7)
H12A0.50700.44100.40000.035*
C130.3454 (4)0.38895 (13)0.2239 (4)0.0322 (8)
H13A0.25800.41700.17270.039*
C140.3224 (4)0.33499 (13)0.1644 (3)0.0294 (7)
H14A0.21950.32530.07260.035*
C150.4505 (4)0.29457 (13)0.2391 (4)0.0306 (7)
H15A0.43500.25680.19880.037*
C160.6020 (4)0.30866 (12)0.3729 (3)0.0241 (6)
H16A0.68910.28040.42310.029*
C210.7538 (4)0.37820 (11)0.7363 (3)0.0181 (6)
C220.5905 (4)0.36177 (13)0.7314 (4)0.0293 (7)
H22A0.49830.35270.63100.035*
C230.5580 (4)0.35815 (14)0.8702 (4)0.0337 (8)
H23A0.44500.34640.86350.040*
C240.6880 (4)0.37143 (13)1.0161 (4)0.0301 (7)
H24A0.66550.36951.11060.036*
C250.8527 (4)0.38774 (12)1.0241 (3)0.0267 (7)
H25A0.94360.39721.12490.032*
C260.8859 (4)0.39040 (11)0.8872 (3)0.0233 (6)
H26A1.00080.40070.89550.028*
C310.9462 (3)0.33825 (11)0.5998 (3)0.0194 (6)
C321.0006 (4)0.29479 (12)0.7134 (3)0.0266 (7)
H32A0.94720.29100.78820.032*
C331.1315 (4)0.25724 (14)0.7182 (4)0.0355 (8)
H33A1.16800.22820.79740.043*
C341.2093 (4)0.26109 (13)0.6115 (4)0.0322 (8)
H34A1.30010.23520.61700.039*
C351.1552 (4)0.30282 (13)0.4955 (3)0.0291 (7)
H35A1.20700.30530.41920.035*
C361.0258 (4)0.34111 (12)0.4900 (3)0.0242 (6)
H36A0.99020.36990.41000.029*
C410.5692 (4)0.60614 (12)0.6443 (3)0.0242 (7)
C420.4388 (4)0.56465 (13)0.6016 (4)0.0348 (8)
H42A0.45930.53050.66230.042*
C430.2795 (4)0.57226 (15)0.4718 (4)0.0442 (9)
H43A0.19170.54340.44350.053*
C440.2479 (4)0.62216 (16)0.3829 (4)0.0436 (9)
H44A0.13950.62730.29240.052*
C450.3742 (4)0.66375 (15)0.4266 (4)0.0389 (8)
H45A0.35210.69810.36690.047*
C460.5341 (4)0.65648 (13)0.5570 (4)0.0307 (7)
H46A0.62000.68600.58660.037*
C510.7100 (4)0.59382 (12)0.9423 (3)0.0244 (7)
C520.7844 (4)0.55322 (13)1.0613 (4)0.0355 (8)
H52A0.85290.52331.04480.043*
C530.7604 (4)0.55555 (16)1.2037 (4)0.0452 (10)
H53A0.81460.52771.28420.054*
C540.6586 (5)0.59792 (17)1.2298 (4)0.0460 (10)
H54A0.64560.60011.32890.055*
C550.5768 (4)0.63677 (15)1.1108 (4)0.0382 (8)
H55A0.50290.66531.12550.046*
C560.6017 (4)0.63455 (13)0.9692 (4)0.0321 (7)
H56A0.54330.66160.88760.038*
C610.8871 (4)0.64051 (11)0.8003 (3)0.0242 (7)
C620.9465 (4)0.68078 (12)0.9228 (4)0.0295 (7)
H62A0.89780.68191.00140.035*
C631.0779 (4)0.71948 (13)0.9296 (4)0.0364 (8)
H63A1.11790.74681.01350.044*
C641.1499 (4)0.71877 (13)0.8180 (4)0.0338 (8)
H64A1.23930.74530.82400.041*
C651.0909 (4)0.67883 (13)0.6957 (4)0.0324 (7)
H65A1.14070.67770.61770.039*
C660.9601 (4)0.64067 (12)0.6869 (3)0.0279 (7)
H66A0.91940.61400.60150.033*
H10.742 (3)0.5239 (12)0.676 (3)0.017 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0295 (4)0.0185 (3)0.0221 (4)0.0008 (3)0.0077 (3)0.0032 (3)
N10.0254 (14)0.0186 (13)0.0276 (15)0.0025 (11)0.0018 (12)0.0080 (11)
C10.0235 (15)0.0218 (15)0.0280 (17)0.0080 (12)0.0071 (13)0.0032 (13)
C20.0270 (15)0.0234 (16)0.0445 (18)0.0023 (13)0.0166 (14)0.0061 (15)
C30.0244 (16)0.0309 (18)0.051 (2)0.0019 (14)0.0074 (16)0.0084 (17)
C40.0296 (17)0.0229 (16)0.046 (2)0.0061 (13)0.0032 (15)0.0010 (15)
C50.0320 (17)0.0198 (15)0.0352 (18)0.0051 (13)0.0011 (15)0.0021 (14)
C60.0300 (16)0.0153 (14)0.0287 (17)0.0035 (12)0.0099 (14)0.0041 (13)
C70.0198 (13)0.0148 (13)0.0195 (14)0.0012 (11)0.0070 (12)0.0034 (12)
C80.0304 (16)0.0172 (14)0.0230 (15)0.0008 (12)0.0092 (13)0.0012 (12)
C110.0227 (14)0.0204 (14)0.0174 (15)0.0000 (12)0.0089 (12)0.0005 (12)
C120.0308 (16)0.0215 (16)0.0295 (17)0.0026 (13)0.0055 (14)0.0005 (13)
C130.0229 (15)0.0320 (18)0.0317 (18)0.0051 (13)0.0002 (14)0.0099 (15)
C140.0227 (15)0.0432 (19)0.0189 (16)0.0106 (14)0.0048 (13)0.0035 (14)
C150.0302 (17)0.0278 (16)0.0367 (18)0.0052 (14)0.0165 (15)0.0104 (14)
C160.0230 (15)0.0246 (15)0.0247 (16)0.0009 (12)0.0096 (13)0.0002 (13)
C210.0228 (14)0.0133 (13)0.0168 (14)0.0046 (11)0.0064 (12)0.0036 (11)
C220.0230 (15)0.0422 (18)0.0228 (16)0.0007 (14)0.0092 (13)0.0043 (14)
C230.0233 (15)0.046 (2)0.0361 (19)0.0021 (14)0.0164 (15)0.0045 (16)
C240.0366 (18)0.0369 (18)0.0221 (16)0.0089 (14)0.0172 (14)0.0044 (14)
C250.0327 (16)0.0287 (16)0.0188 (15)0.0015 (13)0.0105 (13)0.0016 (13)
C260.0227 (14)0.0209 (15)0.0243 (15)0.0019 (12)0.0075 (13)0.0037 (12)
C310.0180 (13)0.0235 (15)0.0163 (14)0.0029 (11)0.0062 (11)0.0012 (12)
C320.0285 (16)0.0309 (16)0.0251 (16)0.0050 (13)0.0155 (13)0.0039 (14)
C330.0423 (19)0.0336 (19)0.0308 (18)0.0146 (15)0.0146 (16)0.0066 (15)
C340.0257 (16)0.0344 (18)0.0354 (18)0.0106 (14)0.0111 (15)0.0006 (15)
C350.0275 (16)0.0393 (18)0.0275 (17)0.0037 (14)0.0186 (14)0.0066 (14)
C360.0263 (15)0.0240 (15)0.0212 (15)0.0014 (13)0.0083 (13)0.0003 (12)
C410.0279 (16)0.0262 (16)0.0183 (15)0.0052 (13)0.0091 (13)0.0026 (13)
C420.0324 (18)0.0322 (17)0.0352 (19)0.0002 (14)0.0084 (15)0.0036 (15)
C430.0320 (19)0.043 (2)0.048 (2)0.0010 (16)0.0056 (17)0.0078 (18)
C440.0309 (18)0.063 (3)0.0275 (18)0.0101 (18)0.0021 (15)0.0063 (18)
C450.042 (2)0.047 (2)0.0294 (19)0.0180 (17)0.0163 (16)0.0148 (16)
C460.0351 (17)0.0312 (17)0.0313 (17)0.0045 (14)0.0191 (15)0.0036 (14)
C510.0268 (15)0.0213 (15)0.0228 (15)0.0110 (12)0.0074 (13)0.0006 (13)
C520.0326 (17)0.0398 (19)0.0291 (18)0.0058 (15)0.0068 (15)0.0079 (15)
C530.0334 (19)0.064 (3)0.031 (2)0.0087 (18)0.0054 (16)0.0215 (18)
C540.044 (2)0.075 (3)0.0207 (18)0.032 (2)0.0151 (16)0.0044 (19)
C550.048 (2)0.0394 (19)0.0347 (19)0.0236 (17)0.0243 (16)0.0152 (17)
C560.0425 (18)0.0241 (16)0.0332 (18)0.0085 (15)0.0190 (15)0.0007 (15)
C610.0297 (16)0.0177 (15)0.0244 (15)0.0024 (12)0.0099 (13)0.0055 (12)
C620.0382 (18)0.0236 (15)0.0352 (18)0.0038 (14)0.0237 (15)0.0040 (14)
C630.0426 (19)0.0266 (17)0.046 (2)0.0096 (14)0.0240 (17)0.0114 (15)
C640.0348 (18)0.0287 (17)0.046 (2)0.0032 (14)0.0246 (16)0.0011 (16)
C650.0390 (19)0.0361 (18)0.0308 (18)0.0025 (15)0.0230 (16)0.0057 (15)
C660.0326 (17)0.0236 (16)0.0257 (16)0.0047 (13)0.0098 (14)0.0019 (13)
Geometric parameters (Å, º) top
S1—C11.779 (3)C31—C361.397 (4)
S1—C71.896 (3)C32—C331.381 (4)
N1—C61.391 (3)C32—H32A0.9500
N1—C81.482 (4)C33—C341.362 (4)
N1—H10.81 (3)C33—H33A0.9500
C1—C21.386 (4)C34—C351.378 (4)
C1—C61.406 (4)C34—H34A0.9500
C2—C31.389 (4)C35—C361.381 (4)
C2—H2A0.9500C35—H35A0.9500
C3—C41.371 (5)C36—H36A0.9500
C3—H3A0.9500C41—C421.387 (4)
C4—C51.371 (4)C41—C461.390 (4)
C4—H4A0.9500C42—C431.382 (4)
C5—C61.397 (4)C42—H42A0.9500
C5—H5A0.9500C43—C441.389 (5)
C7—C211.532 (4)C43—H43A0.9500
C7—C311.541 (4)C44—C451.366 (5)
C7—C111.543 (4)C44—H44A0.9500
C8—C511.534 (4)C45—C461.387 (4)
C8—C411.546 (4)C45—H45A0.9500
C8—C611.548 (4)C46—H46A0.9500
C11—C161.389 (4)C51—C521.389 (4)
C11—C121.390 (4)C51—C561.395 (4)
C12—C131.389 (4)C52—C531.385 (5)
C12—H12A0.9500C52—H52A0.9500
C13—C141.363 (4)C53—C541.382 (5)
C13—H13A0.9500C53—H53A0.9500
C14—C151.380 (4)C54—C551.370 (5)
C14—H14A0.9500C54—H54A0.9500
C15—C161.392 (4)C55—C561.383 (4)
C15—H15A0.9500C55—H55A0.9500
C16—H16A0.9500C56—H56A0.9500
C21—C221.383 (4)C61—C661.385 (4)
C21—C261.399 (4)C61—C621.393 (4)
C22—C231.393 (4)C62—C631.396 (4)
C22—H22A0.9500C62—H62A0.9500
C23—C241.367 (4)C63—C641.365 (4)
C23—H23A0.9500C63—H63A0.9500
C24—C251.383 (4)C64—C651.387 (4)
C24—H24A0.9500C64—H64A0.9500
C25—C261.378 (4)C65—C661.380 (4)
C25—H25A0.9500C65—H65A0.9500
C26—H26A0.9500C66—H66A0.9500
C31—C321.394 (4)
C1—S1—C7106.66 (12)C32—C31—C7121.7 (2)
C6—N1—C8127.3 (2)C36—C31—C7120.7 (2)
C6—N1—H1111 (2)C33—C32—C31120.6 (3)
C8—N1—H1115 (2)C33—C32—H32A119.7
C2—C1—C6120.9 (3)C31—C32—H32A119.7
C2—C1—S1120.1 (2)C34—C33—C32121.2 (3)
C6—C1—S1119.0 (2)C34—C33—H33A119.4
C1—C2—C3120.4 (3)C32—C33—H33A119.4
C1—C2—H2A119.8C33—C34—C35119.5 (3)
C3—C2—H2A119.8C33—C34—H34A120.3
C4—C3—C2118.9 (3)C35—C34—H34A120.3
C4—C3—H3A120.6C34—C35—C36120.1 (3)
C2—C3—H3A120.6C34—C35—H35A119.9
C5—C4—C3121.3 (3)C36—C35—H35A119.9
C5—C4—H4A119.3C35—C36—C31121.2 (3)
C3—C4—H4A119.3C35—C36—H36A119.4
C4—C5—C6121.3 (3)C31—C36—H36A119.4
C4—C5—H5A119.3C42—C41—C46118.5 (3)
C6—C5—H5A119.3C42—C41—C8118.9 (3)
N1—C6—C5122.9 (3)C46—C41—C8122.5 (3)
N1—C6—C1120.0 (2)C43—C42—C41120.9 (3)
C5—C6—C1117.1 (3)C43—C42—H42A119.5
C21—C7—C31112.2 (2)C41—C42—H42A119.5
C21—C7—C11111.8 (2)C42—C43—C44120.0 (3)
C31—C7—C11110.0 (2)C42—C43—H43A120.0
C21—C7—S1111.69 (18)C44—C43—H43A120.0
C31—C7—S1108.55 (18)C45—C44—C43119.4 (3)
C11—C7—S1102.17 (16)C45—C44—H44A120.3
N1—C8—C51110.1 (2)C43—C44—H44A120.3
N1—C8—C41105.2 (2)C44—C45—C46120.9 (3)
C51—C8—C41108.7 (2)C44—C45—H45A119.5
N1—C8—C61109.3 (2)C46—C45—H45A119.5
C51—C8—C61111.7 (2)C45—C46—C41120.2 (3)
C41—C8—C61111.7 (2)C45—C46—H46A119.9
C16—C11—C12117.9 (2)C41—C46—H46A119.9
C16—C11—C7120.2 (2)C52—C51—C56116.7 (3)
C12—C11—C7121.8 (2)C52—C51—C8122.5 (3)
C13—C12—C11120.9 (3)C56—C51—C8120.8 (3)
C13—C12—H12A119.5C53—C52—C51121.1 (3)
C11—C12—H12A119.5C53—C52—H52A119.4
C14—C13—C12120.8 (3)C51—C52—H52A119.4
C14—C13—H13A119.6C54—C53—C52120.7 (3)
C12—C13—H13A119.6C54—C53—H53A119.6
C13—C14—C15119.2 (3)C52—C53—H53A119.6
C13—C14—H14A120.4C55—C54—C53119.1 (3)
C15—C14—H14A120.4C55—C54—H54A120.5
C14—C15—C16120.6 (3)C53—C54—H54A120.5
C14—C15—H15A119.7C54—C55—C56120.0 (3)
C16—C15—H15A119.7C54—C55—H55A120.0
C11—C16—C15120.6 (3)C56—C55—H55A120.0
C11—C16—H16A119.7C55—C56—C51122.1 (3)
C15—C16—H16A119.7C55—C56—H56A118.9
C22—C21—C26117.1 (3)C51—C56—H56A118.9
C22—C21—C7121.5 (2)C66—C61—C62118.3 (3)
C26—C21—C7121.2 (2)C66—C61—C8119.5 (3)
C21—C22—C23121.6 (3)C62—C61—C8122.2 (3)
C21—C22—H22A119.2C61—C62—C63119.9 (3)
C23—C22—H22A119.2C61—C62—H62A120.1
C24—C23—C22120.4 (3)C63—C62—H62A120.1
C24—C23—H23A119.8C64—C63—C62121.2 (3)
C22—C23—H23A119.8C64—C63—H63A119.4
C23—C24—C25119.1 (3)C62—C63—H63A119.4
C23—C24—H24A120.4C63—C64—C65119.2 (3)
C25—C24—H24A120.4C63—C64—H64A120.4
C26—C25—C24120.6 (3)C65—C64—H64A120.4
C26—C25—H25A119.7C66—C65—C64120.1 (3)
C24—C25—H25A119.7C66—C65—H65A119.9
C25—C26—C21121.2 (3)C64—C65—H65A119.9
C25—C26—H26A119.4C65—C66—C61121.3 (3)
C21—C26—H26A119.4C65—C66—H66A119.3
C32—C31—C36117.4 (3)C61—C66—H66A119.3
C7—S1—C1—C277.1 (3)C11—C7—C31—C3668.2 (3)
C7—S1—C1—C6105.3 (2)S1—C7—C31—C3642.8 (3)
C6—C1—C2—C33.0 (4)C36—C31—C32—C331.6 (4)
S1—C1—C2—C3179.4 (2)C7—C31—C32—C33176.3 (3)
C1—C2—C3—C40.7 (4)C31—C32—C33—C340.8 (5)
C2—C3—C4—C51.5 (5)C32—C33—C34—C350.7 (5)
C3—C4—C5—C61.3 (5)C33—C34—C35—C361.3 (5)
C8—N1—C6—C531.6 (5)C34—C35—C36—C310.5 (4)
C8—N1—C6—C1151.0 (3)C32—C31—C36—C350.9 (4)
C4—C5—C6—N1178.4 (3)C7—C31—C36—C35175.7 (2)
C4—C5—C6—C11.0 (4)N1—C8—C41—C4251.0 (4)
C2—C1—C6—N1179.3 (3)C51—C8—C41—C4266.9 (3)
S1—C1—C6—N11.7 (3)C61—C8—C41—C42169.5 (3)
C2—C1—C6—C53.1 (4)N1—C8—C41—C46130.5 (3)
S1—C1—C6—C5179.3 (2)C51—C8—C41—C46111.6 (3)
C1—S1—C7—C2152.5 (2)C61—C8—C41—C4612.0 (4)
C1—S1—C7—C3171.7 (2)C46—C41—C42—C432.1 (5)
C1—S1—C7—C11172.12 (18)C8—C41—C42—C43179.3 (3)
C6—N1—C8—C5194.4 (3)C41—C42—C43—C440.4 (5)
C6—N1—C8—C41148.7 (3)C42—C43—C44—C451.1 (5)
C6—N1—C8—C6128.6 (4)C43—C44—C45—C460.9 (5)
C21—C7—C11—C1698.2 (3)C44—C45—C46—C410.8 (5)
C31—C7—C11—C1627.1 (3)C42—C41—C46—C452.2 (5)
S1—C7—C11—C16142.2 (2)C8—C41—C46—C45179.2 (3)
C21—C7—C11—C1278.6 (3)N1—C8—C51—C5221.6 (4)
C31—C7—C11—C12156.0 (3)C41—C8—C51—C52136.3 (3)
S1—C7—C11—C1240.9 (3)C61—C8—C51—C52100.0 (3)
C16—C11—C12—C132.0 (4)N1—C8—C51—C56159.5 (3)
C7—C11—C12—C13179.0 (3)C41—C8—C51—C5644.8 (3)
C11—C12—C13—C141.6 (5)C61—C8—C51—C5678.8 (3)
C12—C13—C14—C150.4 (5)C56—C51—C52—C533.9 (4)
C13—C14—C15—C160.5 (5)C8—C51—C52—C53175.0 (3)
C12—C11—C16—C151.2 (4)C51—C52—C53—C541.3 (5)
C7—C11—C16—C15178.2 (3)C52—C53—C54—C552.0 (5)
C14—C15—C16—C110.0 (4)C53—C54—C55—C562.3 (5)
C31—C7—C21—C22119.3 (3)C54—C55—C56—C510.5 (4)
C11—C7—C21—C224.7 (3)C52—C51—C56—C553.6 (4)
S1—C7—C21—C22118.5 (2)C8—C51—C56—C55175.3 (3)
C31—C7—C21—C2655.8 (3)N1—C8—C61—C6645.9 (3)
C11—C7—C21—C26179.9 (2)C51—C8—C61—C66168.0 (2)
S1—C7—C21—C2666.4 (3)C41—C8—C61—C6670.1 (3)
C26—C21—C22—C230.7 (4)N1—C8—C61—C62132.9 (3)
C7—C21—C22—C23176.0 (3)C51—C8—C61—C6210.8 (4)
C21—C22—C23—C240.6 (5)C41—C8—C61—C62111.1 (3)
C22—C23—C24—C250.9 (5)C66—C61—C62—C630.7 (4)
C23—C24—C25—C260.2 (4)C8—C61—C62—C63178.1 (3)
C24—C25—C26—C211.7 (4)C61—C62—C63—C640.0 (5)
C22—C21—C26—C251.9 (4)C62—C63—C64—C650.1 (5)
C7—C21—C26—C25177.2 (2)C63—C64—C65—C660.5 (5)
C21—C7—C31—C3218.8 (3)C64—C65—C66—C611.1 (4)
C11—C7—C31—C32106.3 (3)C62—C61—C66—C651.2 (4)
S1—C7—C31—C32142.7 (2)C8—C61—C66—C65177.6 (3)
C21—C7—C31—C36166.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.81 (3)2.46 (3)2.984 (3)123 (1)

Experimental details

Crystal data
Chemical formulaC44H35NS
Mr609.79
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.2377 (10), 23.513 (3), 9.0894 (10)
β (°) 113.512 (3)
V3)1614.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.36 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.953, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
13465, 7059, 5106
Rint0.086
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.099, 0.91
No. of reflections7059
No. of parameters419
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.33
Absolute structureFlack (1983), 3130 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S10.81 (3)2.46 (3)2.984 (3)123 (1)
 

Acknowledgements

We thank the German research council (DFG) and the Federal Ministry of education and research (BMBF) for continued support of our work. AN thanks the University of Paderborn for granting a doctorate scholarship.

References

First citationBörner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.  Web of Science PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationHerres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169.  Web of Science PubMed CAS Google Scholar
First citationNeuba, A., Flörke, U. & Henkel, G. (2007). Acta Cryst. E63, o4683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. Int. Ed. 50, 4503–4507.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511–2517.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationPohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds