organic compounds
(Phenyl)(3-phenylsulfonyl-1,2-dihydropyrrolo[1,2-a]quinoxalin-1-yl)methanone
aDepartment of Chemistry, Abant Izzet Baysal University, TR-14280 Bolu, Turkey, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu
In the title molecule, C24H18N2O3S, the 13-atom ring system comprising the quinoxaline and fused five-membered ring exhibits an r.m.s. deviation from coplanarity of 0.039 Å, with a maximum deviation of 0.0710 (10) Å for the PhCO-bearing C atom of the five-membered ring. The 10-membered C8N2 quinoxaline ring system has an r.m.s. deviation from coplanarity of 0.022 Å, with a maximum deviation of 0.0403 (9) Å for the C atom involved in the C=C bond in the five-membered ring. The three atoms of the five-membered ring fused to the quinoxaline ring system show deviations of up to 0.118 (2) Å for the PhCO-bearing C atom. C—N bond distances in the quinoxaline ring system of the title molecule deviate from those in unsubstituted quinoxaline. In particular, the two C—N distances to the N atom involved in the five-membered ring are essentially equal, with values of 1.3786 (17) and 1.3773 (16) Å, unlike the difference of nearly 0.06 Å in quinoxaline.
Related literature
For the transformation of benzimidazoles into pyrroloquinoxalines, see: Ager et al. (1988); Methcohn (1975). For the synthesis of condensed pyrazines, see: Cheeseman & Cookson (1979). For the biological activity of quinoxalines, see: Porter (1984); He et al. (2003); Kim et al. (2004). For reactions of quinoxaline derivatives, see: Taylor & Hand (1962, 1963); Yadav et al. (2008). For the structure of an analogous compound with COOMe at C9 and C10, see: Hirano et al. (2002). For polymorphs of quinoxaline, see: Ranganathan et al. (2010); Anthony et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811040335/nk2116sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040335/nk2116Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811040335/nk2116Isup3.cml
The quinoxalinium salt (1 mmol, 329 mg), obtained from phenacyl bromide and quinoxaline in acetone, was suspended in dichloromethane (10 ml) and then phenylvinylsulfone (1 mmol, 168 mg) was added. Under vigorous stirring, triethylamine (1.4 ml, 1 mmol) was added dropwise. The progress of the reaction was monitored by TLC. After 20 min the reaction mixture was washed with water (2 X 10 ml) and solvent was evaporated. The residual crude product was purified with ν= 1696 (C═O),1594,1566 1479, 1300, 1223, 1149, 1078, 719, 611 cm-1. 1H NMR (400 MHz, CDCl3): δ = 9.11 (s, 1H), 7.92 (d, J =7.2 Hz, 2H), 7.86 (d, J =7.6 Hz, 2H), 7.69–7.65 (q, 2H), 7.56–7.47 (m, 5H), 7.36 (s, 1H), 7.21 (t, 1H), 7.06 (t, 1H), 6.30 (d, J = 8.0 Hz, 1H), 5.84–5.79 (dd, J = 14.0, 6.4 Hz, 1H), 3.56 (t, J = 16.0 Hz, 1H), 3.00–2.95 (dd, J = 14.6, 6.0 Hz, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 193.3 (C═O), 145.1, 142.7, 142.5, 135.2, 135.0, 133.4, 132.7, 132.4, 132.3, 130.2, 129.8, 129.8, 126.4, 123.1, 113.6, 99.1, 63.7, 33.9. LC—MS (70 eV): (m/z, %)= 415.80 (100) [M+H]+.
using hexane-ethyl acetate as The product was recrystallized from CDCl3 to give orange crystals. M.p.148–150°C. Rf: 0.65 (ethyl acetate-n-hexane; 1:1). IR (KBr):H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Uiso for H were assigned as 1.2 times Ueq of the attached atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C24H18N2O3S | F(000) = 864 |
Mr = 414.46 | Dx = 1.435 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 9862 reflections |
a = 19.0915 (9) Å | θ = 4.4–70.1° |
b = 9.9636 (5) Å | µ = 1.75 mm−1 |
c = 10.4203 (5) Å | T = 90 K |
β = 104.6190 (13)° | Rectangular prism, orange |
V = 1917.98 (16) Å3 | 0.30 × 0.27 × 0.13 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 3621 independent reflections |
Radiation source: fine-focus sealed tube | 3543 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scans | θmax = 70.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −23→23 |
Tmin = 0.622, Tmax = 0.804 | k = −10→12 |
31213 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0349P)2 + 1.1954P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3621 reflections | Δρmax = 0.41 e Å−3 |
272 parameters | Δρmin = −0.39 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00108 (12) |
C24H18N2O3S | V = 1917.98 (16) Å3 |
Mr = 414.46 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 19.0915 (9) Å | µ = 1.75 mm−1 |
b = 9.9636 (5) Å | T = 90 K |
c = 10.4203 (5) Å | 0.30 × 0.27 × 0.13 mm |
β = 104.6190 (13)° |
Bruker APEXII CCD diffractometer | 3621 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 3543 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.804 | Rint = 0.032 |
31213 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.41 e Å−3 |
3621 reflections | Δρmin = −0.39 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.347686 (15) | 0.61731 (3) | 0.66691 (3) | 0.01450 (10) | |
O1 | 0.36497 (5) | 0.53406 (10) | 0.56612 (9) | 0.0205 (2) | |
O2 | 0.31216 (5) | 0.74476 (9) | 0.63034 (9) | 0.0200 (2) | |
O3 | 0.11000 (5) | 0.43117 (9) | 0.71433 (9) | 0.0190 (2) | |
N1 | 0.29905 (6) | 0.15898 (11) | 0.69500 (10) | 0.0166 (2) | |
N2 | 0.24574 (6) | 0.35506 (11) | 0.83452 (10) | 0.0146 (2) | |
C1 | 0.25306 (7) | 0.12578 (13) | 0.77577 (12) | 0.0155 (3) | |
C2 | 0.23431 (7) | −0.00846 (13) | 0.78555 (13) | 0.0182 (3) | |
H2 | 0.2537 | −0.0755 | 0.7395 | 0.022* | |
C3 | 0.18766 (7) | −0.04454 (13) | 0.86193 (13) | 0.0198 (3) | |
H3 | 0.1741 | −0.1358 | 0.8665 | 0.024* | |
C4 | 0.16049 (7) | 0.05308 (13) | 0.93218 (13) | 0.0181 (3) | |
H4 | 0.1290 | 0.0275 | 0.9854 | 0.022* | |
C5 | 0.17878 (7) | 0.18683 (13) | 0.92537 (12) | 0.0162 (3) | |
H5 | 0.1602 | 0.2527 | 0.9739 | 0.019* | |
C6 | 0.22492 (6) | 0.22410 (13) | 0.84637 (12) | 0.0142 (3) | |
C7 | 0.31442 (7) | 0.28371 (13) | 0.68290 (12) | 0.0159 (3) | |
H7 | 0.3450 | 0.3057 | 0.6268 | 0.019* | |
C8 | 0.28749 (6) | 0.39240 (13) | 0.75032 (12) | 0.0142 (3) | |
C9 | 0.29573 (6) | 0.52749 (13) | 0.74933 (12) | 0.0150 (3) | |
C10 | 0.25941 (7) | 0.59237 (13) | 0.84700 (13) | 0.0170 (3) | |
H10A | 0.2265 | 0.6655 | 0.8048 | 0.020* | |
H10B | 0.2955 | 0.6285 | 0.9247 | 0.020* | |
C11 | 0.21643 (7) | 0.47295 (12) | 0.88718 (12) | 0.0145 (3) | |
H11 | 0.2249 | 0.4671 | 0.9857 | 0.017* | |
C12 | 0.13534 (7) | 0.48735 (12) | 0.81931 (12) | 0.0139 (3) | |
C13 | 0.09098 (7) | 0.57500 (12) | 0.88358 (12) | 0.0144 (3) | |
C14 | 0.12184 (7) | 0.65545 (13) | 0.99308 (12) | 0.0163 (3) | |
H14 | 0.1727 | 0.6549 | 1.0296 | 0.020* | |
C15 | 0.07783 (7) | 0.73617 (14) | 1.04836 (13) | 0.0210 (3) | |
H15 | 0.0987 | 0.7912 | 1.1226 | 0.025* | |
C16 | 0.00346 (8) | 0.73669 (14) | 0.99538 (15) | 0.0231 (3) | |
H16 | −0.0264 | 0.7924 | 1.0333 | 0.028* | |
C17 | −0.02763 (7) | 0.65613 (15) | 0.88708 (14) | 0.0223 (3) | |
H17 | −0.0786 | 0.6563 | 0.8515 | 0.027* | |
C18 | 0.01584 (7) | 0.57577 (14) | 0.83122 (13) | 0.0181 (3) | |
H18 | −0.0054 | 0.5209 | 0.7570 | 0.022* | |
C19 | 0.42916 (7) | 0.64997 (14) | 0.78853 (12) | 0.0168 (3) | |
C20 | 0.48648 (7) | 0.56023 (15) | 0.80223 (14) | 0.0223 (3) | |
H20 | 0.4825 | 0.4844 | 0.7456 | 0.027* | |
C21 | 0.54965 (8) | 0.58369 (18) | 0.90036 (15) | 0.0304 (4) | |
H21 | 0.5896 | 0.5242 | 0.9109 | 0.037* | |
C22 | 0.55422 (8) | 0.69423 (19) | 0.98282 (14) | 0.0326 (4) | |
H22 | 0.5975 | 0.7099 | 1.0497 | 0.039* | |
C23 | 0.49673 (8) | 0.78208 (17) | 0.96936 (14) | 0.0292 (3) | |
H23 | 0.5006 | 0.8570 | 1.0272 | 0.035* | |
C24 | 0.43328 (7) | 0.76078 (15) | 0.87121 (13) | 0.0218 (3) | |
H24 | 0.3936 | 0.8207 | 0.8608 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01365 (16) | 0.01546 (17) | 0.01436 (16) | −0.00031 (11) | 0.00346 (11) | 0.00024 (11) |
O1 | 0.0224 (5) | 0.0226 (5) | 0.0183 (5) | −0.0015 (4) | 0.0087 (4) | −0.0023 (4) |
O2 | 0.0200 (5) | 0.0191 (5) | 0.0203 (5) | 0.0021 (4) | 0.0039 (4) | 0.0038 (4) |
O3 | 0.0197 (5) | 0.0201 (5) | 0.0166 (4) | 0.0001 (4) | 0.0035 (4) | −0.0032 (4) |
N1 | 0.0158 (5) | 0.0174 (6) | 0.0162 (5) | 0.0023 (4) | 0.0034 (4) | −0.0019 (4) |
N2 | 0.0142 (5) | 0.0138 (5) | 0.0169 (5) | 0.0011 (4) | 0.0060 (4) | −0.0022 (4) |
C1 | 0.0137 (6) | 0.0174 (7) | 0.0142 (6) | 0.0026 (5) | 0.0014 (5) | −0.0007 (5) |
C2 | 0.0204 (6) | 0.0151 (6) | 0.0179 (6) | 0.0039 (5) | 0.0025 (5) | −0.0022 (5) |
C3 | 0.0235 (7) | 0.0136 (6) | 0.0210 (7) | 0.0000 (5) | 0.0034 (5) | 0.0012 (5) |
C4 | 0.0172 (6) | 0.0191 (7) | 0.0175 (6) | −0.0001 (5) | 0.0033 (5) | 0.0024 (5) |
C5 | 0.0151 (6) | 0.0167 (6) | 0.0166 (6) | 0.0022 (5) | 0.0037 (5) | −0.0008 (5) |
C6 | 0.0125 (6) | 0.0143 (6) | 0.0141 (6) | 0.0012 (5) | −0.0002 (5) | −0.0005 (5) |
C7 | 0.0139 (6) | 0.0185 (7) | 0.0156 (6) | 0.0018 (5) | 0.0043 (5) | −0.0024 (5) |
C8 | 0.0103 (5) | 0.0180 (6) | 0.0134 (6) | 0.0004 (5) | 0.0015 (4) | −0.0010 (5) |
C9 | 0.0124 (6) | 0.0166 (6) | 0.0158 (6) | −0.0003 (5) | 0.0033 (5) | −0.0016 (5) |
C10 | 0.0164 (6) | 0.0144 (6) | 0.0218 (6) | −0.0009 (5) | 0.0077 (5) | −0.0034 (5) |
C11 | 0.0158 (6) | 0.0125 (6) | 0.0159 (6) | 0.0016 (5) | 0.0051 (5) | −0.0024 (5) |
C12 | 0.0165 (6) | 0.0113 (6) | 0.0146 (6) | −0.0010 (5) | 0.0052 (5) | 0.0024 (5) |
C13 | 0.0162 (6) | 0.0126 (6) | 0.0155 (6) | 0.0013 (5) | 0.0060 (5) | 0.0033 (5) |
C14 | 0.0155 (6) | 0.0153 (6) | 0.0185 (6) | 0.0003 (5) | 0.0047 (5) | 0.0008 (5) |
C15 | 0.0233 (7) | 0.0187 (7) | 0.0212 (6) | 0.0012 (5) | 0.0062 (5) | −0.0047 (5) |
C16 | 0.0223 (7) | 0.0220 (7) | 0.0274 (7) | 0.0077 (5) | 0.0110 (6) | −0.0004 (6) |
C17 | 0.0148 (6) | 0.0264 (7) | 0.0254 (7) | 0.0045 (5) | 0.0044 (5) | 0.0023 (6) |
C18 | 0.0176 (6) | 0.0188 (7) | 0.0170 (6) | 0.0004 (5) | 0.0028 (5) | 0.0012 (5) |
C19 | 0.0138 (6) | 0.0215 (7) | 0.0158 (6) | −0.0034 (5) | 0.0049 (5) | 0.0039 (5) |
C20 | 0.0181 (6) | 0.0270 (7) | 0.0240 (7) | 0.0009 (5) | 0.0094 (5) | 0.0079 (6) |
C21 | 0.0140 (6) | 0.0467 (10) | 0.0311 (8) | 0.0020 (6) | 0.0065 (6) | 0.0193 (7) |
C22 | 0.0188 (7) | 0.0560 (11) | 0.0203 (7) | −0.0147 (7) | −0.0002 (5) | 0.0121 (7) |
C23 | 0.0287 (8) | 0.0396 (9) | 0.0196 (7) | −0.0167 (7) | 0.0063 (6) | −0.0021 (6) |
C24 | 0.0205 (7) | 0.0253 (7) | 0.0206 (6) | −0.0059 (5) | 0.0070 (5) | −0.0001 (5) |
S1—O1 | 1.4404 (9) | C10—H10B | 0.9900 |
S1—O2 | 1.4448 (10) | C11—C12 | 1.5377 (17) |
S1—C9 | 1.7183 (13) | C11—H11 | 1.0000 |
S1—C19 | 1.7710 (13) | C12—C13 | 1.4882 (17) |
O3—C12 | 1.2152 (16) | C13—C14 | 1.3972 (18) |
N1—C7 | 1.2904 (18) | C13—C18 | 1.4003 (18) |
N1—C1 | 1.4007 (17) | C14—C15 | 1.3889 (18) |
N2—C8 | 1.3773 (16) | C14—H14 | 0.9500 |
N2—C6 | 1.3786 (17) | C15—C16 | 1.387 (2) |
N2—C11 | 1.4660 (15) | C15—H15 | 0.9500 |
C1—C2 | 1.3950 (19) | C16—C17 | 1.390 (2) |
C1—C6 | 1.4103 (17) | C16—H16 | 0.9500 |
C2—C3 | 1.3833 (19) | C17—C18 | 1.3829 (19) |
C2—H2 | 0.9500 | C17—H17 | 0.9500 |
C3—C4 | 1.3937 (19) | C18—H18 | 0.9500 |
C3—H3 | 0.9500 | C19—C20 | 1.3924 (19) |
C4—C5 | 1.3840 (19) | C19—C24 | 1.390 (2) |
C4—H4 | 0.9500 | C20—C21 | 1.390 (2) |
C5—C6 | 1.3991 (18) | C20—H20 | 0.9500 |
C5—H5 | 0.9500 | C21—C22 | 1.386 (3) |
C7—C8 | 1.4536 (17) | C21—H21 | 0.9500 |
C7—H7 | 0.9500 | C22—C23 | 1.383 (2) |
C8—C9 | 1.3555 (18) | C22—H22 | 0.9500 |
C9—C10 | 1.5135 (17) | C23—C24 | 1.390 (2) |
C10—C11 | 1.5613 (17) | C23—H23 | 0.9500 |
C10—H10A | 0.9900 | C24—H24 | 0.9500 |
O1—S1—O2 | 119.51 (6) | N2—C11—C10 | 103.55 (9) |
O1—S1—C9 | 109.38 (6) | C12—C11—C10 | 109.99 (10) |
O2—S1—C9 | 107.32 (6) | N2—C11—H11 | 111.1 |
O1—S1—C19 | 107.83 (6) | C12—C11—H11 | 111.1 |
O2—S1—C19 | 107.24 (6) | C10—C11—H11 | 111.1 |
C9—S1—C19 | 104.57 (6) | O3—C12—C13 | 122.20 (11) |
C7—N1—C1 | 118.60 (11) | O3—C12—C11 | 119.79 (11) |
C8—N2—C6 | 122.62 (11) | C13—C12—C11 | 117.97 (10) |
C8—N2—C11 | 111.04 (10) | C14—C13—C18 | 119.63 (12) |
C6—N2—C11 | 125.38 (10) | C14—C13—C12 | 122.25 (11) |
C2—C1—N1 | 118.80 (11) | C18—C13—C12 | 118.12 (11) |
C2—C1—C6 | 119.30 (12) | C15—C14—C13 | 119.77 (12) |
N1—C1—C6 | 121.90 (12) | C15—C14—H14 | 120.1 |
C3—C2—C1 | 120.36 (12) | C13—C14—H14 | 120.1 |
C3—C2—H2 | 119.8 | C14—C15—C16 | 120.17 (13) |
C1—C2—H2 | 119.8 | C14—C15—H15 | 119.9 |
C2—C3—C4 | 119.99 (12) | C16—C15—H15 | 119.9 |
C2—C3—H3 | 120.0 | C17—C16—C15 | 120.35 (12) |
C4—C3—H3 | 120.0 | C17—C16—H16 | 119.8 |
C5—C4—C3 | 120.85 (12) | C15—C16—H16 | 119.8 |
C5—C4—H4 | 119.6 | C18—C17—C16 | 119.83 (12) |
C3—C4—H4 | 119.6 | C18—C17—H17 | 120.1 |
C4—C5—C6 | 119.35 (12) | C16—C17—H17 | 120.1 |
C4—C5—H5 | 120.3 | C17—C18—C13 | 120.25 (12) |
C6—C5—H5 | 120.3 | C17—C18—H18 | 119.9 |
N2—C6—C5 | 122.85 (11) | C13—C18—H18 | 119.9 |
N2—C6—C1 | 117.02 (11) | C20—C19—C24 | 121.75 (13) |
C5—C6—C1 | 120.12 (12) | C20—C19—S1 | 118.75 (11) |
N1—C7—C8 | 123.60 (12) | C24—C19—S1 | 119.44 (10) |
N1—C7—H7 | 118.2 | C21—C20—C19 | 118.75 (14) |
C8—C7—H7 | 118.2 | C21—C20—H20 | 120.6 |
C9—C8—N2 | 111.10 (11) | C19—C20—H20 | 120.6 |
C9—C8—C7 | 132.87 (12) | C22—C21—C20 | 119.79 (14) |
N2—C8—C7 | 116.03 (11) | C22—C21—H21 | 120.1 |
C8—C9—C10 | 110.20 (11) | C20—C21—H21 | 120.1 |
C8—C9—S1 | 127.13 (10) | C23—C22—C21 | 121.06 (13) |
C10—C9—S1 | 122.27 (9) | C23—C22—H22 | 119.5 |
C9—C10—C11 | 102.46 (10) | C21—C22—H22 | 119.5 |
C9—C10—H10A | 111.3 | C22—C23—C24 | 119.98 (15) |
C11—C10—H10A | 111.3 | C22—C23—H23 | 120.0 |
C9—C10—H10B | 111.3 | C24—C23—H23 | 120.0 |
C11—C10—H10B | 111.3 | C23—C24—C19 | 118.67 (14) |
H10A—C10—H10B | 109.2 | C23—C24—H24 | 120.7 |
N2—C11—C12 | 109.74 (10) | C19—C24—H24 | 120.7 |
C7—N1—C1—C2 | 177.83 (12) | C8—N2—C11—C12 | 105.72 (11) |
C7—N1—C1—C6 | −1.70 (18) | C6—N2—C11—C12 | −63.24 (15) |
N1—C1—C2—C3 | −178.48 (11) | C8—N2—C11—C10 | −11.67 (13) |
C6—C1—C2—C3 | 1.06 (19) | C6—N2—C11—C10 | 179.38 (11) |
C1—C2—C3—C4 | −1.5 (2) | C9—C10—C11—N2 | 12.32 (12) |
C2—C3—C4—C5 | 0.9 (2) | C9—C10—C11—C12 | −104.89 (11) |
C3—C4—C5—C6 | 0.27 (19) | N2—C11—C12—O3 | −19.31 (16) |
C8—N2—C6—C5 | −175.85 (11) | C10—C11—C12—O3 | 93.98 (13) |
C11—N2—C6—C5 | −8.11 (19) | N2—C11—C12—C13 | 162.91 (10) |
C8—N2—C6—C1 | 4.95 (17) | C10—C11—C12—C13 | −83.80 (13) |
C11—N2—C6—C1 | 172.69 (11) | O3—C12—C13—C14 | −170.10 (12) |
C4—C5—C6—N2 | −179.91 (11) | C11—C12—C13—C14 | 7.62 (17) |
C4—C5—C6—C1 | −0.74 (18) | O3—C12—C13—C18 | 9.85 (18) |
C2—C1—C6—N2 | 179.30 (11) | C11—C12—C13—C18 | −172.43 (11) |
N1—C1—C6—N2 | −1.17 (17) | C18—C13—C14—C15 | −0.50 (19) |
C2—C1—C6—C5 | 0.08 (18) | C12—C13—C14—C15 | 179.45 (12) |
N1—C1—C6—C5 | 179.61 (11) | C13—C14—C15—C16 | 0.2 (2) |
C1—N1—C7—C8 | 1.00 (18) | C14—C15—C16—C17 | 0.3 (2) |
C6—N2—C8—C9 | 175.24 (11) | C15—C16—C17—C18 | −0.5 (2) |
C11—N2—C8—C9 | 5.93 (14) | C16—C17—C18—C13 | 0.2 (2) |
C6—N2—C8—C7 | −5.56 (17) | C14—C13—C18—C17 | 0.30 (19) |
C11—N2—C8—C7 | −174.87 (10) | C12—C13—C18—C17 | −179.65 (12) |
N1—C7—C8—C9 | −178.52 (13) | O1—S1—C19—C20 | −24.23 (12) |
N1—C7—C8—N2 | 2.50 (18) | O2—S1—C19—C20 | −154.13 (10) |
N2—C8—C9—C10 | 2.97 (15) | C9—S1—C19—C20 | 92.12 (11) |
C7—C8—C9—C10 | −176.05 (13) | O1—S1—C19—C24 | 158.43 (10) |
N2—C8—C9—S1 | 175.80 (9) | O2—S1—C19—C24 | 28.53 (12) |
C7—C8—C9—S1 | −3.2 (2) | C9—S1—C19—C24 | −85.22 (11) |
O1—S1—C9—C8 | 17.24 (14) | C24—C19—C20—C21 | −0.8 (2) |
O2—S1—C9—C8 | 148.29 (12) | S1—C19—C20—C21 | −178.08 (10) |
C19—S1—C9—C8 | −98.03 (12) | C19—C20—C21—C22 | 0.6 (2) |
O1—S1—C9—C10 | −170.72 (10) | C20—C21—C22—C23 | 0.1 (2) |
O2—S1—C9—C10 | −39.67 (11) | C21—C22—C23—C24 | −0.5 (2) |
C19—S1—C9—C10 | 74.02 (11) | C22—C23—C24—C19 | 0.3 (2) |
C8—C9—C10—C11 | −9.76 (13) | C20—C19—C24—C23 | 0.4 (2) |
S1—C9—C10—C11 | 176.99 (9) | S1—C19—C24—C23 | 177.63 (10) |
Experimental details
Crystal data | |
Chemical formula | C24H18N2O3S |
Mr | 414.46 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 90 |
a, b, c (Å) | 19.0915 (9), 9.9636 (5), 10.4203 (5) |
β (°) | 104.6190 (13) |
V (Å3) | 1917.98 (16) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.75 |
Crystal size (mm) | 0.30 × 0.27 × 0.13 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.622, 0.804 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31213, 3621, 3543 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.04 |
No. of reflections | 3621 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.39 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).
Acknowledgements
TŪBİTAK (the Scientific and Technological Research Council of Turkey, grant 109 T875) is gratefully acknowledged for financial support.
References
Ager, I. A., Barnes, A. C., Danswan, G. W. P., Hairsine, W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P., Robson, P., Rowlands, D. A., Tully, W. R. & Westwood, R. (1988). J. Med. Chem. 31, 1098–1115. CrossRef CAS PubMed Web of Science Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Anthony, A., Desiraju, G. R., Jetti, R. K. R., Kuduva, S. S., Madhavi, N. N. L., Nangia, A., Thaimattam, R. & Thalladi, V. R. (1998). Cryst. Eng. 1, 1–18. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheeseman, G. W. H. & Cookson, R. F. (1979). In Condensed Pyrazines. New York: John Wiley and Sons. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
He, W., Meyers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100. Web of Science CrossRef PubMed CAS Google Scholar
Hirano, K., Yamaoka, S., Minikata, S. & Komatsu, M. (2002). Bull. Chem. Soc. Jpn, 75, 2075–2078. Web of Science CSD CrossRef CAS Google Scholar
Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541–544. Web of Science CrossRef PubMed CAS Google Scholar
Methcohn, O. (1975). Tetrahedron Lett. 16, 413–416. Google Scholar
Porter, A. E. A. (1984). Comprehensive Heterocyclic Chemistry: the Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, edited by A. R. Katritzky & C. W. Rees, pp. 157–197. Oxford: Pergamon Press. Google Scholar
Ranganathan, S., Mahapatra, S., Thakur, T. S. & Desiraju, G. R. (2010). Acta Cryst. E66, o2789. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, E. C. & Hand, E. S. (1962). Tetrahedron Lett. 3, 1225–1230. CrossRef Google Scholar
Taylor, E. C. & Hand, E. S. (1963). J. Am. Chem. Soc. 85, 770–776. CrossRef CAS Web of Science Google Scholar
Yadav, J. S., Reddy, B. V. S., Rao, Y. G. & Narsaiah, A. V. (2008). Chem. Lett. 37, 348–349. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Despite the fact that pyrrolo[1,2-a]quinoxalines have valuable characteristics, in particular, marked biological activity, very limited publications regarding their synthesis have appeared in comparison with similar heterocyles (Cheeseman & Cookson, 1979). One of the most widespread and most widely used methods for the synthesis of pyrrolo-[1,2-a]quinoxalines involves the intramolecular cyclization of derivatives of quinoxaline with substituents at position 2, containing at least three carbon atoms with reaction centers capable of nucleophilic attack (Taylor & Hand, 1962; 1963). The benzimidazoles are also transformed into pyrroloquinoxalines by the action of acetylenecarboxylic acid derivatives (Methcohn, 1975; Ager et al., 1988). It is also well known that nitrogen-containing heterocycles are abundant in nature and exhibit diverse and important biological properties (Porter, 1984). While rarely found in nature, quinoxalines find important applications in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activity, including antiviral and antibacterial properties and also act as kinase inhibitors (He et al., 2003; Kim et al., 2004). These heterocyclic ring systems are most commonly assembled by the annulation of a heterocyclic ring onto a pre-existing benzene ring (Yadav et al., 2008). In continuation of our chemistry related to the 1,3-dipolar cycloaddition of heterocyclic N-ylides to electron-deficient alkenes, we have prepared phenylsulfonyl substituted-1,2-dihydropyrrolo[1,2-a]quinoxalin-1-ylmethanone by the reaction of in situ-generated quinoxalinium ylide and phenyl vinyl sulfone and determined its crystal structure.
A search of the Cambridge Structural Database (version 5.32, Nov. 2010 with May 2011 update, Allen, 2002) yielded only one previous report of a crystal structure (Hirano et al., 2002) containing the 13-atom C11N2 ring system. It has COOMe groups at C9 and C10 and is unsubstituted at C11, but its coordinates were not deposited. The structures of two polymorphs of unsubstituted quinoxaline have been reported (Anthony et al., 1998; Ranganathan et al., 2010). It is of interest to note the changes to the geometry of the C4N2 heterocyclic ring of quinoxaline brought about by its fusion to the five-membered ring of the present compound. In quinoxaline, there is considerable double-bond localization into the C═N bonds analogous to C7═N1 and C8═N2. Those bonds have a mean distance of 1.314 Å, averaged over 12 values with a range of values 1.299 - 1.329 Å in the two polymorphs. This is shorter than the mean (of 12) value of 1.371 Å for the bonds corresponding to C1–N1 (range 1.353 - 1.392 Å). The mean distance for the bond analogous to C7–C8 in quinoxaline is 1.406 Å, range 1.373 - 1.421 Å. In the title compound, N1–C1, 1.4007 (17) Å is longer than N1–C7, 1.2904 (18) by an amount greater than in quinoxaline. Also unlike quinoxaline, the two endocyclic bonds to N2 in the title compound are equal, 1.3786 (17) and 1.3773 (16) Å., and C7–C8 is elongated to 1.4536 (17) Å. This is accompanied by a C8═C9 double-bond distance of 1.3555 (18) Å.
The 13-atom ring system C1 through C11, N1 and N2 exhibits an r.m.s. deviation of 0.039 Å, the largest deviations being in the 5-membered ring, 0.0614 (10) Å for C9 and 0.0710 (10) Å for C11. The r.m.s. deviation from coplanarity of the 10-atom quinoxaline fragment C1 through C8, N1 and N2 is only 0.022 Å, with C10 also lying in that plane; +0.002 (2) Å deviation, and C9 and C11 lying farther out of plane, -0.104 (2) and -0.118 (2) Å, respectively.