organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2859-o2860

(Phen­yl)(3-phenyl­sulfonyl-1,2-di­hydro­pyrrolo­[1,2-a]quinoxalin-1-yl)methanone

aDepartment of Chemistry, Abant Izzet Baysal University, TR-14280 Bolu, Turkey, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 22 September 2011; accepted 30 September 2011; online 8 October 2011)

In the title mol­ecule, C24H18N2O3S, the 13-atom ring system comprising the quinoxaline and fused five-membered ring exhibits an r.m.s. deviation from coplanarity of 0.039 Å, with a maximum deviation of 0.0710 (10) Å for the PhCO-bearing C atom of the five-membered ring. The 10-membered C8N2 quinoxaline ring system has an r.m.s. deviation from coplanarity of 0.022 Å, with a maximum deviation of 0.0403 (9) Å for the C atom involved in the C=C bond in the five-membered ring. The three atoms of the five-membered ring fused to the quinoxaline ring system show deviations of up to 0.118 (2) Å for the PhCO-bearing C atom. C—N bond distances in the quinoxaline ring system of the title mol­ecule deviate from those in unsubstituted quinoxaline. In particular, the two C—N distances to the N atom involved in the five-membered ring are essentially equal, with values of 1.3786 (17) and 1.3773 (16) Å, unlike the difference of nearly 0.06 Å in quinoxaline.

Related literature

For the transformation of benzimidazoles into pyrrolo­quinoxalines, see: Ager et al. (1988[Ager, I. A., Barnes, A. C., Danswan, G. W. P., Hairsine, W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P., Robson, P., Rowlands, D. A., Tully, W. R. & Westwood, R. (1988). J. Med. Chem. 31, 1098-1115.]); Methcohn (1975[Methcohn, O. (1975). Tetrahedron Lett. 16, 413-416.]). For the synthesis of condensed pyrazines, see: Cheeseman & Cookson (1979[Cheeseman, G. W. H. & Cookson, R. F. (1979). In Condensed Pyrazines. New York: John Wiley and Sons.]). For the biological activity of quinoxalines, see: Porter (1984[Porter, A. E. A. (1984). Comprehensive Heterocyclic Chemistry: the Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, edited by A. R. Katritzky & C. W. Rees, pp. 157-197. Oxford: Pergamon Press.]); He et al. (2003[He, W., Meyers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097-3100.]); Kim et al. (2004[Kim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541-544.]). For cyclization reactions of quinoxaline derivatives, see: Taylor & Hand (1962[Taylor, E. C. & Hand, E. S. (1962). Tetrahedron Lett. 3, 1225-1230.], 1963[Taylor, E. C. & Hand, E. S. (1963). J. Am. Chem. Soc. 85, 770-776.]); Yadav et al. (2008[Yadav, J. S., Reddy, B. V. S., Rao, Y. G. & Narsaiah, A. V. (2008). Chem. Lett. 37, 348-349.]). For the structure of an analogous compound with COOMe at C9 and C10, see: Hirano et al. (2002[Hirano, K., Yamaoka, S., Minikata, S. & Komatsu, M. (2002). Bull. Chem. Soc. Jpn, 75, 2075-2078.]). For polymorphs of quinoxaline, see: Ranganathan et al. (2010[Ranganathan, S., Mahapatra, S., Thakur, T. S. & Desiraju, G. R. (2010). Acta Cryst. E66, o2789.]); Anthony et al. (1998[Anthony, A., Desiraju, G. R., Jetti, R. K. R., Kuduva, S. S., Madhavi, N. N. L., Nangia, A., Thaimattam, R. & Thalladi, V. R. (1998). Cryst. Eng. 1, 1-18.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O3S

  • Mr = 414.46

  • Monoclinic, P 21 /c

  • a = 19.0915 (9) Å

  • b = 9.9636 (5) Å

  • c = 10.4203 (5) Å

  • β = 104.6190 (13)°

  • V = 1917.98 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.75 mm−1

  • T = 90 K

  • 0.30 × 0.27 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.622, Tmax = 0.804

  • 31213 measured reflections

  • 3621 independent reflections

  • 3543 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.04

  • 3621 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Despite the fact that pyrrolo[1,2-a]quinoxalines have valuable characteristics, in particular, marked biological activity, very limited publications regarding their synthesis have appeared in comparison with similar heterocyles (Cheeseman & Cookson, 1979). One of the most widespread and most widely used methods for the synthesis of pyrrolo-[1,2-a]quinoxalines involves the intramolecular cyclization of derivatives of quinoxaline with substituents at position 2, containing at least three carbon atoms with reaction centers capable of nucleophilic attack (Taylor & Hand, 1962; 1963). The benzimidazoles are also transformed into pyrroloquinoxalines by the action of acetylenecarboxylic acid derivatives (Methcohn, 1975; Ager et al., 1988). It is also well known that nitrogen-containing heterocycles are abundant in nature and exhibit diverse and important biological properties (Porter, 1984). While rarely found in nature, quinoxalines find important applications in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activity, including antiviral and antibacterial properties and also act as kinase inhibitors (He et al., 2003; Kim et al., 2004). These heterocyclic ring systems are most commonly assembled by the annulation of a heterocyclic ring onto a pre-existing benzene ring (Yadav et al., 2008). In continuation of our chemistry related to the 1,3-dipolar cycloaddition of heterocyclic N-ylides to electron-deficient alkenes, we have prepared phenylsulfonyl substituted-1,2-dihydropyrrolo[1,2-a]quinoxalin-1-ylmethanone by the reaction of in situ-generated quinoxalinium ylide and phenyl vinyl sulfone and determined its crystal structure.

A search of the Cambridge Structural Database (version 5.32, Nov. 2010 with May 2011 update, Allen, 2002) yielded only one previous report of a crystal structure (Hirano et al., 2002) containing the 13-atom C11N2 ring system. It has COOMe groups at C9 and C10 and is unsubstituted at C11, but its coordinates were not deposited. The structures of two polymorphs of unsubstituted quinoxaline have been reported (Anthony et al., 1998; Ranganathan et al., 2010). It is of interest to note the changes to the geometry of the C4N2 heterocyclic ring of quinoxaline brought about by its fusion to the five-membered ring of the present compound. In quinoxaline, there is considerable double-bond localization into the CN bonds analogous to C7N1 and C8N2. Those bonds have a mean distance of 1.314 Å, averaged over 12 values with a range of values 1.299 - 1.329 Å in the two polymorphs. This is shorter than the mean (of 12) value of 1.371 Å for the bonds corresponding to C1–N1 (range 1.353 - 1.392 Å). The mean distance for the bond analogous to C7–C8 in quinoxaline is 1.406 Å, range 1.373 - 1.421 Å. In the title compound, N1–C1, 1.4007 (17) Å is longer than N1–C7, 1.2904 (18) by an amount greater than in quinoxaline. Also unlike quinoxaline, the two endocyclic bonds to N2 in the title compound are equal, 1.3786 (17) and 1.3773 (16) Å., and C7–C8 is elongated to 1.4536 (17) Å. This is accompanied by a C8C9 double-bond distance of 1.3555 (18) Å.

The 13-atom ring system C1 through C11, N1 and N2 exhibits an r.m.s. deviation of 0.039 Å, the largest deviations being in the 5-membered ring, 0.0614 (10) Å for C9 and 0.0710 (10) Å for C11. The r.m.s. deviation from coplanarity of the 10-atom quinoxaline fragment C1 through C8, N1 and N2 is only 0.022 Å, with C10 also lying in that plane; +0.002 (2) Å deviation, and C9 and C11 lying farther out of plane, -0.104 (2) and -0.118 (2) Å, respectively.

Related literature top

For the transformation of benzimidazoles into pyrroloquinoxalines, see: Ager et al. (1988); Methcohn (1975). For the synthesis of condensed pyrazines, see: Cheeseman & Cookson (1979). For the biological activity of quinoxalines, see: Porter (1984); He et al. (2003); Kim et al. (2004). For cyclization reactions of quinoxaline derivatives, see: Taylor & Hand (1962, 1963); Yadav et al. (2008). For the structure of an analogous compound with COOMe at C9 and C10, see: Hirano et al. (2002). For polymorphs of quinoxaline, see: Ranganathan et al. (2010); Anthony et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The quinoxalinium salt (1 mmol, 329 mg), obtained from phenacyl bromide and quinoxaline in acetone, was suspended in dichloromethane (10 ml) and then phenylvinylsulfone (1 mmol, 168 mg) was added. Under vigorous stirring, triethylamine (1.4 ml, 1 mmol) was added dropwise. The progress of the reaction was monitored by TLC. After 20 min the reaction mixture was washed with water (2 X 10 ml) and solvent was evaporated. The residual crude product was purified with column chromatography using hexane-ethyl acetate as eluent. The cycloaddition product was recrystallized from CDCl3 to give orange crystals. M.p.148–150°C. Rf: 0.65 (ethyl acetate-n-hexane; 1:1). IR (KBr): ν= 1696 (CO),1594,1566 1479, 1300, 1223, 1149, 1078, 719, 611 cm-1. 1H NMR (400 MHz, CDCl3): δ = 9.11 (s, 1H), 7.92 (d, J =7.2 Hz, 2H), 7.86 (d, J =7.6 Hz, 2H), 7.69–7.65 (q, 2H), 7.56–7.47 (m, 5H), 7.36 (s, 1H), 7.21 (t, 1H), 7.06 (t, 1H), 6.30 (d, J = 8.0 Hz, 1H), 5.84–5.79 (dd, J = 14.0, 6.4 Hz, 1H), 3.56 (t, J = 16.0 Hz, 1H), 3.00–2.95 (dd, J = 14.6, 6.0 Hz, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 193.3 (CO), 145.1, 142.7, 142.5, 135.2, 135.0, 133.4, 132.7, 132.4, 132.3, 130.2, 129.8, 129.8, 126.4, 123.1, 113.6, 99.1, 63.7, 33.9. LC—MS (70 eV): (m/z, %)= 415.80 (100) [M+H]+.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Uiso for H were assigned as 1.2 times Ueq of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoids at the 50% level, with H atoms having arbitrary radius.
(Phenyl)(3-phenylsulfonyl-1,2-dihydropyrrolo[1,2-a]quinoxalin-1- yl)methanone top
Crystal data top
C24H18N2O3SF(000) = 864
Mr = 414.46Dx = 1.435 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9862 reflections
a = 19.0915 (9) Åθ = 4.4–70.1°
b = 9.9636 (5) ŵ = 1.75 mm1
c = 10.4203 (5) ÅT = 90 K
β = 104.6190 (13)°Rectangular prism, orange
V = 1917.98 (16) Å30.30 × 0.27 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3621 independent reflections
Radiation source: fine-focus sealed tube3543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 70.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2323
Tmin = 0.622, Tmax = 0.804k = 1012
31213 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.1954P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3621 reflectionsΔρmax = 0.41 e Å3
272 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00108 (12)
Crystal data top
C24H18N2O3SV = 1917.98 (16) Å3
Mr = 414.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.0915 (9) ŵ = 1.75 mm1
b = 9.9636 (5) ÅT = 90 K
c = 10.4203 (5) Å0.30 × 0.27 × 0.13 mm
β = 104.6190 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
3621 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3543 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.804Rint = 0.032
31213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
3621 reflectionsΔρmin = 0.39 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.347686 (15)0.61731 (3)0.66691 (3)0.01450 (10)
O10.36497 (5)0.53406 (10)0.56612 (9)0.0205 (2)
O20.31216 (5)0.74476 (9)0.63034 (9)0.0200 (2)
O30.11000 (5)0.43117 (9)0.71433 (9)0.0190 (2)
N10.29905 (6)0.15898 (11)0.69500 (10)0.0166 (2)
N20.24574 (6)0.35506 (11)0.83452 (10)0.0146 (2)
C10.25306 (7)0.12578 (13)0.77577 (12)0.0155 (3)
C20.23431 (7)0.00846 (13)0.78555 (13)0.0182 (3)
H20.25370.07550.73950.022*
C30.18766 (7)0.04454 (13)0.86193 (13)0.0198 (3)
H30.17410.13580.86650.024*
C40.16049 (7)0.05308 (13)0.93218 (13)0.0181 (3)
H40.12900.02750.98540.022*
C50.17878 (7)0.18683 (13)0.92537 (12)0.0162 (3)
H50.16020.25270.97390.019*
C60.22492 (6)0.22410 (13)0.84637 (12)0.0142 (3)
C70.31442 (7)0.28371 (13)0.68290 (12)0.0159 (3)
H70.34500.30570.62680.019*
C80.28749 (6)0.39240 (13)0.75032 (12)0.0142 (3)
C90.29573 (6)0.52749 (13)0.74933 (12)0.0150 (3)
C100.25941 (7)0.59237 (13)0.84700 (13)0.0170 (3)
H10A0.22650.66550.80480.020*
H10B0.29550.62850.92470.020*
C110.21643 (7)0.47295 (12)0.88718 (12)0.0145 (3)
H110.22490.46710.98570.017*
C120.13534 (7)0.48735 (12)0.81931 (12)0.0139 (3)
C130.09098 (7)0.57500 (12)0.88358 (12)0.0144 (3)
C140.12184 (7)0.65545 (13)0.99308 (12)0.0163 (3)
H140.17270.65491.02960.020*
C150.07783 (7)0.73617 (14)1.04836 (13)0.0210 (3)
H150.09870.79121.12260.025*
C160.00346 (8)0.73669 (14)0.99538 (15)0.0231 (3)
H160.02640.79241.03330.028*
C170.02763 (7)0.65613 (15)0.88708 (14)0.0223 (3)
H170.07860.65630.85150.027*
C180.01584 (7)0.57577 (14)0.83122 (13)0.0181 (3)
H180.00540.52090.75700.022*
C190.42916 (7)0.64997 (14)0.78853 (12)0.0168 (3)
C200.48648 (7)0.56023 (15)0.80223 (14)0.0223 (3)
H200.48250.48440.74560.027*
C210.54965 (8)0.58369 (18)0.90036 (15)0.0304 (4)
H210.58960.52420.91090.037*
C220.55422 (8)0.69423 (19)0.98282 (14)0.0326 (4)
H220.59750.70991.04970.039*
C230.49673 (8)0.78208 (17)0.96936 (14)0.0292 (3)
H230.50060.85701.02720.035*
C240.43328 (7)0.76078 (15)0.87121 (13)0.0218 (3)
H240.39360.82070.86080.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01365 (16)0.01546 (17)0.01436 (16)0.00031 (11)0.00346 (11)0.00024 (11)
O10.0224 (5)0.0226 (5)0.0183 (5)0.0015 (4)0.0087 (4)0.0023 (4)
O20.0200 (5)0.0191 (5)0.0203 (5)0.0021 (4)0.0039 (4)0.0038 (4)
O30.0197 (5)0.0201 (5)0.0166 (4)0.0001 (4)0.0035 (4)0.0032 (4)
N10.0158 (5)0.0174 (6)0.0162 (5)0.0023 (4)0.0034 (4)0.0019 (4)
N20.0142 (5)0.0138 (5)0.0169 (5)0.0011 (4)0.0060 (4)0.0022 (4)
C10.0137 (6)0.0174 (7)0.0142 (6)0.0026 (5)0.0014 (5)0.0007 (5)
C20.0204 (6)0.0151 (6)0.0179 (6)0.0039 (5)0.0025 (5)0.0022 (5)
C30.0235 (7)0.0136 (6)0.0210 (7)0.0000 (5)0.0034 (5)0.0012 (5)
C40.0172 (6)0.0191 (7)0.0175 (6)0.0001 (5)0.0033 (5)0.0024 (5)
C50.0151 (6)0.0167 (6)0.0166 (6)0.0022 (5)0.0037 (5)0.0008 (5)
C60.0125 (6)0.0143 (6)0.0141 (6)0.0012 (5)0.0002 (5)0.0005 (5)
C70.0139 (6)0.0185 (7)0.0156 (6)0.0018 (5)0.0043 (5)0.0024 (5)
C80.0103 (5)0.0180 (6)0.0134 (6)0.0004 (5)0.0015 (4)0.0010 (5)
C90.0124 (6)0.0166 (6)0.0158 (6)0.0003 (5)0.0033 (5)0.0016 (5)
C100.0164 (6)0.0144 (6)0.0218 (6)0.0009 (5)0.0077 (5)0.0034 (5)
C110.0158 (6)0.0125 (6)0.0159 (6)0.0016 (5)0.0051 (5)0.0024 (5)
C120.0165 (6)0.0113 (6)0.0146 (6)0.0010 (5)0.0052 (5)0.0024 (5)
C130.0162 (6)0.0126 (6)0.0155 (6)0.0013 (5)0.0060 (5)0.0033 (5)
C140.0155 (6)0.0153 (6)0.0185 (6)0.0003 (5)0.0047 (5)0.0008 (5)
C150.0233 (7)0.0187 (7)0.0212 (6)0.0012 (5)0.0062 (5)0.0047 (5)
C160.0223 (7)0.0220 (7)0.0274 (7)0.0077 (5)0.0110 (6)0.0004 (6)
C170.0148 (6)0.0264 (7)0.0254 (7)0.0045 (5)0.0044 (5)0.0023 (6)
C180.0176 (6)0.0188 (7)0.0170 (6)0.0004 (5)0.0028 (5)0.0012 (5)
C190.0138 (6)0.0215 (7)0.0158 (6)0.0034 (5)0.0049 (5)0.0039 (5)
C200.0181 (6)0.0270 (7)0.0240 (7)0.0009 (5)0.0094 (5)0.0079 (6)
C210.0140 (6)0.0467 (10)0.0311 (8)0.0020 (6)0.0065 (6)0.0193 (7)
C220.0188 (7)0.0560 (11)0.0203 (7)0.0147 (7)0.0002 (5)0.0121 (7)
C230.0287 (8)0.0396 (9)0.0196 (7)0.0167 (7)0.0063 (6)0.0021 (6)
C240.0205 (7)0.0253 (7)0.0206 (6)0.0059 (5)0.0070 (5)0.0001 (5)
Geometric parameters (Å, º) top
S1—O11.4404 (9)C10—H10B0.9900
S1—O21.4448 (10)C11—C121.5377 (17)
S1—C91.7183 (13)C11—H111.0000
S1—C191.7710 (13)C12—C131.4882 (17)
O3—C121.2152 (16)C13—C141.3972 (18)
N1—C71.2904 (18)C13—C181.4003 (18)
N1—C11.4007 (17)C14—C151.3889 (18)
N2—C81.3773 (16)C14—H140.9500
N2—C61.3786 (17)C15—C161.387 (2)
N2—C111.4660 (15)C15—H150.9500
C1—C21.3950 (19)C16—C171.390 (2)
C1—C61.4103 (17)C16—H160.9500
C2—C31.3833 (19)C17—C181.3829 (19)
C2—H20.9500C17—H170.9500
C3—C41.3937 (19)C18—H180.9500
C3—H30.9500C19—C201.3924 (19)
C4—C51.3840 (19)C19—C241.390 (2)
C4—H40.9500C20—C211.390 (2)
C5—C61.3991 (18)C20—H200.9500
C5—H50.9500C21—C221.386 (3)
C7—C81.4536 (17)C21—H210.9500
C7—H70.9500C22—C231.383 (2)
C8—C91.3555 (18)C22—H220.9500
C9—C101.5135 (17)C23—C241.390 (2)
C10—C111.5613 (17)C23—H230.9500
C10—H10A0.9900C24—H240.9500
O1—S1—O2119.51 (6)N2—C11—C10103.55 (9)
O1—S1—C9109.38 (6)C12—C11—C10109.99 (10)
O2—S1—C9107.32 (6)N2—C11—H11111.1
O1—S1—C19107.83 (6)C12—C11—H11111.1
O2—S1—C19107.24 (6)C10—C11—H11111.1
C9—S1—C19104.57 (6)O3—C12—C13122.20 (11)
C7—N1—C1118.60 (11)O3—C12—C11119.79 (11)
C8—N2—C6122.62 (11)C13—C12—C11117.97 (10)
C8—N2—C11111.04 (10)C14—C13—C18119.63 (12)
C6—N2—C11125.38 (10)C14—C13—C12122.25 (11)
C2—C1—N1118.80 (11)C18—C13—C12118.12 (11)
C2—C1—C6119.30 (12)C15—C14—C13119.77 (12)
N1—C1—C6121.90 (12)C15—C14—H14120.1
C3—C2—C1120.36 (12)C13—C14—H14120.1
C3—C2—H2119.8C14—C15—C16120.17 (13)
C1—C2—H2119.8C14—C15—H15119.9
C2—C3—C4119.99 (12)C16—C15—H15119.9
C2—C3—H3120.0C17—C16—C15120.35 (12)
C4—C3—H3120.0C17—C16—H16119.8
C5—C4—C3120.85 (12)C15—C16—H16119.8
C5—C4—H4119.6C18—C17—C16119.83 (12)
C3—C4—H4119.6C18—C17—H17120.1
C4—C5—C6119.35 (12)C16—C17—H17120.1
C4—C5—H5120.3C17—C18—C13120.25 (12)
C6—C5—H5120.3C17—C18—H18119.9
N2—C6—C5122.85 (11)C13—C18—H18119.9
N2—C6—C1117.02 (11)C20—C19—C24121.75 (13)
C5—C6—C1120.12 (12)C20—C19—S1118.75 (11)
N1—C7—C8123.60 (12)C24—C19—S1119.44 (10)
N1—C7—H7118.2C21—C20—C19118.75 (14)
C8—C7—H7118.2C21—C20—H20120.6
C9—C8—N2111.10 (11)C19—C20—H20120.6
C9—C8—C7132.87 (12)C22—C21—C20119.79 (14)
N2—C8—C7116.03 (11)C22—C21—H21120.1
C8—C9—C10110.20 (11)C20—C21—H21120.1
C8—C9—S1127.13 (10)C23—C22—C21121.06 (13)
C10—C9—S1122.27 (9)C23—C22—H22119.5
C9—C10—C11102.46 (10)C21—C22—H22119.5
C9—C10—H10A111.3C22—C23—C24119.98 (15)
C11—C10—H10A111.3C22—C23—H23120.0
C9—C10—H10B111.3C24—C23—H23120.0
C11—C10—H10B111.3C23—C24—C19118.67 (14)
H10A—C10—H10B109.2C23—C24—H24120.7
N2—C11—C12109.74 (10)C19—C24—H24120.7
C7—N1—C1—C2177.83 (12)C8—N2—C11—C12105.72 (11)
C7—N1—C1—C61.70 (18)C6—N2—C11—C1263.24 (15)
N1—C1—C2—C3178.48 (11)C8—N2—C11—C1011.67 (13)
C6—C1—C2—C31.06 (19)C6—N2—C11—C10179.38 (11)
C1—C2—C3—C41.5 (2)C9—C10—C11—N212.32 (12)
C2—C3—C4—C50.9 (2)C9—C10—C11—C12104.89 (11)
C3—C4—C5—C60.27 (19)N2—C11—C12—O319.31 (16)
C8—N2—C6—C5175.85 (11)C10—C11—C12—O393.98 (13)
C11—N2—C6—C58.11 (19)N2—C11—C12—C13162.91 (10)
C8—N2—C6—C14.95 (17)C10—C11—C12—C1383.80 (13)
C11—N2—C6—C1172.69 (11)O3—C12—C13—C14170.10 (12)
C4—C5—C6—N2179.91 (11)C11—C12—C13—C147.62 (17)
C4—C5—C6—C10.74 (18)O3—C12—C13—C189.85 (18)
C2—C1—C6—N2179.30 (11)C11—C12—C13—C18172.43 (11)
N1—C1—C6—N21.17 (17)C18—C13—C14—C150.50 (19)
C2—C1—C6—C50.08 (18)C12—C13—C14—C15179.45 (12)
N1—C1—C6—C5179.61 (11)C13—C14—C15—C160.2 (2)
C1—N1—C7—C81.00 (18)C14—C15—C16—C170.3 (2)
C6—N2—C8—C9175.24 (11)C15—C16—C17—C180.5 (2)
C11—N2—C8—C95.93 (14)C16—C17—C18—C130.2 (2)
C6—N2—C8—C75.56 (17)C14—C13—C18—C170.30 (19)
C11—N2—C8—C7174.87 (10)C12—C13—C18—C17179.65 (12)
N1—C7—C8—C9178.52 (13)O1—S1—C19—C2024.23 (12)
N1—C7—C8—N22.50 (18)O2—S1—C19—C20154.13 (10)
N2—C8—C9—C102.97 (15)C9—S1—C19—C2092.12 (11)
C7—C8—C9—C10176.05 (13)O1—S1—C19—C24158.43 (10)
N2—C8—C9—S1175.80 (9)O2—S1—C19—C2428.53 (12)
C7—C8—C9—S13.2 (2)C9—S1—C19—C2485.22 (11)
O1—S1—C9—C817.24 (14)C24—C19—C20—C210.8 (2)
O2—S1—C9—C8148.29 (12)S1—C19—C20—C21178.08 (10)
C19—S1—C9—C898.03 (12)C19—C20—C21—C220.6 (2)
O1—S1—C9—C10170.72 (10)C20—C21—C22—C230.1 (2)
O2—S1—C9—C1039.67 (11)C21—C22—C23—C240.5 (2)
C19—S1—C9—C1074.02 (11)C22—C23—C24—C190.3 (2)
C8—C9—C10—C119.76 (13)C20—C19—C24—C230.4 (2)
S1—C9—C10—C11176.99 (9)S1—C19—C24—C23177.63 (10)

Experimental details

Crystal data
Chemical formulaC24H18N2O3S
Mr414.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)90
a, b, c (Å)19.0915 (9), 9.9636 (5), 10.4203 (5)
β (°) 104.6190 (13)
V3)1917.98 (16)
Z4
Radiation typeCu Kα
µ (mm1)1.75
Crystal size (mm)0.30 × 0.27 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.622, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
31213, 3621, 3543
Rint0.032
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.04
No. of reflections3621
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

TŪBİTAK (the Scientific and Technological Research Council of Turkey, grant 109 T875) is gratefully acknowledged for financial support.

References

First citationAger, I. A., Barnes, A. C., Danswan, G. W. P., Hairsine, W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P., Robson, P., Rowlands, D. A., Tully, W. R. & Westwood, R. (1988). J. Med. Chem. 31, 1098–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnthony, A., Desiraju, G. R., Jetti, R. K. R., Kuduva, S. S., Madhavi, N. N. L., Nangia, A., Thaimattam, R. & Thalladi, V. R. (1998). Cryst. Eng. 1, 1–18.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheeseman, G. W. H. & Cookson, R. F. (1979). In Condensed Pyrazines. New York: John Wiley and Sons.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, W., Meyers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHirano, K., Yamaoka, S., Minikata, S. & Komatsu, M. (2002). Bull. Chem. Soc. Jpn, 75, 2075–2078.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, Y. B., Kim, Y. H., Park, J. Y. & Kim, S. K. (2004). Bioorg. Med. Chem. Lett. 14, 541–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMethcohn, O. (1975). Tetrahedron Lett. 16, 413–416.  Google Scholar
First citationPorter, A. E. A. (1984). Comprehensive Heterocyclic Chemistry: the Structure, Reactions, Synthesis, and Uses of Heterocyclic Compounds, edited by A. R. Katritzky & C. W. Rees, pp. 157–197. Oxford: Pergamon Press.  Google Scholar
First citationRanganathan, S., Mahapatra, S., Thakur, T. S. & Desiraju, G. R. (2010). Acta Cryst. E66, o2789.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, E. C. & Hand, E. S. (1962). Tetrahedron Lett. 3, 1225–1230.  CrossRef Google Scholar
First citationTaylor, E. C. & Hand, E. S. (1963). J. Am. Chem. Soc. 85, 770–776.  CrossRef CAS Web of Science Google Scholar
First citationYadav, J. S., Reddy, B. V. S., Rao, Y. G. & Narsaiah, A. V. (2008). Chem. Lett. 37, 348–349.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2859-o2860
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds