organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[Tris(1H-pyrazol-1-yl)meth­yl]phenol

aDepartment of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, TX 78712, USA
*Correspondence e-mail: bholliday@cm.utexas.edu

(Received 9 August 2011; accepted 17 October 2011; online 29 October 2011)

The title compound, C16H14N6O, was prepared by the condensation of 4-(trifluoro­meth­yl)phenol and sodium pyrazol-1-ide in a yield of 58%. The dihedral angles formed by the planes of the pyrazole rings are 50.7 (2), 71.2 (3) and 95.8 (2)°. The mol­ecules are associated into dimers by pairs of inter­molecular O—H⋯N hydrogen bonds involving the hy­droxy groups and pyrazole N atoms. In addition, ππ stacking between the phenol rings of these inversion-related dimers is observed, with a ring centroid-to-centroid distance of 3.9247 (10) Å.

Related literature

For the preparation and coordination chemistry of tris(pyrazol­yl)borates and tris­(pyrazol­yl)methanes, see: Trofimenko (1966[Trofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842-1844.], 1970[Trofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118-5126.], 1999[Trofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.]); Pettinari & Pettinari (2005[Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525-543.]); Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For the chemistry of tris­(pyrazol­yl)methane derivatives, see: Humphrey et al. (1999[Humphrey, E. R., Mann, K. L. V., Reeves, Z. R., Behrendt, A., Jeffery, J. C., Maher, J. P., McCleverty, J. A. & Ward, M. D. (1999). New J. Chem. 23, 417-423.]). For similar structures, see: Liddle & Gardinier (2007[Liddle, B. & Gardinier, J. R. (2007). J. Org. Chem. 72, 9794-9797.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N6O

  • Mr = 306.33

  • Triclinic, [P \overline 1]

  • a = 8.5065 (17) Å

  • b = 8.6829 (17) Å

  • c = 10.815 (2) Å

  • α = 96.97 (3)°

  • β = 91.51 (2)°

  • γ = 109.40 (3)°

  • V = 746.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.30 × 0.28 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.973, Tmax = 0.983

  • 4225 measured reflections

  • 2609 independent reflections

  • 1975 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.07

  • 2609 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N4i 0.82 2.02 2.836 (2) 173
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: XL in SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and POV-RAY (Persistence of Vision Team, 2004[Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia. http://www.povray.org/ ]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since seminal reports on tris(pyrazolyl)borates and tris(pyrazolyl)methanes (Trofimenko, 1966, 1970), variations on these ligands have been widely studied. Currently, there are great research efforts to study ligands of this type that are functionalized at the back boron or methine positions. The synthesis and coordination chemistry of aryltris(pyrazolyl)borates have also been well investigated, which has allowed significant advances in iron(II) spin-crossover chemistry. However, the chemistry of analogous tris(pyrazolyl)methane derivatives is almost unknown. Herein, we demonstrate the preparation of a new tris(pyrazolyl)methane derivative, 4-[tris(1H-pyrazol-1-yl)methyl]phenol, using a one-pot synthesis method with 4-(trifluoromethyl)phenol and freshly prepared sodium pyrazol-1-ide to give the desired product in good yield.

The solid state structure of 4-[tris(1H-pyrazol-1-yl)methyl]phenol can be seen in Fig. 1. There are two molecules in the unit cell. The molecules are associated into dimers by pairs of intermolecular O—H···N hydrogen bonds involving the hydroxyl groups and pyrazole N atoms. In addition, ππ stacking between the phenol rings of these inversion-related (-x + 2, -y + 2, -z) dimers is observed with a ring centroid-to-centroid distance of 3.9247 (10) Å.

Related literature top

For the preparation and coordination chemistry of tris(pyrazolyl)borates and tris(pyrazolyl)methanes, see: Trofimenko (1966, 1970, 1999); Pettinari & Pettinari (2005); Reger et al. (2000). For the chemistry of tris(pyrazolyl)methane derivatives, see: Humphrey et al. (1999). For similar structures, see: Liddle & Gardinier (2007).

Experimental top

The title compound was prepared by refluxing 4-(trifluoromethyl)phenol (0.162 g, 1.0 mmol) and freshly prepared sodium pyrazol-1-ide (0.361 g, 4.0 mmol) in tetrahydrofuran (20 ml) for 12 h under a nitrogen atomsphere. The desired product was purified by column chromatography on silica gel using CH2Cl2 as the eluent with a yield of 58%. Single crystals suitable for X-ray diffraction were obtained via slow evaporation from a methanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å, and O—H = 0.82 Å. Uiso(H) values were set to 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: XL in SHELXTL/PC (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision Team, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of C16H14N6O showing selected atoms at 30% probability level.
[Figure 2] Fig. 2. A packing diagram of C16H14N6O.
4-[Tris(1H-pyrazol-1-yl)methyl]phenol top
Crystal data top
C16H14N6OZ = 2
Mr = 306.33F(000) = 320
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Melting point: 443 K
a = 8.5065 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6829 (17) ÅCell parameters from 2208 reflections
c = 10.815 (2) Åθ = 2.9–27.5°
α = 96.97 (3)°µ = 0.09 mm1
β = 91.51 (2)°T = 153 K
γ = 109.40 (3)°Block, colourless
V = 746.0 (3) Å30.30 × 0.28 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2609 independent reflections
Radiation source: fine-focus sealed tube1975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: gaussian
(XPREP in SHELXTL; Sheldrick, 2008)
h = 1010
Tmin = 0.973, Tmax = 0.983k = 1010
4225 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1787P]
where P = (Fo2 + 2Fc2)/3
2609 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H14N6Oγ = 109.40 (3)°
Mr = 306.33V = 746.0 (3) Å3
Triclinic, P1Z = 2
a = 8.5065 (17) ÅMo Kα radiation
b = 8.6829 (17) ŵ = 0.09 mm1
c = 10.815 (2) ÅT = 153 K
α = 96.97 (3)°0.30 × 0.28 × 0.20 mm
β = 91.51 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2609 independent reflections
Absorption correction: gaussian
(XPREP in SHELXTL; Sheldrick, 2008)
1975 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.983Rint = 0.025
4225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2609 reflectionsΔρmin = 0.27 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00800 (16)1.32161 (15)0.03852 (13)0.0266 (3)
H1A0.97901.29700.03620.054 (8)*
N10.74972 (17)0.78542 (18)0.40566 (13)0.0180 (4)
N20.69159 (19)0.65739 (19)0.47332 (15)0.0244 (4)
N30.98104 (17)0.72693 (18)0.31464 (14)0.0181 (4)
N41.08607 (18)0.73336 (19)0.22092 (15)0.0237 (4)
N50.70790 (17)0.60541 (17)0.21695 (14)0.0173 (4)
N60.54566 (18)0.59411 (18)0.19620 (14)0.0216 (4)
C10.9528 (2)1.1846 (2)0.09625 (17)0.0197 (4)
C20.8251 (2)1.0424 (2)0.04486 (17)0.0213 (4)
H2A0.76951.03940.03110.026*
C30.7802 (2)0.9051 (2)0.10623 (16)0.0191 (4)
H3A0.69440.81030.07110.023*
C40.8613 (2)0.9069 (2)0.21937 (16)0.0165 (4)
C50.9873 (2)1.0523 (2)0.27129 (17)0.0206 (4)
H5A1.04271.05600.34750.025*
C61.0305 (2)1.1896 (2)0.21160 (17)0.0213 (4)
H6A1.11211.28630.24870.026*
C70.8240 (2)0.7575 (2)0.28833 (16)0.0173 (4)
C80.6124 (2)0.7133 (2)0.56240 (18)0.0250 (5)
H8A0.55990.65280.62410.030*
C90.6169 (2)0.8729 (2)0.55301 (18)0.0263 (5)
H9A0.57100.93710.60550.032*
C100.7026 (2)0.9154 (2)0.45071 (17)0.0208 (4)
H10A0.72461.01410.41800.025*
C111.2086 (2)0.6894 (2)0.2675 (2)0.0268 (5)
H11A1.29990.68320.22440.032*
C121.1831 (2)0.6538 (2)0.3889 (2)0.0281 (5)
H12A1.25170.62100.44050.034*
C131.0367 (2)0.6771 (2)0.41634 (18)0.0225 (5)
H13A0.98460.66170.49060.027*
C140.4724 (2)0.4422 (2)0.13858 (17)0.0220 (4)
H14A0.35990.39850.11110.026*
C150.5835 (2)0.3552 (2)0.12394 (19)0.0284 (5)
H15A0.56020.24680.08700.034*
C160.7341 (2)0.4636 (2)0.17562 (18)0.0238 (5)
H16A0.83470.44340.18110.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (8)0.0219 (8)0.0236 (9)0.0116 (6)0.0085 (6)0.0092 (6)
N10.0197 (8)0.0170 (8)0.0171 (8)0.0049 (7)0.0029 (7)0.0049 (7)
N20.0284 (9)0.0226 (9)0.0218 (9)0.0056 (7)0.0055 (7)0.0093 (7)
N30.0155 (8)0.0185 (9)0.0209 (9)0.0065 (6)0.0013 (7)0.0034 (7)
N40.0187 (8)0.0256 (9)0.0297 (10)0.0101 (7)0.0072 (7)0.0066 (8)
N50.0149 (8)0.0167 (9)0.0207 (9)0.0063 (6)0.0007 (6)0.0017 (7)
N60.0152 (8)0.0231 (9)0.0255 (9)0.0057 (7)0.0005 (7)0.0023 (7)
C10.0231 (10)0.0180 (11)0.0234 (11)0.0126 (8)0.0098 (8)0.0056 (8)
C20.0241 (10)0.0261 (11)0.0178 (10)0.0133 (9)0.0009 (8)0.0044 (9)
C30.0184 (10)0.0202 (11)0.0183 (10)0.0067 (8)0.0003 (8)0.0001 (8)
C40.0156 (9)0.0167 (10)0.0189 (10)0.0077 (8)0.0041 (8)0.0025 (8)
C50.0181 (10)0.0235 (11)0.0199 (11)0.0070 (8)0.0014 (8)0.0020 (8)
C60.0210 (10)0.0167 (10)0.0235 (11)0.0032 (8)0.0030 (8)0.0011 (8)
C70.0145 (9)0.0186 (10)0.0188 (10)0.0061 (8)0.0008 (8)0.0017 (8)
C80.0210 (10)0.0329 (12)0.0185 (11)0.0049 (9)0.0037 (8)0.0048 (9)
C90.0228 (11)0.0321 (12)0.0248 (11)0.0120 (9)0.0039 (9)0.0010 (9)
C100.0206 (10)0.0201 (10)0.0241 (11)0.0106 (8)0.0002 (8)0.0013 (8)
C110.0181 (10)0.0227 (11)0.0415 (14)0.0090 (9)0.0027 (9)0.0056 (10)
C120.0228 (11)0.0230 (11)0.0400 (14)0.0101 (9)0.0097 (9)0.0057 (10)
C130.0255 (11)0.0191 (11)0.0223 (11)0.0066 (8)0.0046 (8)0.0046 (8)
C140.0190 (10)0.0220 (11)0.0199 (11)0.0005 (8)0.0004 (8)0.0023 (8)
C150.0305 (12)0.0193 (11)0.0309 (12)0.0053 (9)0.0004 (9)0.0042 (9)
C160.0253 (11)0.0198 (11)0.0297 (12)0.0128 (9)0.0023 (9)0.0012 (9)
Geometric parameters (Å, º) top
O1—C11.360 (2)C4—C51.399 (3)
O1—H1A0.8200C4—C71.521 (3)
N1—C101.360 (2)C5—C61.371 (3)
N1—N21.366 (2)C5—H5A0.9300
N1—C71.462 (2)C6—H6A0.9300
N2—C81.325 (2)C8—C91.390 (3)
N3—C131.358 (2)C8—H8A0.9300
N3—N41.363 (2)C9—C101.362 (3)
N3—C71.473 (2)C9—H9A0.9300
N4—C111.330 (2)C10—H10A0.9300
N5—C161.349 (2)C11—C121.391 (3)
N5—N61.361 (2)C11—H11A0.9300
N5—C71.470 (2)C12—C131.361 (3)
N6—C141.323 (2)C12—H12A0.9300
C1—C61.385 (3)C13—H13A0.9300
C1—C21.387 (3)C14—C151.393 (3)
C2—C31.382 (3)C14—H14A0.9300
C2—H2A0.9300C15—C161.369 (3)
C3—C41.385 (2)C15—H15A0.9300
C3—H3A0.9300C16—H16A0.9300
C1—O1—H1A109.5N1—C7—N3109.47 (14)
C10—N1—N2111.56 (15)N5—C7—N3107.01 (14)
C10—N1—C7128.86 (15)N1—C7—C4110.73 (14)
N2—N1—C7118.61 (14)N5—C7—C4113.65 (14)
C8—N2—N1104.13 (15)N3—C7—C4108.88 (14)
C13—N3—N4111.24 (14)N2—C8—C9112.15 (18)
C13—N3—C7130.58 (16)N2—C8—H8A123.9
N4—N3—C7117.89 (14)C9—C8—H8A123.9
C11—N4—N3104.65 (15)C10—C9—C8105.46 (18)
C16—N5—N6112.33 (15)C10—C9—H9A127.3
C16—N5—C7129.11 (15)C8—C9—H9A127.3
N6—N5—C7118.30 (14)N1—C10—C9106.65 (17)
C14—N6—N5103.95 (14)N1—C10—H10A126.7
O1—C1—C6117.37 (17)C9—C10—H10A126.7
O1—C1—C2123.26 (17)N4—C11—C12111.55 (17)
C6—C1—C2119.36 (17)N4—C11—H11A124.2
C3—C2—C1120.19 (17)C12—C11—H11A124.2
C3—C2—H2A119.9C13—C12—C11105.54 (17)
C1—C2—H2A119.9C13—C12—H12A127.2
C2—C3—C4120.83 (17)C11—C12—H12A127.2
C2—C3—H3A119.6N3—C13—C12107.00 (18)
C4—C3—H3A119.6N3—C13—H13A126.5
C3—C4—C5118.31 (17)C12—C13—H13A126.5
C3—C4—C7123.42 (16)N6—C14—C15112.14 (17)
C5—C4—C7118.25 (16)N6—C14—H14A123.9
C6—C5—C4121.01 (17)C15—C14—H14A123.9
C6—C5—H5A119.5C16—C15—C14105.15 (17)
C4—C5—H5A119.5C16—C15—H15A127.4
C5—C6—C1120.22 (17)C14—C15—H15A127.4
C5—C6—H6A119.9N5—C16—C15106.41 (17)
C1—C6—H6A119.9N5—C16—H16A126.8
N1—C7—N5106.98 (14)C15—C16—H16A126.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.822.022.836 (2)173
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H14N6O
Mr306.33
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.5065 (17), 8.6829 (17), 10.815 (2)
α, β, γ (°)96.97 (3), 91.51 (2), 109.40 (3)
V3)746.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.973, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4225, 2609, 1975
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.07
No. of reflections2609
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.27

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), XL in SHELXTL/PC (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and POV-RAY (Persistence of Vision Team, 2004), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N4i0.822.022.836 (2)172.9
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The authors gratefully acknowledge the Robert A. Welch Foundation (grant No. F-1631), the National Science Foundation (grant Nos. CHE-0741973 and CHE-0847763), the Advanced Research Program of the Texas Higher Education Coordinating Board (grant No. 01916-090-2010) and the University of Texas at Austin for financial support of this research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHumphrey, E. R., Mann, K. L. V., Reeves, Z. R., Behrendt, A., Jeffery, J. C., Maher, J. P., McCleverty, J. A. & Ward, M. D. (1999). New J. Chem. 23, 417–423.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddle, B. & Gardinier, J. R. (2007). J. Org. Chem. 72, 9794–9797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPersistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia. http://www.povray.org/  Google Scholar
First citationPettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 525–543.  CAS Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1966). J. Am. Chem. Soc. 88, 1842–1844.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1970). J. Am. Chem. Soc. 92, 5118–5126.  CrossRef CAS Web of Science Google Scholar
First citationTrofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands. London: Imperial College Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds