organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{[2-(2-Hy­dr­oxy­ethyl­amino)­ethyl­imino]­meth­yl}phenol

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, CP 62209, Cuernavaca, Mexico
*Correspondence e-mail: hhopfl@uaem.mx

(Received 14 September 2011; accepted 28 September 2011; online 5 October 2011)

The asymmetric unit of the title compound, C11H16N2O2, contains two independent conformational isomers which show intra­molecular aromatic–imine O—H⋯N hydrogen bonds. In the crystal, neighboring mol­ecules are linked through inter­molecular aliphatic–aliphatic O—H⋯N, aliphatic–aromatic N—H⋯O and C—H⋯O inter­actions into hydrogen-bonded layers parallel to the ab plane.

Related literature

For crystal structures of metal complexes with this ligand, see: Haber et al. (2003[Haber, V., Císařová, I. & Fábry, J. (2003). Polyhedron, 22, 3451-3459.]); Kenar et al. (2001[Kenar, A., Arici, C., Aksu, M. L., Tahir, M. N., Durmuş, S. & Atakol, O. (2001). Anal. Sci. 17, 569-570.]); Li et al. (1988[Li, X., La, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657-4664.]); Rajendiran et al. (2007[Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208-8221.]). For supra­molecular assemblies with structurally related ligands, see: Barba et al. (2000[Barba, V., Cuahutle, D., Ochoa, M. E., Santillan, R. & Farfán, N. (2000). Inorg. Chim. Acta, 303, 7-11.]); Fujita et al. (2008[Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076-1091.]); Höpfl (2002[Höpfl, H. (2002). Struct. Bonding, 103, 1-56.]); Severin (2009[Severin, K. (2009). Dalton Trans. pp. 5254-5264.]). For the tautomerism of salicyl­idene­imines, see: Domínguez et al. (2011[Domínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156-164.]); Fujiwara et al. (2009[Fujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822-1826.]); Ogawa et al. (1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]); Rodríguez et al. (2007[Rodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García-Baez, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641-653.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N2O2

  • Mr = 208.26

  • Orthorhombic, P 21 21 21

  • a = 7.0047 (11) Å

  • b = 14.171 (2) Å

  • c = 21.681 (3) Å

  • V = 2152.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.08 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.994

  • 12054 measured reflections

  • 2677 independent reflections

  • 2311 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.115

  • S = 1.14

  • 2677 reflections

  • 289 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (2) 1.77 (2) 2.562 (3) 157 (3)
O2—H2⋯N32i 0.84 (1) 2.00 (1) 2.839 (3) 178 (4)
N2—H2A⋯O1i 0.86 (2) 2.27 (2) 3.106 (3) 165 (2)
O31—H31⋯N31 0.84 (2) 1.82 (2) 2.596 (3) 154 (3)
O32—H32⋯N2ii 0.84 (1) 2.00 (1) 2.795 (3) 158 (4)
N32—H32A⋯O31i 0.86 (2) 2.55 (3) 3.347 (3) 154 (2)
C39—H39A⋯O32iii 0.99 2.49 3.443 (4) 161
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) has been employed as a tri- and tetradentate ligand for the complexation of transition metal ions such as vanadium(IV), vanadium(V), copper(II) and cadmium(II) (Haber et al., 2003; Kenar et al., 2001; Li et al., 1988; Rajendiran et al., 2007). We are interested in this compound in the search for ligands capable of forming macrocyclic structures with boronic acids (Barba et al., 2000; Fujita et al., 2008; Höpfl, 2002; Severin, 2009).

The asymmetric unit of (I) contains two conformers (Ia, Ib) (Fig. 1) with similar bond lengths between equivalent non-H atoms (differences less than 3 s.u.). The torsion angles (C–C–N–C) in the fragments CH2CH2NHCH2 are +62.7 (3) and -177.5 (2)° for Ia and Ib, respectively, showing that Ia and Ib are conformational isomers. The dihedral angles in the NCH2CH2N ethylene fragments are -171.8 (2) and -176.1 (2)°, respectively.

From reports in the literature it is known that salicylidene imines form keto and enol tautomers, both in solution and the solid state (Domínguez et al., 2011; Fujiwara et al., 2009; Ogawa et al., 1998; Rodríguez et al., 2007). In the crystal structure both conformers correspond to the enol form. This is evidenced by the presence of an intramolecular O–H···N hydrogen bond formed between the phenolic OH group and the imine function, and a comparative analysis of the bond lengths within the salicylidene fragment. The values for the Carom–O and C=N bond lengths with values of 1.349 (3) and 1.274 (3)–1.275 (4) Å, respectively, are within the range expected for enol tautomers. The same is true for the Carom–Carom bond lengths with values ranging from 1.374 (4)–1.417 (4) Å (Domínguez et al., 2011). From a careful crystallographic analysis of eight salicylidene aminoalcohols, Domínguez et al. concluded that the dominant hydrogen bonding pattern in the crystal structures of enol tautomers are intermolecular O–H···O interactions formed between the pendant NCH2CH2OH fragments of neighboring molecules. For keto tautomers, intermolecular O–H···O interactions typically involve the Carom–O oxygen atom (Domínguez et al., 2011). In the crystal structure of the compound described herein, the crystallographically independent conformers are linked through O–H···N interactions between the pendant aliphatic NCH2CH2OH groups to give one-dimensional chains along axis b. Neighboring chains are further linked parallel to the a axis by N–H···O and C–H···O interactions involving as acceptor atoms the oxygen atoms of the phenolic and aliphatic O–H functions to form overall two-dimensional hydrogen bonded layers propagating parallel to the ab plane (Fig. 2).

Related literature top

For crystal structures of metal complexes with this ligand, see: Haber et al. (2003); Kenar et al. (2001); Li et al. (1988); Rajendiran et al. (2007). For supramolecular assemblies with structurally related ligands, see: Barba et al. (2000); Fujita et al. (2008); Höpfl (2002); Severin (2009). For the tautomerism of salicylideneimines, see: Domínguez et al. (2011); Fujiwara et al. (2009); Ogawa et al. (1998); Rodríguez et al. (2007).

Experimental top

For the preparation of (I), salicylaldehyde (0.234 g, 1.92 mmol) and 2-(2-aminoethylamino)ethanol (0.200 g, 1.92 mmol) were dissolved in 20 ml of ethanol. After reflux for 1 h, 60 ml of chloroform were added and the resulting solution was dried over anhydrous MgSO4. Evaporation of the solvent mixture under vacuum gave a yellow oil. Crystals suitable for X-ray diffraction analysis were grown from a solution in chloroform, which was overlayered with n-hexane. Yield: 0.310 g (77%). M.p. 358 K.

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C–Haryl and C–Himine = 0.95 Å, C–Haliphatic = 0.99 Å, Uiso(H) = 1.2 Ueq(C)]. Hydrogen atoms bonded to O and N were located in difference Fourier maps; however, the coordinates of the O–H and N–H hydrogen atoms were refined with distance and isotropic displacement parameter restraints: O–H = 0.840 (1) Å, N–H = 0.860 (1) Å and [Uiso(H) = 1.5 Ueq(O, N)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Fragment of the 2D layer parallel to the ab plane, showing intramolecular O–H···N and intermolecular N–H···O, O–H···N and C–H···O hydrogen bonding interactions. These fragments are linked further through O2–H2···N32 hydrogen bonds to give the overall 2D layer. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-2-{[2-(2-Hydroxyethylamino)ethylimino]methyl}phenol top
Crystal data top
C11H16N2O2Dx = 1.286 Mg m3
Mr = 208.26Melting point: 358 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2547 reflections
a = 7.0047 (11) Åθ = 2.9–25.4°
b = 14.171 (2) ŵ = 0.09 mm1
c = 21.681 (3) ÅT = 100 K
V = 2152.1 (6) Å3Plate, yellow
Z = 80.45 × 0.08 × 0.07 mm
F(000) = 896
Data collection top
Bruker SMART CCD area-detector
diffractometer
2677 independent reflections
Radiation source: fine-focus sealed tube2311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.786, Tmax = 0.994k = 918
12054 measured reflectionsl = 2724
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4481P]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.26 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H16N2O2V = 2152.1 (6) Å3
Mr = 208.26Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 7.0047 (11) ŵ = 0.09 mm1
b = 14.171 (2) ÅT = 100 K
c = 21.681 (3) Å0.45 × 0.08 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2311 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.994Rint = 0.052
12054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0526 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.26 e Å3
2677 reflectionsΔρmin = 0.24 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3350 (3)0.69081 (15)0.11061 (9)0.0234 (5)
H10.442 (2)0.674 (2)0.1244 (14)0.035*
O21.4419 (3)0.62189 (16)0.25568 (10)0.0298 (5)
H21.453 (6)0.5647 (7)0.2462 (17)0.045*
N10.6713 (3)0.62184 (17)0.12202 (11)0.0210 (5)
N21.0729 (3)0.69806 (18)0.22607 (11)0.0215 (6)
H2A1.161 (3)0.691 (2)0.1990 (11)0.032*
C10.3377 (4)0.6585 (2)0.05212 (13)0.0193 (6)
C20.5001 (4)0.61174 (19)0.02788 (13)0.0191 (6)
C30.4962 (4)0.5809 (2)0.03349 (13)0.0224 (6)
H30.60440.54950.05020.027*
C40.3373 (5)0.5954 (2)0.07020 (14)0.0273 (7)
H40.33670.57440.11180.033*
C50.1788 (5)0.6408 (2)0.04570 (14)0.0280 (7)
H50.06920.65050.07070.034*
C60.1789 (4)0.6719 (2)0.01469 (14)0.0231 (6)
H60.06930.70290.03080.028*
C70.6692 (4)0.59821 (19)0.06535 (13)0.0194 (6)
H70.78020.57130.04740.023*
C80.8463 (4)0.6083 (2)0.15798 (13)0.0232 (6)
H8A0.95440.59460.13000.028*
H8B0.83070.55400.18630.028*
C90.8875 (4)0.6970 (2)0.19473 (14)0.0236 (7)
H9A0.88110.75190.16650.028*
H9B0.78580.70500.22600.028*
C101.0972 (4)0.6245 (2)0.27303 (13)0.0251 (7)
H10A1.07820.56160.25420.030*
H10B1.00070.63270.30600.030*
C111.2954 (4)0.6306 (2)0.30039 (14)0.0289 (7)
H11A1.30940.69200.32180.035*
H11B1.31060.58010.33150.035*
O310.2420 (3)0.35742 (16)0.10565 (9)0.0252 (5)
H310.134 (2)0.375 (2)0.1175 (15)0.038*
O320.8773 (3)0.39234 (15)0.25880 (11)0.0279 (5)
H320.897 (5)0.3345 (6)0.2532 (17)0.042*
N310.1079 (3)0.41785 (17)0.10613 (11)0.0207 (5)
N320.4908 (3)0.42869 (18)0.22487 (11)0.0196 (5)
H32A0.586 (3)0.423 (2)0.2002 (12)0.029*
C310.2312 (4)0.3602 (2)0.04357 (13)0.0204 (6)
C320.0647 (4)0.3916 (2)0.01297 (13)0.0198 (6)
C330.0628 (4)0.3926 (2)0.05144 (13)0.0239 (7)
H330.04790.41450.07230.029*
C340.2171 (5)0.3626 (2)0.08532 (14)0.0272 (7)
H340.21240.36300.12910.033*
C350.3797 (5)0.3319 (2)0.05493 (15)0.0284 (7)
H350.48680.31100.07810.034*
C360.3872 (4)0.3314 (2)0.00889 (14)0.0246 (7)
H360.50030.31110.02910.029*
C370.1035 (4)0.4199 (2)0.04734 (13)0.0203 (6)
H370.21330.44060.02550.024*
C380.2801 (4)0.4497 (2)0.13747 (13)0.0219 (6)
H38A0.26310.51600.15080.026*
H38B0.38900.44760.10840.026*
C390.3245 (4)0.3893 (2)0.19290 (13)0.0208 (6)
H39A0.21330.38790.22110.025*
H39B0.35190.32380.17960.025*
C400.5399 (4)0.3768 (2)0.28123 (13)0.0228 (7)
H40A0.54190.30820.27260.027*
H40B0.44270.38890.31340.027*
C410.7342 (4)0.4083 (2)0.30387 (15)0.0255 (7)
H41A0.72970.47640.31400.031*
H41B0.76690.37340.34200.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0208 (10)0.0298 (12)0.0194 (11)0.0035 (9)0.0004 (9)0.0023 (9)
O20.0253 (12)0.0260 (12)0.0380 (13)0.0013 (10)0.0014 (10)0.0016 (11)
N10.0205 (12)0.0191 (13)0.0233 (13)0.0006 (11)0.0006 (10)0.0003 (11)
N20.0187 (12)0.0240 (13)0.0218 (13)0.0014 (11)0.0016 (10)0.0007 (11)
C10.0243 (14)0.0148 (14)0.0188 (14)0.0034 (12)0.0020 (12)0.0043 (11)
C20.0226 (13)0.0136 (14)0.0210 (14)0.0054 (12)0.0016 (12)0.0030 (12)
C30.0273 (15)0.0174 (15)0.0224 (15)0.0026 (12)0.0068 (12)0.0001 (12)
C40.0421 (18)0.0217 (16)0.0180 (15)0.0037 (15)0.0049 (14)0.0001 (12)
C50.0304 (16)0.0258 (17)0.0277 (17)0.0000 (14)0.0102 (14)0.0052 (14)
C60.0210 (14)0.0193 (15)0.0290 (16)0.0014 (12)0.0009 (13)0.0027 (13)
C70.0182 (13)0.0151 (14)0.0250 (15)0.0013 (11)0.0050 (12)0.0007 (12)
C80.0221 (14)0.0221 (16)0.0254 (16)0.0017 (13)0.0048 (12)0.0011 (13)
C90.0195 (14)0.0241 (16)0.0272 (16)0.0015 (13)0.0013 (12)0.0028 (14)
C100.0264 (15)0.0296 (18)0.0193 (15)0.0036 (14)0.0017 (12)0.0002 (14)
C110.0311 (17)0.0310 (18)0.0248 (16)0.0002 (14)0.0048 (13)0.0001 (14)
O310.0219 (10)0.0321 (13)0.0217 (11)0.0051 (10)0.0009 (9)0.0000 (10)
O320.0225 (11)0.0244 (12)0.0369 (13)0.0006 (10)0.0018 (9)0.0042 (11)
N310.0215 (12)0.0195 (13)0.0211 (13)0.0013 (10)0.0001 (10)0.0016 (10)
N320.0183 (12)0.0219 (13)0.0187 (13)0.0010 (10)0.0023 (10)0.0022 (11)
C310.0242 (14)0.0150 (15)0.0221 (15)0.0026 (12)0.0019 (12)0.0020 (12)
C320.0226 (13)0.0140 (14)0.0227 (15)0.0013 (12)0.0012 (12)0.0005 (12)
C330.0274 (15)0.0230 (17)0.0213 (15)0.0040 (13)0.0038 (12)0.0020 (13)
C340.0412 (18)0.0218 (16)0.0186 (15)0.0020 (14)0.0053 (13)0.0011 (13)
C350.0336 (18)0.0197 (16)0.0319 (17)0.0010 (14)0.0132 (14)0.0015 (14)
C360.0276 (15)0.0163 (15)0.0299 (17)0.0009 (12)0.0011 (13)0.0018 (13)
C370.0199 (14)0.0184 (15)0.0225 (15)0.0030 (12)0.0032 (12)0.0011 (12)
C380.0209 (14)0.0220 (16)0.0227 (15)0.0006 (12)0.0002 (11)0.0016 (13)
C390.0170 (12)0.0227 (16)0.0228 (14)0.0021 (13)0.0007 (12)0.0004 (13)
C400.0239 (15)0.0252 (17)0.0192 (15)0.0000 (13)0.0013 (12)0.0007 (13)
C410.0293 (15)0.0241 (17)0.0230 (15)0.0030 (14)0.0055 (13)0.0003 (13)
Geometric parameters (Å, º) top
O1—C11.349 (3)O31—C311.349 (3)
O1—H10.8400 (11)O31—H310.8401 (11)
O2—C111.417 (4)O32—C411.418 (4)
O2—H20.8401 (11)O32—H320.8400 (11)
N1—C71.274 (3)N31—C371.275 (4)
N1—C81.466 (3)N31—C381.456 (4)
N2—C91.466 (4)N32—C391.466 (3)
N2—C101.467 (4)N32—C401.467 (4)
N2—H2A0.8600 (11)N32—H32A0.8600 (11)
C1—C61.391 (4)C31—C361.388 (4)
C1—C21.417 (4)C31—C321.413 (4)
C2—C31.401 (4)C32—C331.397 (4)
C2—C71.448 (4)C32—C371.451 (4)
C3—C41.383 (4)C33—C341.374 (4)
C3—H30.9500C33—H330.9500
C4—C51.389 (5)C34—C351.386 (5)
C4—H40.9500C34—H340.9500
C5—C61.382 (4)C35—C361.385 (4)
C5—H50.9500C35—H350.9500
C6—H60.9500C36—H360.9500
C7—H70.9500C37—H370.9500
C8—C91.516 (4)C38—C391.508 (4)
C8—H8A0.9900C38—H38A0.9900
C8—H8B0.9900C38—H38B0.9900
C9—H9A0.9900C39—H39A0.9900
C9—H9B0.9900C39—H39B0.9900
C10—C111.512 (4)C40—C411.514 (4)
C10—H10A0.9900C40—H40A0.9900
C10—H10B0.9900C40—H40B0.9900
C11—H11A0.9900C41—H41A0.9900
C11—H11B0.9900C41—H41B0.9900
C1—O1—H1103 (2)C31—O31—H31104 (2)
C11—O2—H2109 (3)C41—O32—H32112 (3)
C7—N1—C8119.2 (3)C37—N31—C38118.6 (3)
C9—N2—C10114.7 (2)C39—N32—C40112.9 (2)
C9—N2—H2A109 (2)C39—N32—H32A107 (2)
C10—N2—H2A108 (2)C40—N32—H32A107 (2)
O1—C1—C6119.4 (3)O31—C31—C36119.2 (3)
O1—C1—C2121.3 (3)O31—C31—C32121.6 (3)
C6—C1—C2119.4 (3)C36—C31—C32119.2 (3)
C3—C2—C1118.8 (3)C33—C32—C31118.7 (3)
C3—C2—C7120.5 (3)C33—C32—C37120.2 (3)
C1—C2—C7120.7 (2)C31—C32—C37121.1 (2)
C4—C3—C2121.1 (3)C34—C33—C32121.6 (3)
C4—C3—H3119.5C34—C33—H33119.2
C2—C3—H3119.5C32—C33—H33119.2
C3—C4—C5119.5 (3)C33—C34—C35119.3 (3)
C3—C4—H4120.3C33—C34—H34120.4
C5—C4—H4120.3C35—C34—H34120.4
C6—C5—C4120.7 (3)C36—C35—C34120.5 (3)
C6—C5—H5119.7C36—C35—H35119.7
C4—C5—H5119.7C34—C35—H35119.7
C5—C6—C1120.6 (3)C35—C36—C31120.6 (3)
C5—C6—H6119.7C35—C36—H36119.7
C1—C6—H6119.7C31—C36—H36119.7
N1—C7—C2121.0 (3)N31—C37—C32121.8 (3)
N1—C7—H7119.5N31—C37—H37119.1
C2—C7—H7119.5C32—C37—H37119.1
N1—C8—C9109.3 (2)N31—C38—C39111.5 (2)
N1—C8—H8A109.8N31—C38—H38A109.3
C9—C8—H8A109.8C39—C38—H38A109.3
N1—C8—H8B109.8N31—C38—H38B109.3
C9—C8—H8B109.8C39—C38—H38B109.3
H8A—C8—H8B108.3H38A—C38—H38B108.0
N2—C9—C8114.9 (2)N32—C39—C38108.9 (2)
N2—C9—H9A108.5N32—C39—H39A109.9
C8—C9—H9A108.5C38—C39—H39A109.9
N2—C9—H9B108.5N32—C39—H39B109.9
C8—C9—H9B108.5C38—C39—H39B109.9
H9A—C9—H9B107.5H39A—C39—H39B108.3
N2—C10—C11109.8 (3)N32—C40—C41109.5 (2)
N2—C10—H10A109.7N32—C40—H40A109.8
C11—C10—H10A109.7C41—C40—H40A109.8
N2—C10—H10B109.7N32—C40—H40B109.8
C11—C10—H10B109.7C41—C40—H40B109.8
H10A—C10—H10B108.2H40A—C40—H40B108.2
O2—C11—C10113.0 (2)O32—C41—C40111.4 (2)
O2—C11—H11A109.0O32—C41—H41A109.3
C10—C11—H11A109.0C40—C41—H41A109.3
O2—C11—H11B109.0O32—C41—H41B109.3
C10—C11—H11B109.0C40—C41—H41B109.3
H11A—C11—H11B107.8H41A—C41—H41B108.0
O1—C1—C2—C3179.0 (3)O31—C31—C32—C33179.9 (3)
C6—C1—C2—C30.4 (4)C36—C31—C32—C330.1 (4)
O1—C1—C2—C70.6 (4)O31—C31—C32—C371.5 (4)
C6—C1—C2—C7178.8 (2)C36—C31—C32—C37178.3 (3)
C1—C2—C3—C40.0 (4)C31—C32—C33—C341.0 (4)
C7—C2—C3—C4178.5 (3)C37—C32—C33—C34177.4 (3)
C2—C3—C4—C50.4 (5)C32—C33—C34—C350.9 (5)
C3—C4—C5—C60.4 (5)C33—C34—C35—C360.1 (5)
C4—C5—C6—C10.0 (5)C34—C35—C36—C311.0 (5)
O1—C1—C6—C5179.0 (3)O31—C31—C36—C35178.9 (3)
C2—C1—C6—C50.4 (4)C32—C31—C36—C350.9 (4)
C8—N1—C7—C2179.0 (2)C38—N31—C37—C32178.4 (2)
C3—C2—C7—N1176.6 (3)C33—C32—C37—N31178.4 (3)
C1—C2—C7—N15.0 (4)C31—C32—C37—N310.0 (4)
C7—N1—C8—C9133.4 (3)C37—N31—C38—C39141.5 (3)
C10—N2—C9—C862.7 (3)C40—N32—C39—C38177.5 (2)
N1—C8—C9—N2171.8 (2)N31—C38—C39—N32176.1 (2)
C9—N2—C10—C11178.0 (2)C39—N32—C40—C41168.2 (2)
N2—C10—C11—O257.8 (4)N32—C40—C41—O3259.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.77 (2)2.562 (3)157 (3)
O2—H2···N32i0.84 (1)2.00 (1)2.839 (3)178 (4)
N2—H2A···O1i0.86 (2)2.27 (2)3.106 (3)165 (2)
O31—H31···N310.84 (2)1.82 (2)2.596 (3)154 (3)
O32—H32···N2ii0.84 (1)2.00 (1)2.795 (3)158 (4)
N32—H32A···O31i0.86 (2)2.55 (3)3.347 (3)154 (2)
C39—H39A···O32iii0.992.493.443 (4)161
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC11H16N2O2
Mr208.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.0047 (11), 14.171 (2), 21.681 (3)
V3)2152.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.08 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.786, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
12054, 2677, 2311
Rint0.052
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.115, 1.14
No. of reflections2677
No. of parameters289
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (2)1.77 (2)2.562 (3)157 (3)
O2—H2···N32i0.84 (1)2.00 (1)2.839 (3)178 (4)
N2—H2A···O1i0.86 (2)2.27 (2)3.106 (3)165 (2)
O31—H31···N310.84 (2)1.82 (2)2.596 (3)154 (3)
O32—H32···N2ii0.84 (1)2.00 (1)2.795 (3)158 (4)
N32—H32A···O31i0.86 (2)2.55 (3)3.347 (3)154 (2)
C39—H39A···O32iii0.992.493.443 (4)161
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

References

First citationBarba, V., Cuahutle, D., Ochoa, M. E., Santillan, R. & Farfán, N. (2000). Inorg. Chim. Acta, 303, 7–11.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDomínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156–164.  Google Scholar
First citationFujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHaber, V., Císařová, I. & Fábry, J. (2003). Polyhedron, 22, 3451–3459.  Web of Science CSD CrossRef CAS Google Scholar
First citationHöpfl, H. (2002). Struct. Bonding, 103, 1–56.  Google Scholar
First citationKenar, A., Arici, C., Aksu, M. L., Tahir, M. N., Durmuş, S. & Atakol, O. (2001). Anal. Sci. 17, 569–570.  CrossRef PubMed CAS Google Scholar
First citationLi, X., La, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664.  CSD CrossRef CAS Web of Science Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García-Baez, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641–653.  Google Scholar
First citationSeverin, K. (2009). Dalton Trans. pp. 5254–5264.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds