organic compounds
(E)-2-{[2-(2-Hydroxyethylamino)ethylimino]methyl}phenol
aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, CP 62209, Cuernavaca, Mexico
*Correspondence e-mail: hhopfl@uaem.mx
The 11H16N2O2, contains two independent conformational isomers which show intramolecular aromatic–imine O—H⋯N hydrogen bonds. In the crystal, neighboring molecules are linked through intermolecular aliphatic–aliphatic O—H⋯N, aliphatic–aromatic N—H⋯O and C—H⋯O interactions into hydrogen-bonded layers parallel to the ab plane.
of the title compound, CRelated literature
For crystal structures of metal complexes with this ligand, see: Haber et al. (2003); Kenar et al. (2001); Li et al. (1988); Rajendiran et al. (2007). For supramolecular assemblies with structurally related ligands, see: Barba et al. (2000); Fujita et al. (2008); Höpfl (2002); Severin (2009). For the of salicylideneimines, see: Domínguez et al. (2011); Fujiwara et al. (2009); Ogawa et al. (1998); Rodríguez et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811039997/pk2347sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811039997/pk2347Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811039997/pk2347Isup3.cml
For the preparation of (I), salicylaldehyde (0.234 g, 1.92 mmol) and 2-(2-aminoethylamino)ethanol (0.200 g, 1.92 mmol) were dissolved in 20 ml of ethanol. After reflux for 1 h, 60 ml of chloroform were added and the resulting solution was dried over anhydrous MgSO4. Evaporation of the solvent mixture under vacuum gave a yellow oil. Crystals suitable for X-ray
were grown from a solution in chloroform, which was overlayered with n-hexane. Yield: 0.310 g (77%). M.p. 358 K.H atoms were positioned geometrically and constrained using the riding-model approximation [C–Haryl and C–Himine = 0.95 Å, C–Haliphatic = 0.99 Å, Uiso(H) = 1.2 Ueq(C)]. Hydrogen atoms bonded to O and N were located in difference Fourier maps; however, the coordinates of the O–H and N–H hydrogen atoms were refined with distance and isotropic displacement parameter restraints: O–H = 0.840 (1) Å, N–H = 0.860 (1) Å and [Uiso(H) = 1.5 Ueq(O, N)].
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. Perspective view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. | |
Fig. 2. Fragment of the 2D layer parallel to the ab plane, showing intramolecular O–H···N and intermolecular N–H···O, O–H···N and C–H···O hydrogen bonding interactions. These fragments are linked further through O2–H2···N32 hydrogen bonds to give the overall 2D layer. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. |
C11H16N2O2 | Dx = 1.286 Mg m−3 |
Mr = 208.26 | Melting point: 358 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2547 reflections |
a = 7.0047 (11) Å | θ = 2.9–25.4° |
b = 14.171 (2) Å | µ = 0.09 mm−1 |
c = 21.681 (3) Å | T = 100 K |
V = 2152.1 (6) Å3 | Plate, yellow |
Z = 8 | 0.45 × 0.08 × 0.07 mm |
F(000) = 896 |
Bruker SMART CCD area-detector diffractometer | 2677 independent reflections |
Radiation source: fine-focus sealed tube | 2311 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ϕ and ω scans | θmax = 27.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.786, Tmax = 0.994 | k = −9→18 |
12054 measured reflections | l = −27→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4481P] where P = (Fo2 + 2Fc2)/3 |
2677 reflections | (Δ/σ)max < 0.001 |
289 parameters | Δρmax = 0.26 e Å−3 |
6 restraints | Δρmin = −0.24 e Å−3 |
C11H16N2O2 | V = 2152.1 (6) Å3 |
Mr = 208.26 | Z = 8 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.0047 (11) Å | µ = 0.09 mm−1 |
b = 14.171 (2) Å | T = 100 K |
c = 21.681 (3) Å | 0.45 × 0.08 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 2677 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2311 reflections with I > 2σ(I) |
Tmin = 0.786, Tmax = 0.994 | Rint = 0.052 |
12054 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 6 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.14 | Δρmax = 0.26 e Å−3 |
2677 reflections | Δρmin = −0.24 e Å−3 |
289 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3350 (3) | 0.69081 (15) | 0.11061 (9) | 0.0234 (5) | |
H1 | 0.442 (2) | 0.674 (2) | 0.1244 (14) | 0.035* | |
O2 | 1.4419 (3) | 0.62189 (16) | 0.25568 (10) | 0.0298 (5) | |
H2 | 1.453 (6) | 0.5647 (7) | 0.2462 (17) | 0.045* | |
N1 | 0.6713 (3) | 0.62184 (17) | 0.12202 (11) | 0.0210 (5) | |
N2 | 1.0729 (3) | 0.69806 (18) | 0.22607 (11) | 0.0215 (6) | |
H2A | 1.161 (3) | 0.691 (2) | 0.1990 (11) | 0.032* | |
C1 | 0.3377 (4) | 0.6585 (2) | 0.05212 (13) | 0.0193 (6) | |
C2 | 0.5001 (4) | 0.61174 (19) | 0.02788 (13) | 0.0191 (6) | |
C3 | 0.4962 (4) | 0.5809 (2) | −0.03349 (13) | 0.0224 (6) | |
H3 | 0.6044 | 0.5495 | −0.0502 | 0.027* | |
C4 | 0.3373 (5) | 0.5954 (2) | −0.07020 (14) | 0.0273 (7) | |
H4 | 0.3367 | 0.5744 | −0.1118 | 0.033* | |
C5 | 0.1788 (5) | 0.6408 (2) | −0.04570 (14) | 0.0280 (7) | |
H5 | 0.0692 | 0.6505 | −0.0707 | 0.034* | |
C6 | 0.1789 (4) | 0.6719 (2) | 0.01469 (14) | 0.0231 (6) | |
H6 | 0.0693 | 0.7029 | 0.0308 | 0.028* | |
C7 | 0.6692 (4) | 0.59821 (19) | 0.06535 (13) | 0.0194 (6) | |
H7 | 0.7802 | 0.5713 | 0.0474 | 0.023* | |
C8 | 0.8463 (4) | 0.6083 (2) | 0.15798 (13) | 0.0232 (6) | |
H8A | 0.9544 | 0.5946 | 0.1300 | 0.028* | |
H8B | 0.8307 | 0.5540 | 0.1863 | 0.028* | |
C9 | 0.8875 (4) | 0.6970 (2) | 0.19473 (14) | 0.0236 (7) | |
H9A | 0.8811 | 0.7519 | 0.1665 | 0.028* | |
H9B | 0.7858 | 0.7050 | 0.2260 | 0.028* | |
C10 | 1.0972 (4) | 0.6245 (2) | 0.27303 (13) | 0.0251 (7) | |
H10A | 1.0782 | 0.5616 | 0.2542 | 0.030* | |
H10B | 1.0007 | 0.6327 | 0.3060 | 0.030* | |
C11 | 1.2954 (4) | 0.6306 (2) | 0.30039 (14) | 0.0289 (7) | |
H11A | 1.3094 | 0.6920 | 0.3218 | 0.035* | |
H11B | 1.3106 | 0.5801 | 0.3315 | 0.035* | |
O31 | −0.2420 (3) | 0.35742 (16) | 0.10565 (9) | 0.0252 (5) | |
H31 | −0.134 (2) | 0.375 (2) | 0.1175 (15) | 0.038* | |
O32 | 0.8773 (3) | 0.39234 (15) | 0.25880 (11) | 0.0279 (5) | |
H32 | 0.897 (5) | 0.3345 (6) | 0.2532 (17) | 0.042* | |
N31 | 0.1079 (3) | 0.41785 (17) | 0.10613 (11) | 0.0207 (5) | |
N32 | 0.4908 (3) | 0.42869 (18) | 0.22487 (11) | 0.0196 (5) | |
H32A | 0.586 (3) | 0.423 (2) | 0.2002 (12) | 0.029* | |
C31 | −0.2312 (4) | 0.3602 (2) | 0.04357 (13) | 0.0204 (6) | |
C32 | −0.0647 (4) | 0.3916 (2) | 0.01297 (13) | 0.0198 (6) | |
C33 | −0.0628 (4) | 0.3926 (2) | −0.05144 (13) | 0.0239 (7) | |
H33 | 0.0479 | 0.4145 | −0.0723 | 0.029* | |
C34 | −0.2171 (5) | 0.3626 (2) | −0.08532 (14) | 0.0272 (7) | |
H34 | −0.2124 | 0.3630 | −0.1291 | 0.033* | |
C35 | −0.3797 (5) | 0.3319 (2) | −0.05493 (15) | 0.0284 (7) | |
H35 | −0.4868 | 0.3110 | −0.0781 | 0.034* | |
C36 | −0.3872 (4) | 0.3314 (2) | 0.00889 (14) | 0.0246 (7) | |
H36 | −0.5003 | 0.3111 | 0.0291 | 0.029* | |
C37 | 0.1035 (4) | 0.4199 (2) | 0.04734 (13) | 0.0203 (6) | |
H37 | 0.2133 | 0.4406 | 0.0255 | 0.024* | |
C38 | 0.2801 (4) | 0.4497 (2) | 0.13747 (13) | 0.0219 (6) | |
H38A | 0.2631 | 0.5160 | 0.1508 | 0.026* | |
H38B | 0.3890 | 0.4476 | 0.1084 | 0.026* | |
C39 | 0.3245 (4) | 0.3893 (2) | 0.19290 (13) | 0.0208 (6) | |
H39A | 0.2133 | 0.3879 | 0.2211 | 0.025* | |
H39B | 0.3519 | 0.3238 | 0.1796 | 0.025* | |
C40 | 0.5399 (4) | 0.3768 (2) | 0.28123 (13) | 0.0228 (7) | |
H40A | 0.5419 | 0.3082 | 0.2726 | 0.027* | |
H40B | 0.4427 | 0.3889 | 0.3134 | 0.027* | |
C41 | 0.7342 (4) | 0.4083 (2) | 0.30387 (15) | 0.0255 (7) | |
H41A | 0.7297 | 0.4764 | 0.3140 | 0.031* | |
H41B | 0.7669 | 0.3734 | 0.3420 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0208 (10) | 0.0298 (12) | 0.0194 (11) | 0.0035 (9) | 0.0004 (9) | −0.0023 (9) |
O2 | 0.0253 (12) | 0.0260 (12) | 0.0380 (13) | 0.0013 (10) | −0.0014 (10) | −0.0016 (11) |
N1 | 0.0205 (12) | 0.0191 (13) | 0.0233 (13) | −0.0006 (11) | −0.0006 (10) | −0.0003 (11) |
N2 | 0.0187 (12) | 0.0240 (13) | 0.0218 (13) | −0.0014 (11) | 0.0016 (10) | 0.0007 (11) |
C1 | 0.0243 (14) | 0.0148 (14) | 0.0188 (14) | −0.0034 (12) | 0.0020 (12) | 0.0043 (11) |
C2 | 0.0226 (13) | 0.0136 (14) | 0.0210 (14) | −0.0054 (12) | 0.0016 (12) | 0.0030 (12) |
C3 | 0.0273 (15) | 0.0174 (15) | 0.0224 (15) | −0.0026 (12) | 0.0068 (12) | −0.0001 (12) |
C4 | 0.0421 (18) | 0.0217 (16) | 0.0180 (15) | −0.0037 (15) | −0.0049 (14) | 0.0001 (12) |
C5 | 0.0304 (16) | 0.0258 (17) | 0.0277 (17) | 0.0000 (14) | −0.0102 (14) | 0.0052 (14) |
C6 | 0.0210 (14) | 0.0193 (15) | 0.0290 (16) | 0.0014 (12) | −0.0009 (13) | 0.0027 (13) |
C7 | 0.0182 (13) | 0.0151 (14) | 0.0250 (15) | −0.0013 (11) | 0.0050 (12) | −0.0007 (12) |
C8 | 0.0221 (14) | 0.0221 (16) | 0.0254 (16) | 0.0017 (13) | −0.0048 (12) | −0.0011 (13) |
C9 | 0.0195 (14) | 0.0241 (16) | 0.0272 (16) | 0.0015 (13) | −0.0013 (12) | −0.0028 (14) |
C10 | 0.0264 (15) | 0.0296 (18) | 0.0193 (15) | −0.0036 (14) | 0.0017 (12) | 0.0002 (14) |
C11 | 0.0311 (17) | 0.0310 (18) | 0.0248 (16) | 0.0002 (14) | −0.0048 (13) | 0.0001 (14) |
O31 | 0.0219 (10) | 0.0321 (13) | 0.0217 (11) | −0.0051 (10) | 0.0009 (9) | 0.0000 (10) |
O32 | 0.0225 (11) | 0.0244 (12) | 0.0369 (13) | 0.0006 (10) | 0.0018 (9) | 0.0042 (11) |
N31 | 0.0215 (12) | 0.0195 (13) | 0.0211 (13) | 0.0013 (10) | 0.0001 (10) | −0.0016 (10) |
N32 | 0.0183 (12) | 0.0219 (13) | 0.0187 (13) | −0.0010 (10) | 0.0023 (10) | 0.0022 (11) |
C31 | 0.0242 (14) | 0.0150 (15) | 0.0221 (15) | 0.0026 (12) | −0.0019 (12) | −0.0020 (12) |
C32 | 0.0226 (13) | 0.0140 (14) | 0.0227 (15) | 0.0013 (12) | −0.0012 (12) | 0.0005 (12) |
C33 | 0.0274 (15) | 0.0230 (17) | 0.0213 (15) | 0.0040 (13) | 0.0038 (12) | 0.0020 (13) |
C34 | 0.0412 (18) | 0.0218 (16) | 0.0186 (15) | 0.0020 (14) | −0.0053 (13) | −0.0011 (13) |
C35 | 0.0336 (18) | 0.0197 (16) | 0.0319 (17) | 0.0010 (14) | −0.0132 (14) | −0.0015 (14) |
C36 | 0.0276 (15) | 0.0163 (15) | 0.0299 (17) | 0.0009 (12) | 0.0011 (13) | 0.0018 (13) |
C37 | 0.0199 (14) | 0.0184 (15) | 0.0225 (15) | 0.0030 (12) | 0.0032 (12) | 0.0011 (12) |
C38 | 0.0209 (14) | 0.0220 (16) | 0.0227 (15) | −0.0006 (12) | −0.0002 (11) | 0.0016 (13) |
C39 | 0.0170 (12) | 0.0227 (16) | 0.0228 (14) | −0.0021 (13) | −0.0007 (12) | −0.0004 (13) |
C40 | 0.0239 (15) | 0.0252 (17) | 0.0192 (15) | 0.0000 (13) | 0.0013 (12) | 0.0007 (13) |
C41 | 0.0293 (15) | 0.0241 (17) | 0.0230 (15) | 0.0030 (14) | −0.0055 (13) | −0.0003 (13) |
O1—C1 | 1.349 (3) | O31—C31 | 1.349 (3) |
O1—H1 | 0.8400 (11) | O31—H31 | 0.8401 (11) |
O2—C11 | 1.417 (4) | O32—C41 | 1.418 (4) |
O2—H2 | 0.8401 (11) | O32—H32 | 0.8400 (11) |
N1—C7 | 1.274 (3) | N31—C37 | 1.275 (4) |
N1—C8 | 1.466 (3) | N31—C38 | 1.456 (4) |
N2—C9 | 1.466 (4) | N32—C39 | 1.466 (3) |
N2—C10 | 1.467 (4) | N32—C40 | 1.467 (4) |
N2—H2A | 0.8600 (11) | N32—H32A | 0.8600 (11) |
C1—C6 | 1.391 (4) | C31—C36 | 1.388 (4) |
C1—C2 | 1.417 (4) | C31—C32 | 1.413 (4) |
C2—C3 | 1.401 (4) | C32—C33 | 1.397 (4) |
C2—C7 | 1.448 (4) | C32—C37 | 1.451 (4) |
C3—C4 | 1.383 (4) | C33—C34 | 1.374 (4) |
C3—H3 | 0.9500 | C33—H33 | 0.9500 |
C4—C5 | 1.389 (5) | C34—C35 | 1.386 (5) |
C4—H4 | 0.9500 | C34—H34 | 0.9500 |
C5—C6 | 1.382 (4) | C35—C36 | 1.385 (4) |
C5—H5 | 0.9500 | C35—H35 | 0.9500 |
C6—H6 | 0.9500 | C36—H36 | 0.9500 |
C7—H7 | 0.9500 | C37—H37 | 0.9500 |
C8—C9 | 1.516 (4) | C38—C39 | 1.508 (4) |
C8—H8A | 0.9900 | C38—H38A | 0.9900 |
C8—H8B | 0.9900 | C38—H38B | 0.9900 |
C9—H9A | 0.9900 | C39—H39A | 0.9900 |
C9—H9B | 0.9900 | C39—H39B | 0.9900 |
C10—C11 | 1.512 (4) | C40—C41 | 1.514 (4) |
C10—H10A | 0.9900 | C40—H40A | 0.9900 |
C10—H10B | 0.9900 | C40—H40B | 0.9900 |
C11—H11A | 0.9900 | C41—H41A | 0.9900 |
C11—H11B | 0.9900 | C41—H41B | 0.9900 |
C1—O1—H1 | 103 (2) | C31—O31—H31 | 104 (2) |
C11—O2—H2 | 109 (3) | C41—O32—H32 | 112 (3) |
C7—N1—C8 | 119.2 (3) | C37—N31—C38 | 118.6 (3) |
C9—N2—C10 | 114.7 (2) | C39—N32—C40 | 112.9 (2) |
C9—N2—H2A | 109 (2) | C39—N32—H32A | 107 (2) |
C10—N2—H2A | 108 (2) | C40—N32—H32A | 107 (2) |
O1—C1—C6 | 119.4 (3) | O31—C31—C36 | 119.2 (3) |
O1—C1—C2 | 121.3 (3) | O31—C31—C32 | 121.6 (3) |
C6—C1—C2 | 119.4 (3) | C36—C31—C32 | 119.2 (3) |
C3—C2—C1 | 118.8 (3) | C33—C32—C31 | 118.7 (3) |
C3—C2—C7 | 120.5 (3) | C33—C32—C37 | 120.2 (3) |
C1—C2—C7 | 120.7 (2) | C31—C32—C37 | 121.1 (2) |
C4—C3—C2 | 121.1 (3) | C34—C33—C32 | 121.6 (3) |
C4—C3—H3 | 119.5 | C34—C33—H33 | 119.2 |
C2—C3—H3 | 119.5 | C32—C33—H33 | 119.2 |
C3—C4—C5 | 119.5 (3) | C33—C34—C35 | 119.3 (3) |
C3—C4—H4 | 120.3 | C33—C34—H34 | 120.4 |
C5—C4—H4 | 120.3 | C35—C34—H34 | 120.4 |
C6—C5—C4 | 120.7 (3) | C36—C35—C34 | 120.5 (3) |
C6—C5—H5 | 119.7 | C36—C35—H35 | 119.7 |
C4—C5—H5 | 119.7 | C34—C35—H35 | 119.7 |
C5—C6—C1 | 120.6 (3) | C35—C36—C31 | 120.6 (3) |
C5—C6—H6 | 119.7 | C35—C36—H36 | 119.7 |
C1—C6—H6 | 119.7 | C31—C36—H36 | 119.7 |
N1—C7—C2 | 121.0 (3) | N31—C37—C32 | 121.8 (3) |
N1—C7—H7 | 119.5 | N31—C37—H37 | 119.1 |
C2—C7—H7 | 119.5 | C32—C37—H37 | 119.1 |
N1—C8—C9 | 109.3 (2) | N31—C38—C39 | 111.5 (2) |
N1—C8—H8A | 109.8 | N31—C38—H38A | 109.3 |
C9—C8—H8A | 109.8 | C39—C38—H38A | 109.3 |
N1—C8—H8B | 109.8 | N31—C38—H38B | 109.3 |
C9—C8—H8B | 109.8 | C39—C38—H38B | 109.3 |
H8A—C8—H8B | 108.3 | H38A—C38—H38B | 108.0 |
N2—C9—C8 | 114.9 (2) | N32—C39—C38 | 108.9 (2) |
N2—C9—H9A | 108.5 | N32—C39—H39A | 109.9 |
C8—C9—H9A | 108.5 | C38—C39—H39A | 109.9 |
N2—C9—H9B | 108.5 | N32—C39—H39B | 109.9 |
C8—C9—H9B | 108.5 | C38—C39—H39B | 109.9 |
H9A—C9—H9B | 107.5 | H39A—C39—H39B | 108.3 |
N2—C10—C11 | 109.8 (3) | N32—C40—C41 | 109.5 (2) |
N2—C10—H10A | 109.7 | N32—C40—H40A | 109.8 |
C11—C10—H10A | 109.7 | C41—C40—H40A | 109.8 |
N2—C10—H10B | 109.7 | N32—C40—H40B | 109.8 |
C11—C10—H10B | 109.7 | C41—C40—H40B | 109.8 |
H10A—C10—H10B | 108.2 | H40A—C40—H40B | 108.2 |
O2—C11—C10 | 113.0 (2) | O32—C41—C40 | 111.4 (2) |
O2—C11—H11A | 109.0 | O32—C41—H41A | 109.3 |
C10—C11—H11A | 109.0 | C40—C41—H41A | 109.3 |
O2—C11—H11B | 109.0 | O32—C41—H41B | 109.3 |
C10—C11—H11B | 109.0 | C40—C41—H41B | 109.3 |
H11A—C11—H11B | 107.8 | H41A—C41—H41B | 108.0 |
O1—C1—C2—C3 | −179.0 (3) | O31—C31—C32—C33 | 179.9 (3) |
C6—C1—C2—C3 | 0.4 (4) | C36—C31—C32—C33 | 0.1 (4) |
O1—C1—C2—C7 | −0.6 (4) | O31—C31—C32—C37 | 1.5 (4) |
C6—C1—C2—C7 | 178.8 (2) | C36—C31—C32—C37 | −178.3 (3) |
C1—C2—C3—C4 | 0.0 (4) | C31—C32—C33—C34 | −1.0 (4) |
C7—C2—C3—C4 | −178.5 (3) | C37—C32—C33—C34 | 177.4 (3) |
C2—C3—C4—C5 | −0.4 (5) | C32—C33—C34—C35 | 0.9 (5) |
C3—C4—C5—C6 | 0.4 (5) | C33—C34—C35—C36 | 0.1 (5) |
C4—C5—C6—C1 | 0.0 (5) | C34—C35—C36—C31 | −1.0 (5) |
O1—C1—C6—C5 | 179.0 (3) | O31—C31—C36—C35 | −178.9 (3) |
C2—C1—C6—C5 | −0.4 (4) | C32—C31—C36—C35 | 0.9 (4) |
C8—N1—C7—C2 | −179.0 (2) | C38—N31—C37—C32 | −178.4 (2) |
C3—C2—C7—N1 | −176.6 (3) | C33—C32—C37—N31 | −178.4 (3) |
C1—C2—C7—N1 | 5.0 (4) | C31—C32—C37—N31 | 0.0 (4) |
C7—N1—C8—C9 | 133.4 (3) | C37—N31—C38—C39 | −141.5 (3) |
C10—N2—C9—C8 | −62.7 (3) | C40—N32—C39—C38 | 177.5 (2) |
N1—C8—C9—N2 | −171.8 (2) | N31—C38—C39—N32 | −176.1 (2) |
C9—N2—C10—C11 | 178.0 (2) | C39—N32—C40—C41 | 168.2 (2) |
N2—C10—C11—O2 | −57.8 (4) | N32—C40—C41—O32 | −59.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.84 (2) | 1.77 (2) | 2.562 (3) | 157 (3) |
O2—H2···N32i | 0.84 (1) | 2.00 (1) | 2.839 (3) | 178 (4) |
N2—H2A···O1i | 0.86 (2) | 2.27 (2) | 3.106 (3) | 165 (2) |
O31—H31···N31 | 0.84 (2) | 1.82 (2) | 2.596 (3) | 154 (3) |
O32—H32···N2ii | 0.84 (1) | 2.00 (1) | 2.795 (3) | 158 (4) |
N32—H32A···O31i | 0.86 (2) | 2.55 (3) | 3.347 (3) | 154 (2) |
C39—H39A···O32iii | 0.99 | 2.49 | 3.443 (4) | 161 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C11H16N2O2 |
Mr | 208.26 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 7.0047 (11), 14.171 (2), 21.681 (3) |
V (Å3) | 2152.1 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.45 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.786, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12054, 2677, 2311 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.115, 1.14 |
No. of reflections | 2677 |
No. of parameters | 289 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.24 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.84 (2) | 1.77 (2) | 2.562 (3) | 157 (3) |
O2—H2···N32i | 0.84 (1) | 2.00 (1) | 2.839 (3) | 178 (4) |
N2—H2A···O1i | 0.86 (2) | 2.27 (2) | 3.106 (3) | 165 (2) |
O31—H31···N31 | 0.84 (2) | 1.82 (2) | 2.596 (3) | 154 (3) |
O32—H32···N2ii | 0.84 (1) | 2.00 (1) | 2.795 (3) | 158 (4) |
N32—H32A···O31i | 0.86 (2) | 2.55 (3) | 3.347 (3) | 154 (2) |
C39—H39A···O32iii | 0.99 | 2.49 | 3.443 (4) | 161 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, y−1/2, −z+1/2; (iii) x−1, y, z. |
Acknowledgements
This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).
References
Barba, V., Cuahutle, D., Ochoa, M. E., Santillan, R. & Farfán, N. (2000). Inorg. Chim. Acta, 303, 7–11. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Domínguez, O., Rodríguez-Molina, B., Rodríguez, M., Ariza, A., Farfán, N. & Santillan, R. (2011). New J. Chem. 35, 156–164. Google Scholar
Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091. Web of Science CrossRef PubMed CAS Google Scholar
Fujiwara, T., Harada, J. & Ogawa, K. (2009). J. Phys. Chem. A, 113, 1822–1826. Web of Science CrossRef PubMed CAS Google Scholar
Haber, V., Císařová, I. & Fábry, J. (2003). Polyhedron, 22, 3451–3459. Web of Science CSD CrossRef CAS Google Scholar
Höpfl, H. (2002). Struct. Bonding, 103, 1–56. Google Scholar
Kenar, A., Arici, C., Aksu, M. L., Tahir, M. N., Durmuş, S. & Atakol, O. (2001). Anal. Sci. 17, 569–570. CrossRef PubMed CAS Google Scholar
Li, X., La, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664. CSD CrossRef CAS Web of Science Google Scholar
Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108. Web of Science CSD CrossRef CAS Google Scholar
Rajendiran, V., Karthik, R., Palaniandavar, M., Stoeckli-Evans, H., Periasamy, V. S., Akbarsha, M. A., Srinag, B. S. & Krishnamurthy, H. (2007). Inorg. Chem. 46, 8208–8221. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rodríguez, M., Santillan, R., López, Y., Farfán, N., Barba, V., Nakatani, K., García-Baez, E. V. & Padilla-Martínez, I. I. (2007). Supramol. Chem. 19, 641–653. Google Scholar
Severin, K. (2009). Dalton Trans. pp. 5254–5264. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I) has been employed as a tri- and tetradentate ligand for the complexation of transition metal ions such as vanadium(IV), vanadium(V), copper(II) and cadmium(II) (Haber et al., 2003; Kenar et al., 2001; Li et al., 1988; Rajendiran et al., 2007). We are interested in this compound in the search for ligands capable of forming macrocyclic structures with boronic acids (Barba et al., 2000; Fujita et al., 2008; Höpfl, 2002; Severin, 2009).
The asymmetric unit of (I) contains two conformers (Ia, Ib) (Fig. 1) with similar bond lengths between equivalent non-H atoms (differences less than 3 s.u.). The torsion angles (C–C–N–C) in the fragments CH2CH2NHCH2 are +62.7 (3) and -177.5 (2)° for Ia and Ib, respectively, showing that Ia and Ib are conformational isomers. The dihedral angles in the NCH2CH2N ethylene fragments are -171.8 (2) and -176.1 (2)°, respectively.
From reports in the literature it is known that salicylidene imines form keto and enol tautomers, both in solution and the solid state (Domínguez et al., 2011; Fujiwara et al., 2009; Ogawa et al., 1998; Rodríguez et al., 2007). In the crystal structure both conformers correspond to the enol form. This is evidenced by the presence of an intramolecular O–H···N hydrogen bond formed between the phenolic OH group and the imine function, and a comparative analysis of the bond lengths within the salicylidene fragment. The values for the Carom–O and C=N bond lengths with values of 1.349 (3) and 1.274 (3)–1.275 (4) Å, respectively, are within the range expected for enol tautomers. The same is true for the Carom–Carom bond lengths with values ranging from 1.374 (4)–1.417 (4) Å (Domínguez et al., 2011). From a careful crystallographic analysis of eight salicylidene aminoalcohols, Domínguez et al. concluded that the dominant hydrogen bonding pattern in the crystal structures of enol tautomers are intermolecular O–H···O interactions formed between the pendant NCH2CH2OH fragments of neighboring molecules. For keto tautomers, intermolecular O–H···O interactions typically involve the Carom–O oxygen atom (Domínguez et al., 2011). In the crystal structure of the compound described herein, the crystallographically independent conformers are linked through O–H···N interactions between the pendant aliphatic NCH2CH2OH groups to give one-dimensional chains along axis b. Neighboring chains are further linked parallel to the a axis by N–H···O and C–H···O interactions involving as acceptor atoms the oxygen atoms of the phenolic and aliphatic O–H functions to form overall two-dimensional hydrogen bonded layers propagating parallel to the ab plane (Fig. 2).