organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1-Naphth­yl)benzene­sulfonamide

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 14 September 2011; accepted 24 September 2011; online 5 October 2011)

In the title compound, C16H13NO2S, the C—SO2—NH—C torsion angle is −70.1 (2)°. The dihedral angle between the planes of the naphthyl ring system and the phenyl ring is 34.67 (4)°. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains along [100]. There are also ππ inter­actions between adjacent naphthyl groups [inter­planar spacing = 3.541 (3) Å] for mol­ecules stacked along [100].

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For related structures, see: Shakuntala et al. (2011[Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1540.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2S

  • Mr = 283.33

  • Orthorhombic, P 21 21 21

  • a = 4.9232 (5) Å

  • b = 15.4162 (15) Å

  • c = 18.2102 (17) Å

  • V = 1382.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.43 × 0.33 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.906, Tmax = 0.929

  • 6917 measured reflections

  • 2438 independent reflections

  • 2178 reflections with I > σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.084

  • S = 1.09

  • 2438 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 983 Friedel pairs

  • Flack parameter: 0.06 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 2.05 2.911 (3) 159
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfonamide moieties are constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). In this paper, we present the crystal structure of the title compound.

The molecular structure of is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The molecule is twisted at the S atom with C—SO2—NH—C torsion angle of -70.14 (2) °. The dihedral between the planes of the naphthyl and benzene groups is 34.67 (4) °. In the crystal, molecules are linked by intermolecular N—H···O hydrogen bonds into chains along [100]. There are also π-π interactions between adjacent naphthyl groups (interplanar spacing 3.541 (3) Å) for molecules stacked along [100].

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For related structures, see: Shakuntala et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a 100 ml round flask fitted with a condenser was added 1-naphthylamine (1.43 g, 10 mmol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. Benzenesulfonyl chloride (1.76 g, 10 mmol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a white powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl alcohol produced the crystals of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å, N—H = 0.90Å and Uiso(H)= 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines. Only H atoms involved in hydrogen bonds are shown.
N-(1-Naphthyl)benzenesulfonamide top
Crystal data top
C16H13NO2SF(000) = 592
Mr = 283.33Dx = 1.362 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3370 reflections
a = 4.9232 (5) Åθ = 2.6–26.0°
b = 15.4162 (15) ŵ = 0.23 mm1
c = 18.2102 (17) ÅT = 298 K
V = 1382.1 (2) Å3Block-like, colorless
Z = 40.43 × 0.33 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2438 independent reflections
Radiation source: fine-focus sealed tube2178 reflections with I > σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 55
Tmin = 0.906, Tmax = 0.929k = 1718
6917 measured reflectionsl = 1421
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.037P)2 + 0.2812P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.18 e Å3
2438 reflectionsΔρmin = 0.20 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.038 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 983 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (9)
Crystal data top
C16H13NO2SV = 1382.1 (2) Å3
Mr = 283.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.9232 (5) ŵ = 0.23 mm1
b = 15.4162 (15) ÅT = 298 K
c = 18.2102 (17) Å0.43 × 0.33 × 0.32 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2438 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2178 reflections with I > σ(I)
Tmin = 0.906, Tmax = 0.929Rint = 0.032
6917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.18 e Å3
S = 1.09Δρmin = 0.20 e Å3
2438 reflectionsAbsolute structure: Flack (1983), 983 Friedel pairs
182 parametersAbsolute structure parameter: 0.06 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63000 (11)0.47539 (3)0.28894 (3)0.03525 (17)
N10.7982 (4)0.50023 (12)0.36336 (10)0.0388 (5)
H10.97260.48500.35590.047*
O10.3486 (3)0.48108 (11)0.30720 (9)0.0496 (4)
O20.7374 (3)0.52862 (11)0.23221 (9)0.0486 (4)
C10.7144 (5)0.46260 (17)0.43237 (13)0.0430 (6)
C20.8252 (6)0.38695 (18)0.45628 (15)0.0574 (7)
H20.95470.35890.42770.069*
C30.7467 (9)0.3508 (2)0.52341 (18)0.0800 (11)
H30.82770.29990.54000.096*
C40.5555 (9)0.3894 (3)0.56351 (18)0.0824 (12)
H40.49940.36340.60700.099*
C50.4352 (6)0.4686 (3)0.54214 (14)0.0673 (9)
C60.5182 (5)0.50785 (18)0.47415 (13)0.0503 (7)
C70.4088 (6)0.5887 (2)0.45330 (16)0.0617 (8)
H70.46710.61550.41030.074*
C80.2160 (7)0.6281 (3)0.4966 (2)0.0894 (12)
H80.14390.68150.48310.107*
C90.1278 (8)0.5871 (4)0.5617 (2)0.1007 (15)
H90.00600.61320.59020.121*
C100.2347 (8)0.5107 (4)0.5831 (2)0.0960 (14)
H100.17330.48530.62640.115*
C110.6966 (5)0.36643 (14)0.26609 (12)0.0375 (6)
C120.8977 (6)0.34830 (16)0.21627 (15)0.0541 (6)
H120.99600.39270.19420.065*
C130.9509 (7)0.2619 (2)0.19960 (19)0.0767 (10)
H131.08690.24770.16630.092*
C140.7995 (8)0.1971 (2)0.2331 (2)0.0815 (12)
H140.83480.13930.22200.098*
C150.6022 (8)0.21681 (18)0.28156 (19)0.0747 (9)
H150.50270.17250.30340.090*
C160.5467 (6)0.30098 (16)0.29891 (15)0.0553 (7)
H160.41000.31430.33230.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0321 (3)0.0373 (3)0.0364 (3)0.0023 (3)0.0012 (2)0.0003 (3)
N10.0274 (10)0.0482 (11)0.0407 (10)0.0036 (7)0.0033 (8)0.0040 (8)
O10.0304 (8)0.0613 (10)0.0570 (10)0.0060 (9)0.0004 (8)0.0087 (9)
O20.0576 (10)0.0435 (8)0.0448 (9)0.0013 (9)0.0034 (8)0.0097 (8)
C10.0377 (13)0.0569 (15)0.0344 (12)0.0124 (12)0.0021 (10)0.0027 (11)
C20.0598 (18)0.0633 (17)0.0491 (15)0.0032 (14)0.0107 (14)0.0038 (13)
C30.105 (3)0.079 (2)0.055 (2)0.016 (2)0.009 (2)0.0166 (17)
C40.101 (3)0.104 (3)0.0423 (18)0.044 (2)0.0106 (19)0.0179 (18)
C50.0537 (18)0.114 (3)0.0340 (13)0.0348 (19)0.0049 (13)0.0198 (17)
C60.0384 (13)0.0705 (18)0.0420 (13)0.0158 (13)0.0000 (11)0.0140 (12)
C70.0512 (18)0.083 (2)0.0513 (16)0.0034 (15)0.0029 (14)0.0252 (15)
C80.067 (2)0.119 (3)0.082 (2)0.020 (2)0.0036 (19)0.046 (2)
C90.058 (2)0.178 (4)0.066 (2)0.009 (3)0.020 (2)0.067 (3)
C100.070 (2)0.161 (4)0.057 (2)0.042 (3)0.0155 (18)0.034 (3)
C110.0370 (13)0.0366 (11)0.0389 (12)0.0012 (10)0.0069 (10)0.0002 (9)
C120.0507 (15)0.0522 (13)0.0594 (15)0.0053 (13)0.0022 (15)0.0121 (13)
C130.064 (2)0.075 (2)0.091 (2)0.0250 (17)0.0058 (19)0.0371 (19)
C140.089 (3)0.0419 (15)0.113 (3)0.0147 (17)0.046 (2)0.0218 (18)
C150.092 (2)0.0398 (14)0.092 (2)0.0081 (16)0.021 (2)0.0030 (16)
C160.0582 (17)0.0461 (14)0.0615 (17)0.0063 (12)0.0032 (15)0.0029 (13)
Geometric parameters (Å, º) top
S1—O21.4214 (16)C7—H70.9300
S1—O11.4273 (17)C8—C91.411 (6)
S1—N11.6337 (19)C8—H80.9300
S1—C111.761 (2)C9—C101.348 (6)
N1—C11.444 (3)C9—H90.9300
N1—H10.9000C10—H100.9300
C1—C21.359 (4)C11—C121.372 (3)
C1—C61.414 (4)C11—C161.386 (3)
C2—C31.398 (4)C12—C131.391 (4)
C2—H20.9300C12—H120.9300
C3—C41.332 (5)C13—C141.388 (5)
C3—H30.9300C13—H130.9300
C4—C51.411 (5)C14—C151.347 (5)
C4—H40.9300C14—H140.9300
C5—C101.397 (5)C15—C161.363 (4)
C5—C61.437 (4)C15—H150.9300
C6—C71.410 (4)C16—H160.9300
C7—C81.376 (4)
O2—S1—O1119.67 (11)C6—C7—H7120.0
O2—S1—N1106.20 (10)C7—C8—C9119.8 (4)
O1—S1—N1106.52 (10)C7—C8—H8120.1
O2—S1—C11108.04 (11)C9—C8—H8120.1
O1—S1—C11107.11 (11)C10—C9—C8121.0 (3)
N1—S1—C11108.98 (10)C10—C9—H9119.5
C1—N1—S1118.87 (14)C8—C9—H9119.5
C1—N1—H1107.4C9—C10—C5121.8 (4)
S1—N1—H1107.3C9—C10—H10119.1
C2—C1—C6121.7 (2)C5—C10—H10119.1
C2—C1—N1120.6 (2)C12—C11—C16121.4 (2)
C6—C1—N1117.7 (2)C12—C11—S1119.00 (18)
C1—C2—C3120.8 (3)C16—C11—S1119.57 (19)
C1—C2—H2119.6C11—C12—C13118.4 (3)
C3—C2—H2119.6C11—C12—H12120.8
C4—C3—C2119.7 (3)C13—C12—H12120.8
C4—C3—H3120.1C14—C13—C12119.5 (3)
C2—C3—H3120.1C14—C13—H13120.3
C3—C4—C5122.2 (3)C12—C13—H13120.3
C3—C4—H4118.9C15—C14—C13120.9 (3)
C5—C4—H4118.9C15—C14—H14119.6
C10—C5—C4123.4 (4)C13—C14—H14119.6
C10—C5—C6117.7 (4)C14—C15—C16120.7 (3)
C4—C5—C6118.8 (3)C14—C15—H15119.6
C7—C6—C1123.5 (2)C16—C15—H15119.6
C7—C6—C5119.7 (3)C15—C16—C11119.1 (3)
C1—C6—C5116.8 (3)C15—C16—H16120.4
C8—C7—C6119.9 (3)C11—C16—H16120.4
C8—C7—H7120.0
O2—S1—N1—C1173.69 (18)C5—C6—C7—C82.5 (4)
O1—S1—N1—C145.1 (2)C6—C7—C8—C90.2 (5)
C11—S1—N1—C170.1 (2)C7—C8—C9—C101.6 (6)
S1—N1—C1—C291.7 (2)C8—C9—C10—C50.3 (6)
S1—N1—C1—C689.3 (2)C4—C5—C10—C9178.8 (3)
C6—C1—C2—C30.4 (4)C6—C5—C10—C92.4 (5)
N1—C1—C2—C3179.3 (3)O2—S1—C11—C1219.9 (2)
C1—C2—C3—C42.0 (5)O1—S1—C11—C12150.09 (19)
C2—C3—C4—C52.8 (5)N1—S1—C11—C1295.1 (2)
C3—C4—C5—C10179.9 (3)O2—S1—C11—C16160.45 (19)
C3—C4—C5—C61.2 (4)O1—S1—C11—C1630.3 (2)
C2—C1—C6—C7176.5 (2)N1—S1—C11—C1684.6 (2)
N1—C1—C6—C72.4 (3)C16—C11—C12—C130.6 (4)
C2—C1—C6—C51.9 (3)S1—C11—C12—C13179.0 (2)
N1—C1—C6—C5179.2 (2)C11—C12—C13—C140.4 (4)
C10—C5—C6—C73.7 (4)C12—C13—C14—C150.1 (5)
C4—C5—C6—C7177.4 (3)C13—C14—C15—C160.1 (5)
C10—C5—C6—C1177.9 (2)C14—C15—C16—C110.1 (5)
C4—C5—C6—C11.1 (4)C12—C11—C16—C150.5 (4)
C1—C6—C7—C8179.2 (3)S1—C11—C16—C15179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.902.052.911 (3)159
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13NO2S
Mr283.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.9232 (5), 15.4162 (15), 18.2102 (17)
V3)1382.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.43 × 0.33 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.906, 0.929
No. of measured, independent and
observed [I > σ(I)] reflections
6917, 2438, 2178
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.084, 1.09
No. of reflections2438
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20
Absolute structureFlack (1983), 983 Friedel pairs
Absolute structure parameter0.06 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.9002.0542.911 (3)158.83
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We would like to thank the Natural Science Foundation of Shanxi Province for financial support (2011011007–2).

References

First citationAdsmond, D. A. & Grant, D. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o1540.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds