organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-(Ethane-1,2-di­yl)bis­­(3-phenyl­thio­urea)

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 20 September 2011; accepted 28 September 2011; online 5 October 2011)

The complete molecule of the title compound, C16H18N4S2, is generated by crystallographic inversion symmetry. The dihedral angle between the phenyl ring and the thio­urea group is 52.9 (4)°. The crystal structure displays inter­molecular N—H⋯S hydrogen bonding, which generates sheets in the ab plane.

Related literature

Bisthio­urea and urea derivatives with alkane bridges can adopt two general shapes, bent (Pansuriya et al., 2011a[Pansuriya, P., Friedrich, H. B. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o2380.]) or straight alkyl chains (Pansuriya et al., 2011b[Pansuriya, P., Naidu, H., Friedrich, H. B. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o2552.]; Koevoets et al., 2005[Koevoets, R. A., Versteegen, R. M., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 2999-3003.]). For the synthesis see: Lee et al. (1985[Lee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. & Chung, S. I. (1985). J. Biol. Chem. 260, 14689-14694.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4S2

  • Mr = 330.46

  • Orthorhombic, P b c a

  • a = 10.5823 (4) Å

  • b = 9.1053 (3) Å

  • c = 16.4163 (6) Å

  • V = 1581.79 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 173 K

  • 0.53 × 0.26 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 22438 measured reflections

  • 1902 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.135

  • S = 1.13

  • 1902 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.88 2.57 3.379 (2) 153
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thiourea and urea functionalized ligands play key roles in a wide range of catalytic reactions. Here we report the crystal structure of such a compound (Lee et al., 1985) (Fig. 1). We recently reported a similar thiourea structure, where the molecules were bent (Pansuriya et al., 2011a). Bisthiourea and urea derivatives with alkane bridges can adopt two general shapes, bent (Pansuriya et al., 2011a) or straight alkyl chains (Pansuriya et al., 2011b; Koevoets et al., 2005). The spacer length between the two terminal thiourea or urea groups does not appear to influence the shape the bridging atoms take. The closest structure to the title compound 1,1'-(butane-1,4-diyl)bis(3-phenylthiourea) (Pansuriya et al., 2011a) has also a transoid arrangement of the two thiourea groups. The asymmetric unit of the title compound is a half molecule and the complete molecule is generated by inversion symmetry (i): 1 - x, -y, 1 - z. The structure shows intermolecular hydrogen bonding interactions between N1–H1···S1, 3.379 (2) Å, that creates sheets in the ab plane(Fig. 2). The dihedral angle between the phenyl ring and the thiourea group is 52.9 (4)°.

Related literature top

Bisthiourea and urea derivatives with alkane bridges can adopt two general shapes, bent (Pansuriya et al., 2011a) or straight alkyl chains (Pansuriya et al., 2011b; Koevoets et al., 2005). For the synthesis see: Lee et al. (1985).

Experimental top

A solution of phenyl isothiocyanate (6.75 g, 50 mmol) in diethyl ether (15 ml) was added dropwise at 15 °C to a vigorously stirring solution of anhydrous ethane-1,2-diamine (6.01 g, 100 mmol) in isopropyl alcohol (100 ml) over a period of 30 min. The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). This reaction mixture was then maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl up to pH 2.6. The solvents were evaporated under reduced pressure, the residue was suspended in hot water for 30 min. The resulting precipitate was filtered by vacuum. The product was washed with ice cold water and dried. The yield was 2.90 g (35%).

Crystals suitable for single-crystal X-ray diffraction analysis were grown in methanol: methylene chloride (1:2) at room temperature. M.p. = 462 K.

Refinement top

Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms with C—H distances of 0.95 Å (CarH), 0.99 Å (CH2) and N—H distances of 0.88 Å. Uiso(H) values were set to 1.2 Ueq of the attached atom.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The 1,1'-(ethane-1,2-diyl)bis(3-phenylthiourea) has inversion symmetry, so that unlabelled atoms are related by (1 - x, -y, 1 - z.
[Figure 2] Fig. 2. The crystal packing structure in the ab plane. All hydrogen atoms except those involved in hydrogen bonding interactions have been omitted for clarity.
1,1'-(Ethane-1,2-diyl)bis(3-phenylthiourea) top
Crystal data top
C16H18N4S2Dx = 1.388 Mg m3
Mr = 330.46Melting point: 462 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8682 reflections
a = 10.5823 (4) Åθ = 2.5–28.3°
b = 9.1053 (3) ŵ = 0.34 mm1
c = 16.4163 (6) ÅT = 173 K
V = 1581.79 (10) Å3Plate, colourless
Z = 40.53 × 0.26 × 0.12 mm
F(000) = 696
Data collection top
Bruker APEXII CCD
diffractometer
1523 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 28.0°, θmin = 2.5°
ϕ and ω scansh = 1313
22438 measured reflectionsk = 1212
1902 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0373P)2 + 3.3624P]
where P = (Fo2 + 2Fc2)/3
1902 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H18N4S2V = 1581.79 (10) Å3
Mr = 330.46Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.5823 (4) ŵ = 0.34 mm1
b = 9.1053 (3) ÅT = 173 K
c = 16.4163 (6) Å0.53 × 0.26 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
1523 reflections with I > 2σ(I)
22438 measured reflectionsRint = 0.078
1902 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.13Δρmax = 0.55 e Å3
1902 reflectionsΔρmin = 0.38 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4907 (2)0.4345 (3)0.35565 (15)0.0229 (5)
C20.4488 (3)0.3631 (3)0.28604 (17)0.0281 (6)
H20.48970.27630.26780.034*
C30.3463 (3)0.4196 (3)0.24308 (18)0.0329 (6)
H30.31610.37000.19610.039*
C40.2885 (3)0.5468 (3)0.26835 (18)0.0339 (6)
H40.21850.58480.23890.041*
C50.3321 (3)0.6195 (3)0.33647 (18)0.0321 (6)
H50.29320.70860.35300.039*
C60.4330 (3)0.5630 (3)0.38118 (17)0.0280 (6)
H60.46190.61210.42870.034*
C70.6127 (2)0.2403 (3)0.42665 (15)0.0226 (5)
C80.5090 (3)0.0019 (3)0.45415 (16)0.0263 (5)
H8A0.58910.04790.43980.032*
H8B0.43890.05200.42760.032*
N10.5975 (2)0.3795 (2)0.39925 (14)0.0246 (5)
H1N0.65910.44180.40920.030*
N20.5118 (2)0.1523 (2)0.42399 (14)0.0258 (5)
H2N0.44210.18770.40250.031*
S10.75428 (6)0.18711 (7)0.46353 (4)0.0273 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0182 (11)0.0206 (12)0.0298 (12)0.0016 (9)0.0006 (10)0.0067 (10)
C20.0263 (13)0.0241 (13)0.0338 (13)0.0016 (11)0.0008 (11)0.0000 (11)
C30.0346 (15)0.0306 (14)0.0335 (14)0.0042 (12)0.0079 (12)0.0026 (12)
C40.0268 (14)0.0340 (15)0.0407 (15)0.0005 (12)0.0072 (12)0.0107 (12)
C50.0238 (13)0.0281 (14)0.0445 (16)0.0071 (11)0.0010 (12)0.0039 (12)
C60.0265 (13)0.0266 (13)0.0309 (13)0.0009 (11)0.0005 (10)0.0005 (11)
C70.0170 (11)0.0230 (12)0.0279 (12)0.0013 (9)0.0023 (10)0.0006 (10)
C80.0229 (12)0.0184 (11)0.0376 (14)0.0016 (9)0.0004 (11)0.0030 (10)
N10.0164 (10)0.0196 (10)0.0378 (12)0.0019 (8)0.0033 (9)0.0024 (9)
N20.0152 (10)0.0219 (11)0.0403 (12)0.0003 (8)0.0024 (9)0.0084 (9)
S10.0150 (3)0.0218 (3)0.0450 (4)0.0017 (2)0.0026 (3)0.0001 (3)
Geometric parameters (Å, º) top
C1—C61.385 (4)C6—H60.9500
C1—C21.387 (4)C7—N21.336 (3)
C1—N11.428 (3)C7—N11.354 (3)
C2—C31.393 (4)C7—S11.687 (2)
C2—H20.9500C8—N21.456 (3)
C3—C41.373 (4)C8—C8i1.518 (5)
C3—H30.9500C8—H8A0.9900
C4—C51.379 (4)C8—H8B0.9900
C4—H40.9500N1—H1N0.8800
C5—C61.394 (4)N2—H2N0.8800
C5—H50.9500
C6—C1—C2120.3 (2)C5—C6—H6120.3
C6—C1—N1119.6 (2)N2—C7—N1117.1 (2)
C2—C1—N1120.1 (2)N2—C7—S1123.3 (2)
C1—C2—C3119.5 (3)N1—C7—S1119.59 (19)
C1—C2—H2120.2N2—C8—C8i111.2 (3)
C3—C2—H2120.2N2—C8—H8A109.4
C4—C3—C2120.4 (3)C8i—C8—H8A109.4
C4—C3—H3119.8N2—C8—H8B109.4
C2—C3—H3119.8C8i—C8—H8B109.4
C3—C4—C5120.0 (3)H8A—C8—H8B108.0
C3—C4—H4120.0C7—N1—C1126.1 (2)
C5—C4—H4120.0C7—N1—H1N117.0
C4—C5—C6120.4 (3)C1—N1—H1N117.0
C4—C5—H5119.8C7—N2—C8124.7 (2)
C6—C5—H5119.8C7—N2—H2N117.6
C1—C6—C5119.4 (3)C8—N2—H2N117.6
C1—C6—H6120.3
C6—C1—C2—C31.5 (4)N2—C7—N1—C111.0 (4)
N1—C1—C2—C3178.6 (2)S1—C7—N1—C1170.1 (2)
C1—C2—C3—C41.3 (4)C6—C1—N1—C7130.0 (3)
C2—C3—C4—C50.1 (4)C2—C1—N1—C752.9 (4)
C3—C4—C5—C61.4 (4)N1—C7—N2—C8177.1 (2)
C2—C1—C6—C50.3 (4)S1—C7—N2—C81.8 (4)
N1—C1—C6—C5177.4 (2)C8i—C8—N2—C780.6 (4)
C4—C5—C6—C11.2 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1ii0.882.573.379 (2)153
Symmetry code: (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC16H18N4S2
Mr330.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)10.5823 (4), 9.1053 (3), 16.4163 (6)
V3)1581.79 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.53 × 0.26 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22438, 1902, 1523
Rint0.078
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.135, 1.13
No. of reflections1902
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.882.573.379 (2)153
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The authors wish to thank Dr Manuel Fernandes from the Chemistry Department of the University of the Witwatersrand for his assistance with the data collection and the DST–National Research Foundation, c*change for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoevoets, R. A., Versteegen, R. M., Kooijman, H., Spek, A. L., Sijbesma, R. P. & Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 2999–3003.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. & Chung, S. I. (1985). J. Biol. Chem. 260, 14689–14694.  CAS PubMed Google Scholar
First citationPansuriya, P., Friedrich, H. B. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPansuriya, P., Naidu, H., Friedrich, H. B. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o2552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds