organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-chloro-3,5-di­nitro­benzoate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com

(Received 20 September 2011; accepted 28 September 2011; online 12 October 2011)

In the title compound, C9H7ClN2O6, the nitro groups and the ester group make dihedral angles of 44.0 (1), 89.6 (1) and 164.1 (1)°, respectively, with the benzene ring. In the crystal, mol­ecules are linked through weak C—H⋯O hydrogen-bonding inter­actions. Mol­ecules are stacked via ππ inter­actions about inversion centers, with a centroid–centroid distance of 3.671 (2) Å.

Related literature

For applications of the title compound as a herbicide and a related structure, see: Liu et al. (2010[Liu, Y.-L., Zou, P., Xie, M.-H., Wu, H. & He, Y.-J. (2010). Acta Cryst. E66, o62.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7ClN2O6

  • Mr = 274.62

  • Monoclinic, P 21 /c

  • a = 7.744 (2) Å

  • b = 21.389 (6) Å

  • c = 7.241 (2) Å

  • β = 110.504 (4)°

  • V = 1123.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 133 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.899, Tmax = 0.965

  • 8777 measured reflections

  • 2549 independent reflections

  • 1939 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.098

  • S = 1.00

  • 2549 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.32 3.157 (3) 147
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is useful as a herbicide (Liu et al., 2010). In the title molecule (Fig. 1), two nitro groups (O3/N1/O4 and O5/N2/O6) attached at C2 and C4 and the ester group (O1/C7/O2) attached at C6 form dihedral angles of 44.0 (1), 89.6 (1) and 164.1 (1)°, respectively, with the mean plane of the benzene ring (C1–C6). In the cyrstal structure, the molecules are linked through weak C—H···O hydrogen bonding interactions. The molecules are stacked via π-π interactions, about inversion centers with the ring centroid-centroid distance of 3.671 (2) Å.

Related literature top

For applications of the title compound as a herbicide and a related structure, see: Liu et al. (2010).

Experimental top

A sample of commercial ethyl 4-chloro-3,5-dinitrobenzoate (Aldrich) was crystalized by slow evaporation of a solution in methanol yielding colorless chunky crystals after several days.

Refinement top

H atoms were placed in calculated positions with C—H = 0.99, 0.98 or 0.95 Å for methylene, methyl or aryl type H-atoms, respectively, and were refined in a riding mode with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the packing of the title compound, viewed down the c direction; dashed lines indicate hydrogen bonds.
Ethyl 4-chloro-3,5-dinitrobenzoate top
Crystal data top
C9H7ClN2O6F(000) = 560
Mr = 274.62Dx = 1.624 Mg m3
Monoclinic, P21/cMelting point: 357(2) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.744 (2) ÅCell parameters from 2718 reflections
b = 21.389 (6) Åθ = 3.2–27.5°
c = 7.241 (2) ŵ = 0.36 mm1
β = 110.504 (4)°T = 133 K
V = 1123.3 (5) Å3Block, colorless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Rigaku SPIDER
diffractometer
2549 independent reflections
Radiation source: Rotating Anode1939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 810
Tmin = 0.899, Tmax = 0.965k = 2727
8777 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.269P]
where P = (Fo2 + 2Fc2)/3
2549 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C9H7ClN2O6V = 1123.3 (5) Å3
Mr = 274.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.744 (2) ŵ = 0.36 mm1
b = 21.389 (6) ÅT = 133 K
c = 7.241 (2) Å0.30 × 0.20 × 0.10 mm
β = 110.504 (4)°
Data collection top
Rigaku SPIDER
diffractometer
2549 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1939 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.965Rint = 0.034
8777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
2549 reflectionsΔρmin = 0.32 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66615 (7)0.68101 (2)0.67393 (8)0.02902 (15)
O10.82698 (18)0.39122 (6)0.43011 (19)0.0229 (3)
O20.6015 (2)0.41837 (6)0.14870 (19)0.0283 (3)
O30.82102 (19)0.51915 (7)1.00581 (19)0.0269 (3)
O40.9456 (2)0.60842 (7)0.9835 (2)0.0402 (4)
O50.3393 (3)0.65336 (10)0.2213 (3)0.0610 (6)
O60.5882 (3)0.68236 (8)0.1760 (3)0.0562 (6)
N10.8513 (2)0.56285 (8)0.9112 (2)0.0237 (4)
N20.5021 (3)0.64949 (8)0.2496 (2)0.0286 (4)
C10.7812 (2)0.49987 (8)0.6145 (3)0.0172 (4)
H10.84170.46600.69660.021*
C20.7714 (2)0.55765 (8)0.6956 (3)0.0177 (4)
C30.6846 (2)0.60877 (8)0.5805 (3)0.0189 (4)
C40.6034 (2)0.59805 (8)0.3785 (3)0.0194 (4)
C50.6100 (3)0.54110 (8)0.2923 (3)0.0194 (4)
H50.55300.53570.15390.023*
C60.7015 (2)0.49173 (8)0.4111 (3)0.0166 (4)
C70.7039 (2)0.43024 (8)0.3140 (3)0.0178 (4)
C80.8358 (3)0.32869 (8)0.3507 (3)0.0232 (4)
H8A0.90100.33030.25510.028*
H8B0.71010.31210.28290.028*
C90.9385 (3)0.28811 (10)0.5225 (3)0.0317 (5)
H9A1.05990.30640.59270.048*
H9B0.95400.24630.47520.048*
H9C0.86890.28510.61210.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0369 (3)0.0164 (2)0.0335 (3)0.0007 (2)0.0121 (2)0.00696 (19)
O10.0279 (8)0.0157 (6)0.0196 (7)0.0058 (5)0.0016 (6)0.0021 (5)
O20.0401 (9)0.0187 (7)0.0173 (7)0.0037 (6)0.0012 (6)0.0029 (5)
O30.0299 (8)0.0321 (8)0.0197 (7)0.0041 (6)0.0102 (6)0.0041 (6)
O40.0530 (10)0.0306 (9)0.0267 (8)0.0122 (7)0.0010 (7)0.0100 (6)
O50.0495 (12)0.0778 (15)0.0620 (13)0.0438 (10)0.0275 (10)0.0343 (11)
O60.0571 (12)0.0344 (10)0.0572 (12)0.0177 (8)0.0049 (9)0.0259 (9)
N10.0249 (9)0.0255 (9)0.0190 (8)0.0027 (7)0.0058 (7)0.0032 (7)
N20.0392 (11)0.0175 (9)0.0226 (9)0.0054 (8)0.0027 (8)0.0015 (7)
C10.0177 (9)0.0149 (8)0.0176 (9)0.0010 (7)0.0046 (7)0.0016 (7)
C20.0189 (10)0.0195 (9)0.0140 (9)0.0019 (7)0.0048 (7)0.0009 (7)
C30.0194 (10)0.0146 (9)0.0233 (9)0.0019 (7)0.0081 (8)0.0029 (7)
C40.0211 (10)0.0151 (9)0.0211 (9)0.0026 (7)0.0063 (8)0.0042 (7)
C50.0224 (10)0.0180 (9)0.0164 (9)0.0001 (7)0.0051 (8)0.0015 (7)
C60.0180 (9)0.0146 (8)0.0172 (8)0.0006 (7)0.0062 (7)0.0001 (7)
C70.0210 (10)0.0153 (9)0.0179 (9)0.0010 (7)0.0077 (8)0.0017 (7)
C80.0300 (11)0.0140 (9)0.0230 (10)0.0032 (8)0.0062 (8)0.0029 (7)
C90.0426 (13)0.0225 (11)0.0285 (11)0.0077 (9)0.0104 (10)0.0031 (8)
Geometric parameters (Å, º) top
Cl1—C31.7125 (19)C2—C31.396 (3)
O1—C71.323 (2)C3—C41.394 (3)
O1—C81.467 (2)C4—C51.378 (3)
O2—C71.209 (2)C5—C61.389 (2)
O3—N11.229 (2)C5—H50.9500
O4—N11.220 (2)C6—C71.495 (2)
O5—N21.207 (2)C8—C91.497 (3)
O6—N21.213 (2)C8—H8A0.9900
N1—C21.468 (2)C8—H8B0.9900
N2—C41.478 (2)C9—H9A0.9800
C1—C21.382 (2)C9—H9B0.9800
C1—C61.394 (2)C9—H9C0.9800
C1—H10.9500
C7—O1—C8116.64 (14)C4—C5—H5120.6
O4—N1—O3124.79 (17)C6—C5—H5120.6
O4—N1—C2118.86 (16)C5—C6—C1120.02 (16)
O3—N1—C2116.32 (16)C5—C6—C7117.72 (16)
O5—N2—O6126.00 (19)C1—C6—C7122.22 (16)
O5—N2—C4116.76 (18)O2—C7—O1124.99 (17)
O6—N2—C4117.18 (18)O2—C7—C6122.60 (16)
C2—C1—C6119.39 (16)O1—C7—C6112.40 (15)
C2—C1—H1120.3O1—C8—C9106.70 (16)
C6—C1—H1120.3O1—C8—H8A110.4
C1—C2—C3122.25 (17)C9—C8—H8A110.4
C1—C2—N1117.00 (16)O1—C8—H8B110.4
C3—C2—N1120.72 (16)C9—C8—H8B110.4
C4—C3—C2116.31 (16)H8A—C8—H8B108.6
C4—C3—Cl1119.57 (14)C8—C9—H9A109.5
C2—C3—Cl1124.07 (15)C8—C9—H9B109.5
C5—C4—C3123.11 (17)H9A—C9—H9B109.5
C5—C4—N2117.89 (17)C8—C9—H9C109.5
C3—C4—N2118.99 (16)H9A—C9—H9C109.5
C4—C5—C6118.89 (17)H9B—C9—H9C109.5
C6—C1—C2—C30.3 (3)O5—N2—C4—C390.7 (2)
C6—C1—C2—N1177.67 (16)O6—N2—C4—C392.1 (2)
O4—N1—C2—C1136.26 (18)C3—C4—C5—C60.1 (3)
O3—N1—C2—C141.8 (2)N2—C4—C5—C6178.79 (17)
O4—N1—C2—C345.8 (3)C4—C5—C6—C11.4 (3)
O3—N1—C2—C3136.14 (17)C4—C5—C6—C7179.03 (16)
C1—C2—C3—C41.6 (3)C2—C1—C6—C51.3 (3)
N1—C2—C3—C4176.24 (16)C2—C1—C6—C7178.82 (16)
C1—C2—C3—Cl1179.17 (14)C8—O1—C7—O21.0 (3)
N1—C2—C3—Cl11.3 (3)C8—O1—C7—C6177.99 (15)
C2—C3—C4—C51.5 (3)C5—C6—C7—O215.2 (3)
Cl1—C3—C4—C5179.18 (15)C1—C6—C7—O2162.35 (18)
C2—C3—C4—N2177.30 (17)C5—C6—C7—O1165.76 (16)
Cl1—C3—C4—N20.4 (2)C1—C6—C7—O116.6 (2)
O5—N2—C4—C588.2 (2)C7—O1—C8—C9163.27 (17)
O6—N2—C4—C589.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.323.157 (3)147
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H7ClN2O6
Mr274.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)7.744 (2), 21.389 (6), 7.241 (2)
β (°) 110.504 (4)
V3)1123.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.899, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8777, 2549, 1939
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.00
No. of reflections2549
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.32

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.323.157 (3)147
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Y.-L., Zou, P., Xie, M.-H., Wu, H. & He, Y.-J. (2010). Acta Cryst. E66, o62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds