organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Benzhydrylpiperazin-1-yl)-3-(3,4-dieth­­oxy­phen­yl)prop-2-en-1-one ethanol monosolvate

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, and bSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 25 September 2011; accepted 13 October 2011; online 22 October 2011)

In the title compound, C30H34N2O3·C2H6O, the piperazine ring adopts a chair conformation and the ethene bond exhibits an E conformation. In the crystal, the two components are linked by an O—H⋯O hydrogen bond.

Related literature

For biological properties of cinnamic acid derivatives, see: Shi et al. (2005[Shi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707-712.]); Qian et al. (2010[Qian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991-4996.]). For the synthesis, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]). For a related structure, see: Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]).

[Scheme 1]

Experimental

Crystal data
  • C30H34N2O3·C2H6O

  • Mr = 516.66

  • Triclinic, [P \overline 1]

  • a = 7.9590 (16) Å

  • b = 12.039 (2) Å

  • c = 16.298 (3) Å

  • α = 104.27 (3)°

  • β = 100.09 (3)°

  • γ = 100.02 (3)°

  • V = 1450.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al. 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 5753 measured reflections

  • 5335 independent reflections

  • 3341 reflections with I > 2.0σ(I)

  • Rint = 0.019

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.166

  • S = 1.00

  • 5335 reflections

  • 343 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3 0.82 1.94 2.765 (3) 177

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been much research interest in cinnamic acid and its derivatives due to their biological activities (Shi et al., 2005; Qian et al., 2010). In this work, we report the crystal structure of the title compound. The title compound (Fig. 1) exists an E-conformation with respect to the C11C12 ethene bond [1.327 (3) Å] and the torsion angle C3—C11—C12—C13 is 175.4 (2)°. The piperazine ring adopts a chair conformation. The molecular structure is stabilized by intramolecular O—H···O and C—H···O interactions between the title compound and the ethanol molecule of solvation.

Related literature top

For biological properties of cinnamic acid derivatives, see: Shi et al. (2005); Qian et al. (2010). For the synthesis, see: Wu et al. (2008). For a related structure, see: Teng et al. (2011).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(3,4-diethoxyphenyl)acrylic acid (0.945 g; 4 mmol), thionyl chloride (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-benzhydrylpiperazine (1.514 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The solid, (E)-1-(4-(benzhydrylpiperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1- one obtained was filtered and was recrystallized from ethanol. The pale-yellow single crystals of the title compound used in X-ray diffraction studies were grown in ethanol by slow evaporation at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.98 Å and refined as riding on their parent atoms with Uĩso~(H) = 1.2 or 1.5U~eq~ of the carrier atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and numbering scheme of the title compound. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit cell of the title compound showing hydrogen bonds.
(E)-1-(4-Benzhydrylpiperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one ethanol monosolvate top
Crystal data top
C30H34N2O3·C2H6OZ = 2
Mr = 516.66F(000) = 556
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9590 (16) ÅCell parameters from 25 reflections
b = 12.039 (2) Åθ = 10–13°
c = 16.298 (3) ŵ = 0.08 mm1
α = 104.27 (3)°T = 293 K
β = 100.09 (3)°Block, pale-yellow
γ = 100.02 (3)°0.30 × 0.20 × 0.10 mm
V = 1450.9 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3341 reflections with I > 2.0σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al. 1968)
k = 1414
Tmin = 0.977, Tmax = 0.992l = 1919
5753 measured reflections3 standard reflections every 200 reflections
5335 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.060P)2 + 0.870P]
where P = (Fo2 + 2Fc2)/3
5335 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C30H34N2O3·C2H6Oγ = 100.02 (3)°
Mr = 516.66V = 1450.9 (5) Å3
Triclinic, P1Z = 2
a = 7.9590 (16) ÅMo Kα radiation
b = 12.039 (2) ŵ = 0.08 mm1
c = 16.298 (3) ÅT = 293 K
α = 104.27 (3)°0.30 × 0.20 × 0.10 mm
β = 100.09 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3341 reflections with I > 2.0σ(I)
Absorption correction: ψ scan
(North et al. 1968)
Rint = 0.019
Tmin = 0.977, Tmax = 0.9923 standard reflections every 200 reflections
5753 measured reflections intensity decay: 1%
5335 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
5335 reflectionsΔρmin = 0.25 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2329 (3)0.27311 (19)0.89941 (14)0.0549 (6)
O10.7626 (3)0.55168 (18)1.34911 (12)0.0661 (6)
C10.6100 (4)0.5709 (2)1.30918 (16)0.0476 (6)
N20.3066 (3)0.07607 (17)0.78242 (12)0.0430 (5)
C20.5375 (3)0.5301 (2)1.22233 (16)0.0452 (6)
H2A0.59480.48631.18580.054*
O20.6018 (3)0.6682 (2)1.45078 (13)0.0867 (7)
O30.1351 (2)0.43931 (16)0.91346 (12)0.0595 (5)
C30.3771 (3)0.5530 (2)1.18677 (16)0.0451 (6)
C40.2969 (4)0.6201 (2)1.24238 (18)0.0543 (7)
H4A0.19240.63791.21990.065*
C50.3690 (4)0.6618 (3)1.33157 (19)0.0625 (8)
H5A0.31300.70731.36780.075*
C60.5231 (4)0.6356 (2)1.36630 (17)0.0552 (7)
C70.5048 (6)0.7119 (4)1.5114 (3)0.1090 (14)
H7A0.54150.79711.53120.131*
H7B0.38160.69131.48250.131*
C80.5255 (8)0.6681 (4)1.5834 (3)0.1344 (19)
H8A0.46110.70321.62340.202*
H8B0.64750.68681.61170.202*
H8C0.48220.58421.56470.202*
C90.8473 (4)0.4750 (3)1.2980 (2)0.0685 (8)
H9A0.89090.51021.25610.082*
H9B0.76580.40051.26670.082*
C100.9962 (5)0.4564 (3)1.3597 (2)0.0879 (11)
H10A1.05710.40521.32770.132*
H10B0.95120.42141.40070.132*
H10C1.07560.53081.39030.132*
C110.2904 (3)0.5049 (2)1.09455 (16)0.0462 (6)
H11A0.19120.53121.07620.055*
C120.3369 (3)0.4281 (2)1.03407 (16)0.0443 (6)
H12A0.43990.40361.04840.053*
C130.2287 (3)0.3812 (2)0.94486 (16)0.0459 (6)
C140.3237 (4)0.1914 (2)0.93083 (17)0.0608 (8)
H14A0.23940.12850.93870.073*
H14B0.40380.23210.98660.073*
C150.4242 (4)0.1404 (2)0.86614 (16)0.0547 (7)
H15A0.50920.20350.85890.066*
H15B0.48750.08790.88810.066*
C160.2163 (4)0.1587 (2)0.75049 (17)0.0550 (7)
H16A0.13420.11670.69560.066*
H16B0.30160.21850.73990.066*
C170.1189 (4)0.2173 (3)0.81343 (18)0.0613 (8)
H17A0.07080.27620.79190.074*
H17B0.02210.15920.81750.074*
C180.4062 (3)0.0275 (2)0.71917 (16)0.0446 (6)
H18A0.48660.09390.71160.054*
C190.5164 (3)0.0494 (2)0.75393 (16)0.0469 (6)
C200.6872 (4)0.0369 (3)0.7467 (2)0.0681 (8)
H20A0.73470.01800.72080.082*
C210.7907 (5)0.1079 (4)0.7786 (3)0.0954 (13)
H21A0.90710.09870.77440.114*
C220.7220 (6)0.1890 (4)0.8153 (3)0.0970 (13)
H22A0.79020.23660.83510.116*
C230.5508 (5)0.2011 (3)0.8234 (2)0.0787 (10)
H23A0.50360.25610.84940.094*
C240.4503 (4)0.1317 (2)0.79291 (18)0.0560 (7)
H24A0.33490.14030.79860.067*
C250.2854 (3)0.0390 (2)0.63059 (16)0.0465 (6)
C260.1525 (4)0.1347 (3)0.61976 (19)0.0612 (8)
H26A0.13370.15930.66790.073*
C270.0458 (4)0.1954 (3)0.5384 (2)0.0714 (9)
H27A0.04330.26000.53240.086*
C280.0710 (5)0.1608 (3)0.4677 (2)0.0783 (10)
H28A0.00010.20170.41310.094*
C290.2002 (5)0.0662 (4)0.4774 (2)0.0816 (10)
H29A0.21640.04140.42910.098*
C300.3098 (4)0.0052 (3)0.55870 (18)0.0649 (8)
H30A0.39970.05870.56390.078*
O40.2562 (4)0.6771 (2)0.93685 (19)0.1012 (8)
H4B0.21690.60690.92990.152*
C310.1344 (6)0.7409 (4)0.9627 (4)0.141 (2)
H31A0.11540.72881.01730.169*
H31B0.02420.70710.92000.169*
C320.1745 (6)0.8642 (4)0.9737 (3)0.1165 (15)
H32A0.07880.89660.98960.175*
H32B0.19300.87860.92020.175*
H32C0.27880.90071.01870.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0656 (15)0.0441 (12)0.0470 (13)0.0229 (11)0.0013 (11)0.0016 (10)
O10.0691 (13)0.0717 (13)0.0511 (11)0.0270 (11)0.0043 (10)0.0053 (10)
C10.0533 (16)0.0424 (14)0.0451 (15)0.0079 (12)0.0130 (12)0.0099 (12)
N20.0505 (12)0.0373 (11)0.0388 (11)0.0160 (9)0.0029 (9)0.0076 (9)
C20.0495 (15)0.0387 (13)0.0467 (15)0.0124 (12)0.0172 (12)0.0049 (11)
O20.1123 (19)0.1058 (18)0.0404 (12)0.0440 (15)0.0217 (12)0.0016 (12)
O30.0652 (12)0.0551 (11)0.0558 (11)0.0305 (10)0.0028 (9)0.0076 (9)
C30.0500 (15)0.0390 (13)0.0453 (14)0.0115 (12)0.0138 (12)0.0071 (11)
C40.0537 (16)0.0562 (16)0.0541 (17)0.0203 (14)0.0171 (13)0.0087 (13)
C50.074 (2)0.0623 (18)0.0578 (18)0.0273 (16)0.0328 (16)0.0085 (15)
C60.0685 (19)0.0502 (16)0.0464 (16)0.0119 (14)0.0217 (14)0.0079 (13)
C70.137 (4)0.132 (4)0.077 (3)0.072 (3)0.039 (3)0.025 (3)
C80.197 (6)0.113 (4)0.131 (4)0.056 (4)0.095 (4)0.047 (3)
C90.065 (2)0.068 (2)0.070 (2)0.0210 (16)0.0131 (16)0.0118 (16)
C100.076 (2)0.101 (3)0.090 (3)0.031 (2)0.002 (2)0.036 (2)
C110.0463 (15)0.0433 (14)0.0509 (15)0.0171 (12)0.0129 (12)0.0110 (12)
C120.0429 (14)0.0408 (13)0.0484 (15)0.0140 (11)0.0088 (12)0.0093 (11)
C130.0427 (14)0.0467 (15)0.0489 (15)0.0159 (12)0.0100 (12)0.0112 (12)
C140.089 (2)0.0506 (16)0.0404 (15)0.0298 (16)0.0029 (14)0.0064 (12)
C150.0650 (18)0.0449 (15)0.0477 (15)0.0237 (14)0.0051 (13)0.0060 (12)
C160.0648 (18)0.0475 (15)0.0471 (15)0.0218 (14)0.0038 (13)0.0084 (12)
C170.0624 (18)0.0538 (17)0.0545 (17)0.0241 (14)0.0064 (14)0.0021 (13)
C180.0481 (15)0.0430 (14)0.0439 (14)0.0099 (12)0.0089 (12)0.0162 (11)
C190.0465 (15)0.0443 (14)0.0441 (14)0.0122 (12)0.0037 (12)0.0053 (12)
C200.0583 (19)0.081 (2)0.0639 (19)0.0196 (17)0.0152 (15)0.0164 (17)
C210.062 (2)0.133 (4)0.093 (3)0.051 (2)0.009 (2)0.023 (3)
C220.102 (3)0.087 (3)0.104 (3)0.057 (3)0.005 (2)0.026 (2)
C230.097 (3)0.0531 (19)0.077 (2)0.0230 (18)0.009 (2)0.0206 (16)
C240.0619 (18)0.0491 (16)0.0554 (17)0.0160 (14)0.0047 (14)0.0161 (13)
C250.0547 (16)0.0456 (15)0.0424 (14)0.0218 (13)0.0105 (12)0.0113 (12)
C260.0665 (19)0.0612 (18)0.0504 (17)0.0098 (15)0.0034 (14)0.0164 (14)
C270.076 (2)0.0629 (19)0.060 (2)0.0158 (16)0.0106 (17)0.0071 (16)
C280.092 (3)0.075 (2)0.055 (2)0.036 (2)0.0109 (18)0.0027 (17)
C290.099 (3)0.107 (3)0.0460 (18)0.037 (2)0.0151 (18)0.0272 (19)
C300.075 (2)0.078 (2)0.0485 (17)0.0257 (17)0.0118 (15)0.0253 (16)
O40.0917 (19)0.0811 (17)0.137 (2)0.0194 (15)0.0375 (17)0.0347 (16)
C310.086 (3)0.097 (4)0.252 (7)0.021 (3)0.026 (4)0.080 (4)
C320.104 (3)0.109 (4)0.120 (4)0.037 (3)0.004 (3)0.015 (3)
Geometric parameters (Å, º) top
N1—C131.338 (3)C15—H15A0.9700
N1—C171.455 (3)C15—H15B0.9700
N1—C141.455 (3)C16—C171.504 (4)
O1—C11.359 (3)C16—H16A0.9700
O1—C91.426 (3)C16—H16B0.9700
C1—C21.360 (3)C17—H17A0.9700
C1—C61.417 (4)C17—H17B0.9700
N2—C151.455 (3)C18—C191.521 (3)
N2—C161.466 (3)C18—C251.525 (3)
N2—C181.478 (3)C18—H18A0.9800
C2—C31.408 (3)C19—C201.371 (4)
C2—H2A0.9300C19—C241.382 (4)
O2—C61.337 (3)C20—C211.412 (5)
O2—C71.415 (4)C20—H20A0.9300
O3—C131.238 (3)C21—C221.352 (6)
C3—C41.380 (3)C21—H21A0.9300
C3—C111.463 (4)C22—C231.377 (6)
C4—C51.394 (4)C22—H22A0.9300
C4—H4A0.9300C23—C241.373 (4)
C5—C61.380 (4)C23—H23A0.9300
C5—H5A0.9300C24—H24A0.9300
C7—C81.397 (5)C25—C301.365 (4)
C7—H7A0.9700C25—C261.374 (4)
C7—H7B0.9700C26—C271.388 (4)
C8—H8A0.9600C26—H26A0.9300
C8—H8B0.9600C27—C281.351 (5)
C8—H8C0.9600C27—H27A0.9300
C9—C101.501 (4)C28—C291.352 (5)
C9—H9A0.9700C28—H28A0.9300
C9—H9B0.9700C29—C301.396 (5)
C10—H10A0.9600C29—H29A0.9300
C10—H10B0.9600C30—H30A0.9300
C10—H10C0.9600O4—C311.396 (5)
C11—C121.327 (3)O4—H4B0.8200
C11—H11A0.9300C31—C321.422 (6)
C12—C131.470 (3)C31—H31A0.9700
C12—H12A0.9300C31—H31B0.9700
C14—C151.508 (4)C32—H32A0.9600
C14—H14A0.9700C32—H32B0.9600
C14—H14B0.9700C32—H32C0.9600
C13—N1—C17120.8 (2)C14—C15—H15B109.5
C13—N1—C14126.9 (2)H15A—C15—H15B108.0
C17—N1—C14111.6 (2)N2—C16—C17112.5 (2)
C1—O1—C9118.1 (2)N2—C16—H16A109.1
O1—C1—C2125.1 (2)C17—C16—H16A109.1
O1—C1—C6114.5 (2)N2—C16—H16B109.1
C2—C1—C6120.4 (3)C17—C16—H16B109.1
C15—N2—C16107.90 (19)H16A—C16—H16B107.8
C15—N2—C18110.6 (2)N1—C17—C16111.5 (2)
C16—N2—C18108.99 (19)N1—C17—H17A109.3
C1—C2—C3121.2 (2)C16—C17—H17A109.3
C1—C2—H2A119.4N1—C17—H17B109.3
C3—C2—H2A119.4C16—C17—H17B109.3
C6—O2—C7117.8 (3)H17A—C17—H17B108.0
C4—C3—C2118.1 (2)N2—C18—C19110.71 (19)
C4—C3—C11119.3 (2)N2—C18—C25111.4 (2)
C2—C3—C11122.6 (2)C19—C18—C25111.6 (2)
C3—C4—C5121.4 (3)N2—C18—H18A107.7
C3—C4—H4A119.3C19—C18—H18A107.7
C5—C4—H4A119.3C25—C18—H18A107.7
C6—C5—C4120.2 (3)C20—C19—C24118.5 (3)
C6—C5—H5A119.9C20—C19—C18119.2 (3)
C4—C5—H5A119.9C24—C19—C18122.3 (2)
O2—C6—C5125.4 (3)C19—C20—C21119.8 (3)
O2—C6—C1115.8 (3)C19—C20—H20A120.1
C5—C6—C1118.7 (3)C21—C20—H20A120.1
C8—C7—O2113.1 (4)C22—C21—C20120.5 (4)
C8—C7—H7A109.0C22—C21—H21A119.8
O2—C7—H7A109.0C20—C21—H21A119.8
C8—C7—H7B109.0C21—C22—C23120.0 (3)
O2—C7—H7B109.0C21—C22—H22A120.0
H7A—C7—H7B107.8C23—C22—H22A120.0
C7—C8—H8A109.5C24—C23—C22119.6 (4)
C7—C8—H8B109.5C24—C23—H23A120.2
H8A—C8—H8B109.5C22—C23—H23A120.2
C7—C8—H8C109.5C23—C24—C19121.6 (3)
H8A—C8—H8C109.5C23—C24—H24A119.2
H8B—C8—H8C109.5C19—C24—H24A119.2
O1—C9—C10106.8 (3)C30—C25—C26118.0 (3)
O1—C9—H9A110.4C30—C25—C18119.9 (3)
C10—C9—H9A110.4C26—C25—C18122.1 (2)
O1—C9—H9B110.4C25—C26—C27121.2 (3)
C10—C9—H9B110.4C25—C26—H26A119.4
H9A—C9—H9B108.6C27—C26—H26A119.4
C9—C10—H10A109.5C28—C27—C26120.3 (3)
C9—C10—H10B109.5C28—C27—H27A119.9
H10A—C10—H10B109.5C26—C27—H27A119.9
C9—C10—H10C109.5C27—C28—C29119.2 (3)
H10A—C10—H10C109.5C27—C28—H28A120.4
H10B—C10—H10C109.5C29—C28—H28A120.4
C12—C11—C3127.6 (2)C28—C29—C30121.1 (3)
C12—C11—H11A116.2C28—C29—H29A119.4
C3—C11—H11A116.2C30—C29—H29A119.4
C11—C12—C13121.2 (2)C25—C30—C29120.1 (3)
C11—C12—H12A119.4C25—C30—H30A119.9
C13—C12—H12A119.4C29—C30—H30A119.9
O3—C13—N1121.3 (2)C31—O4—H4B109.5
O3—C13—C12120.9 (2)O4—C31—C32118.1 (4)
N1—C13—C12117.8 (2)O4—C31—H31A107.8
N1—C14—C15109.7 (2)C32—C31—H31A107.8
N1—C14—H14A109.7O4—C31—H31B107.8
C15—C14—H14A109.7C32—C31—H31B107.8
N1—C14—H14B109.7H31A—C31—H31B107.1
C15—C14—H14B109.7C31—C32—H32A109.5
H14A—C14—H14B108.2C31—C32—H32B109.5
N2—C15—C14110.9 (2)H32A—C32—H32B109.5
N2—C15—H15A109.5C31—C32—H32C109.5
C14—C15—H15A109.5H32A—C32—H32C109.5
N2—C15—H15B109.5H32B—C32—H32C109.5
C9—O1—C1—C25.4 (4)C15—N2—C16—C1756.8 (3)
C9—O1—C1—C6172.3 (3)C18—N2—C16—C17176.9 (2)
O1—C1—C2—C3179.0 (2)C13—N1—C17—C16135.9 (3)
C6—C1—C2—C31.4 (4)C14—N1—C17—C1652.7 (3)
C1—C2—C3—C41.2 (4)N2—C16—C17—N153.7 (3)
C1—C2—C3—C11176.4 (2)C15—N2—C18—C1956.0 (3)
C2—C3—C4—C51.7 (4)C16—N2—C18—C19174.4 (2)
C11—C3—C4—C5176.0 (3)C15—N2—C18—C25179.3 (2)
C3—C4—C5—C60.5 (5)C16—N2—C18—C2560.8 (3)
C7—O2—C6—C513.5 (5)N2—C18—C19—C20134.7 (3)
C7—O2—C6—C1167.7 (3)C25—C18—C19—C20100.6 (3)
C4—C5—C6—O2178.2 (3)N2—C18—C19—C2445.2 (3)
C4—C5—C6—C13.0 (4)C25—C18—C19—C2479.4 (3)
O1—C1—C6—O20.3 (4)C24—C19—C20—C210.1 (4)
C2—C1—C6—O2177.6 (3)C18—C19—C20—C21180.0 (3)
O1—C1—C6—C5178.6 (3)C19—C20—C21—C220.9 (5)
C2—C1—C6—C53.5 (4)C20—C21—C22—C231.4 (6)
C6—O2—C7—C8137.2 (4)C21—C22—C23—C240.9 (6)
C1—O1—C9—C10172.3 (3)C22—C23—C24—C190.1 (5)
C4—C3—C11—C12171.4 (3)C20—C19—C24—C230.6 (4)
C2—C3—C11—C126.2 (4)C18—C19—C24—C23179.5 (3)
C3—C11—C12—C13175.4 (2)N2—C18—C25—C30121.6 (3)
C17—N1—C13—O34.0 (4)C19—C18—C25—C30114.1 (3)
C14—N1—C13—O3173.9 (3)N2—C18—C25—C2659.7 (3)
C17—N1—C13—C12175.1 (2)C19—C18—C25—C2664.6 (3)
C14—N1—C13—C125.2 (4)C30—C25—C26—C270.1 (4)
C11—C12—C13—O328.2 (4)C18—C25—C26—C27178.9 (3)
C11—C12—C13—N1150.9 (3)C25—C26—C27—C280.1 (5)
C13—N1—C14—C15133.3 (3)C26—C27—C28—C290.5 (5)
C17—N1—C14—C1556.0 (3)C27—C28—C29—C301.2 (5)
C16—N2—C15—C1460.3 (3)C26—C25—C30—C290.9 (4)
C18—N2—C15—C14179.4 (2)C18—C25—C30—C29179.6 (3)
N1—C14—C15—N260.9 (3)C28—C29—C30—C251.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.821.942.765 (3)177
C11—H11A···O30.932.532.845 (3)100
C17—H17A···O30.972.332.734 (4)104

Experimental details

Crystal data
Chemical formulaC30H34N2O3·C2H6O
Mr516.66
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9590 (16), 12.039 (2), 16.298 (3)
α, β, γ (°)104.27 (3), 100.09 (3), 100.02 (3)
V3)1450.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al. 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
5753, 5335, 3341
Rint0.019
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.166, 1.00
No. of reflections5335
No. of parameters343
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O30.821.942.765 (3)177
C11—H11A···O30.932.532.845 (3)100
C17—H17A···O30.972.332.734 (4)104
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Education Department of Jiangsu Province (No. 05KJB350084) and the Natural Science Foundation of Jiangsu Province (No. BK2010538).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationQian, Y., Zhang, H.-J., Zhang, H., Xu, J. & Zhu, H.-L. (2010). Bioorg. Med. Chem. 18, 4991–4996.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y., Chen, Q.-X., Wang, Q., Song, K.-K. & Qiu, L. (2005). Food Chem. 92, 707–712.  CrossRef CAS Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds