organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Anhydro-3,6-di-O-benzyl-2-de­­oxy-1,2-C-di­chloro­methyl­ene-D-glycero-D-gulo-hexitol

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za

(Received 26 September 2011; accepted 4 October 2011; online 8 October 2011)

In the title compound, C21H22Cl2O4, the pyranosyl ring adopts a twist-boat conformation with the O-benzyl groups in equatorial positions. In the crystal, O—H⋯O hydrogen bonding results in infinite chains of mol­ecules along [100]. The structure is further consolidated by weak C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions. The absolute structure was determined.

Related literature

For O-benzyl deprotection methodologies, see: Akiyama et al. (1991[Akiyama, T., Hirofuji, H. & Ozaki, S. (1991). Tetrahedron Lett. 32, 1321-1324.]). For a related structure, see: Shanmugasundaram et al. (2002[Shanmugasundaram, B., Varghese, B. & Balasubramanian, K. K. (2002). Carbohydr. Res. 337, 1523-1527.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22Cl2O4

  • Mr = 409.29

  • Orthorhombic, P 21 21 21

  • a = 5.2985 (1) Å

  • b = 18.8511 (3) Å

  • c = 19.5973 (4) Å

  • V = 1957.43 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.19 mm−1

  • T = 100 K

  • 0.16 × 0.06 × 0.05 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 0.857

  • 14434 measured reflections

  • 3241 independent reflections

  • 3108 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.05

  • 3241 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1327 Friedel Pairs

  • Flack parameter: 0.009 (9)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C7 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O3i 0.84 2.18 2.9905 (10) 163
C13—H13⋯O2ii 1.00 2.45 3.4005 (19) 158
C18—H18⋯O3i 0.95 2.58 3.521 (2) 171
C20—H20⋯Cl1iii 0.95 2.75 3.6268 (19) 154
C8—H8BCg1iv 0.99 2.76 3.7480 (18) 175
C16—H16BCg2iv 0.99 2.79 3.7195 (17) 156
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A combination of AlCl3 and a base additive such as N,N-dimethylaniline cleaves benzyl ethers efficiently (Akiyama et al., 1991). We have found that treatment of dichlorocyclopropyl sugar derivative A with AlCl3 in toluene and in the absence of a base additive resulted to selective deprotection and afforded 4-O-debenzylated sugar derivative I in 73% yield (Fig. 2). Although 1H NMR data could be used to establish the structure of the product, the highly reactive and strained bicyclic junction requires single-crystal X-ray diffraction study to determine the stereochemistry of the product (Shanmugasundaram et al., 2002)

In the title compound (Fig. 1) the O--benzyl groups are all in equatorial positions. The pyran ring adopts a twist-boat conformation with ring puckering parameters of q2 = 0.6935 (15) Å, q3 = -0.1106 (16) Å, Q = 0.7023 (16) Å and ϕ2 = 342.07 (14)° (Cremer & Pople, 1975). Strong O—H···O hydrogen bonding create infinite one-dimensional chains along the [100] direction. Several weak C—H···O/Cl/Cg interactions are also noted and listed in Table 1.

Related literature top

For O-benzyl deprotection methodologies, see: Akiyama et al. (1991). For a related structure, see: Shanmugasundaram et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

AlCl3 (37 mg, 0.28 mmol) was added to a solution of dichlorocyclopropyl sugar derivative (see A in scheme 2)(100 mg, 0.20 mmol) in toluene (1 ml) and the resulting mixture was stirred for 2 h at room temperature. The reaction mixture was then diluted with water and the aqueous phase was extracted with toluene. The combined organic phases were dried over MgSO4, filtered and evaporated in vacuo. Chromatography on silica gel (ethyl acetate/hexane, 5:95) of the residue and recrystallization from hexane gave dichlorocyclopropyl sugar derivative I in 73% yield as a white solid.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00, 0.99, 0.95 and 0.84 Å for methine, methylene, aromatic and hydroxyl H atoms respectively. All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the hydroxyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of hydroxyl hydrogen atom was located from a Fourier difference map and refined as fixed rotor. The D enantiomer refined to a final Flack parameter of 0.009 (9).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound; displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Reaction scheme for the dihalocarbene cyclopropanation of the protected glucal.
1,5-Anhydro-3,6-di-O-benzyl-2-deoxy-1,2-C-dichloromethylene- D-glycero-D-gulo-hexitol top
Crystal data top
C21H22Cl2O4F(000) = 856
Mr = 409.29Dx = 1.389 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 8719 reflections
a = 5.2985 (1) Åθ = 4.5–64.5°
b = 18.8511 (3) ŵ = 3.19 mm1
c = 19.5973 (4) ÅT = 100 K
V = 1957.43 (6) Å3Needle, colorless
Z = 40.16 × 0.06 × 0.05 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
3241 independent reflections
Incoatec Quazar Multilayer Mirror monochromator3108 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.038
ϕ and ω scansθmax = 64.9°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 36
Tmin = 0.630, Tmax = 0.857k = 2122
14434 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.1406P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3241 reflectionsΔρmax = 0.14 e Å3
245 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1327 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (9)
Crystal data top
C21H22Cl2O4V = 1957.43 (6) Å3
Mr = 409.29Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.2985 (1) ŵ = 3.19 mm1
b = 18.8511 (3) ÅT = 100 K
c = 19.5973 (4) Å0.16 × 0.06 × 0.05 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
3241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3108 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.857Rint = 0.038
14434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.19 e Å3
3241 reflectionsAbsolute structure: Flack (1983), 1327 Friedel Pairs
245 parametersAbsolute structure parameter: 0.009 (9)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 10 s/frame. A total of 1989 frames were collected with a frame width of 1° covering up to θ = 64.94° with 97.8% completeness accomplished.

Analytical data: mp 91–93 °C; 1H NMR (CDCl3, 400 MHz) δ 7.50–7.20 (m, 10H), 4.77 (d, J = 11.7 Hz, 1H), 4.61–4.50 (m, 3H), 3.90–3.80 (m, 4H), 3.65 (dd, J = 1.5 and 3.3 Hz, 1H), 3.56 (dd, J = 4.4 and 9.2 Hz, 1H), 2.59 (bs, 1H), 1.73 (dd, J = 4.6 and 8.2 Hz, 1H); 13C NMR (CDCl3, 75 MHz) δ 137.9, 137.1, 128.6, 128.4, 128.2, 127.7, 127.6, 79.2, 76.4, 73.5, 71.9, 70.5, 68.3, 58.9, 33.2.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5355 (4)1.08839 (10)0.90087 (9)0.0335 (4)
H10.46721.05910.8660.04*
C20.7181 (4)1.13816 (11)0.88478 (10)0.0425 (5)
H20.77321.1430.83890.051*
C30.8206 (4)1.18073 (11)0.93482 (10)0.0354 (5)
H30.94421.21530.92340.042*
C40.7428 (3)1.17297 (9)1.00165 (9)0.0292 (4)
H40.81451.20171.03650.035*
C60.5596 (3)1.12310 (9)1.01784 (9)0.0287 (4)
H60.50731.11771.06390.034*
C70.4516 (3)1.08095 (9)0.96753 (9)0.0242 (4)
C80.2384 (4)1.03164 (9)0.98508 (9)0.0277 (4)
H8A0.25231.0171.03350.033*
H8B0.07541.05650.9790.033*
C90.0295 (3)0.92729 (9)0.95300 (8)0.0228 (4)
H9A0.12520.95540.94440.027*
H9B0.02580.91081.00090.027*
C100.0368 (3)0.86420 (8)0.90551 (8)0.0190 (3)
H100.11340.83440.9170.023*
C110.2697 (3)0.81673 (8)0.91569 (8)0.0169 (3)
H110.4170.84680.92920.02*
C120.3303 (3)0.77835 (8)0.84966 (8)0.0165 (3)
H120.17890.75180.83310.02*
C130.4032 (3)0.83516 (8)0.79898 (8)0.0175 (3)
H130.58680.84720.79660.021*
C140.2225 (3)0.89727 (8)0.79761 (8)0.0193 (3)
H140.29570.94610.79550.023*
C150.2516 (3)0.85065 (9)0.73630 (8)0.0198 (3)
C160.5667 (3)0.68293 (8)0.80641 (8)0.0190 (3)
H16A0.60670.70970.76430.023*
H16B0.40880.65610.79850.023*
C170.7775 (3)0.63247 (8)0.82228 (8)0.0192 (3)
C180.8761 (3)0.62666 (9)0.88720 (9)0.0258 (4)
H180.81350.65620.92270.031*
C191.0653 (4)0.57824 (11)0.90107 (11)0.0381 (5)
H191.13070.57460.94610.046*
C201.1593 (3)0.53552 (10)0.85055 (12)0.0404 (5)
H201.28920.50240.86050.048*
C211.0652 (3)0.54082 (10)0.78545 (12)0.0401 (5)
H211.13010.51130.75030.048*
C220.8757 (3)0.58918 (10)0.77109 (10)0.0319 (4)
H220.8120.59290.72590.038*
O10.2452 (2)0.97025 (6)0.94223 (6)0.0233 (3)
O20.00229 (19)0.88752 (6)0.83550 (5)0.0204 (2)
O30.2084 (2)0.76993 (6)0.97025 (5)0.0212 (3)
H3A0.34020.74980.98410.032*
O40.5327 (2)0.73099 (5)0.86182 (5)0.0177 (2)
Cl10.41378 (7)0.88614 (2)0.66614 (2)0.02898 (11)
Cl20.00637 (7)0.79466 (2)0.711124 (19)0.02339 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (12)0.0313 (10)0.0242 (9)0.0091 (9)0.0094 (8)0.0001 (8)
C20.0609 (14)0.0429 (12)0.0238 (10)0.0156 (11)0.0032 (10)0.0071 (9)
C30.0414 (11)0.0277 (10)0.0370 (11)0.0071 (9)0.0040 (8)0.0040 (9)
C40.0328 (11)0.0236 (9)0.0312 (10)0.0032 (8)0.0041 (8)0.0067 (8)
C60.0321 (10)0.0271 (10)0.0270 (9)0.0047 (8)0.0042 (7)0.0073 (8)
C70.0249 (10)0.0191 (9)0.0286 (9)0.0066 (7)0.0018 (7)0.0017 (7)
C80.0302 (10)0.0220 (9)0.0309 (10)0.0035 (8)0.0049 (8)0.0091 (8)
C90.0180 (9)0.0255 (9)0.0248 (9)0.0044 (7)0.0039 (7)0.0002 (7)
C100.0153 (8)0.0219 (8)0.0197 (8)0.0009 (7)0.0019 (6)0.0030 (6)
C110.0134 (8)0.0182 (8)0.0192 (8)0.0015 (7)0.0013 (6)0.0021 (6)
C120.0118 (8)0.0184 (8)0.0193 (8)0.0006 (6)0.0017 (6)0.0011 (7)
C130.0126 (7)0.0194 (8)0.0206 (8)0.0007 (6)0.0001 (6)0.0026 (7)
C140.0159 (8)0.0188 (8)0.0231 (8)0.0007 (6)0.0010 (6)0.0025 (7)
C150.0165 (8)0.0216 (9)0.0212 (8)0.0017 (7)0.0001 (6)0.0047 (7)
C160.0207 (8)0.0171 (8)0.0192 (8)0.0007 (6)0.0016 (6)0.0012 (6)
C170.0155 (8)0.0145 (8)0.0277 (9)0.0041 (6)0.0024 (7)0.0010 (7)
C180.0231 (9)0.0281 (10)0.0261 (9)0.0049 (8)0.0015 (7)0.0037 (8)
C190.0298 (11)0.0417 (12)0.0429 (12)0.0095 (9)0.0045 (8)0.0103 (10)
C200.0234 (10)0.0260 (10)0.0717 (16)0.0089 (8)0.0016 (9)0.0021 (11)
C210.0231 (10)0.0260 (10)0.0712 (15)0.0002 (8)0.0070 (10)0.0215 (10)
C220.0234 (9)0.0328 (10)0.0395 (11)0.0008 (8)0.0024 (8)0.0179 (8)
O10.0220 (6)0.0199 (6)0.0280 (6)0.0017 (5)0.0058 (5)0.0077 (5)
O20.0156 (5)0.0245 (6)0.0210 (5)0.0039 (5)0.0006 (4)0.0016 (5)
O30.0197 (6)0.0251 (6)0.0188 (6)0.0016 (5)0.0013 (5)0.0058 (5)
O40.0183 (6)0.0179 (5)0.0170 (5)0.0036 (5)0.0025 (4)0.0011 (4)
Cl10.0229 (2)0.0396 (3)0.0245 (2)0.00114 (19)0.00327 (16)0.0137 (2)
Cl20.01837 (19)0.0297 (2)0.02214 (19)0.00268 (17)0.00245 (15)0.00181 (16)
Geometric parameters (Å, º) top
C1—C21.384 (3)C12—C131.511 (2)
C1—C71.387 (3)C12—H121
C1—H10.95C13—C151.496 (2)
C2—C31.379 (3)C13—C141.513 (2)
C2—H20.95C13—H131
C3—C41.381 (3)C14—O21.3950 (19)
C3—H30.95C14—C151.497 (2)
C4—C61.388 (3)C14—H141
C4—H40.95C15—Cl21.7452 (16)
C6—C71.389 (2)C15—Cl11.7541 (16)
C6—H60.95C16—O41.4254 (18)
C7—C81.503 (3)C16—C171.500 (2)
C8—O11.4303 (19)C16—H16A0.99
C8—H8A0.99C16—H16B0.99
C8—H8B0.99C17—C181.380 (2)
C9—O11.416 (2)C17—C221.394 (2)
C9—C101.511 (2)C18—C191.383 (2)
C9—H9A0.99C18—H180.95
C9—H9B0.99C19—C201.370 (3)
C10—O21.4523 (18)C19—H190.95
C10—C111.538 (2)C20—C211.373 (3)
C10—H101C20—H200.95
C11—O31.4239 (18)C21—C221.385 (3)
C11—C121.517 (2)C21—H210.95
C11—H111C22—H220.95
C12—O41.4157 (18)O3—H3A0.84
C2—C1—C7120.47 (17)C11—C12—H12110.3
C2—C1—H1119.8C15—C13—C12122.73 (13)
C7—C1—H1119.8C15—C13—C1459.65 (10)
C3—C2—C1120.52 (19)C12—C13—C14113.49 (13)
C3—C2—H2119.7C15—C13—H13116.1
C1—C2—H2119.7C12—C13—H13116.1
C2—C3—C4119.70 (19)C14—C13—H13116.1
C2—C3—H3120.2O2—C14—C15115.86 (13)
C4—C3—H3120.2O2—C14—C13114.71 (13)
C3—C4—C6119.82 (17)C15—C14—C1359.64 (10)
C3—C4—H4120.1O2—C14—H14117.9
C6—C4—H4120.1C15—C14—H14117.9
C4—C6—C7120.86 (16)C13—C14—H14117.9
C4—C6—H6119.6C13—C15—C1460.72 (10)
C7—C6—H6119.6C13—C15—Cl2120.91 (11)
C1—C7—C6118.60 (17)C14—C15—Cl2120.36 (11)
C1—C7—C8121.26 (16)C13—C15—Cl1117.06 (11)
C6—C7—C8120.05 (16)C14—C15—Cl1117.12 (11)
O1—C8—C7110.31 (13)Cl2—C15—Cl1111.95 (9)
O1—C8—H8A109.6O4—C16—C17109.83 (12)
C7—C8—H8A109.6O4—C16—H16A109.7
O1—C8—H8B109.6C17—C16—H16A109.7
C7—C8—H8B109.6O4—C16—H16B109.7
H8A—C8—H8B108.1C17—C16—H16B109.7
O1—C9—C10109.73 (12)H16A—C16—H16B108.2
O1—C9—H9A109.7C18—C17—C22118.41 (16)
C10—C9—H9A109.7C18—C17—C16121.58 (14)
O1—C9—H9B109.7C22—C17—C16120.01 (15)
C10—C9—H9B109.7C17—C18—C19120.55 (17)
H9A—C9—H9B108.2C17—C18—H18119.7
O2—C10—C9109.91 (12)C19—C18—H18119.7
O2—C10—C11113.57 (12)C20—C19—C18120.64 (19)
C9—C10—C11113.50 (13)C20—C19—H19119.7
O2—C10—H10106.4C18—C19—H19119.7
C9—C10—H10106.4C19—C20—C21119.78 (18)
C11—C10—H10106.4C19—C20—H20120.1
O3—C11—C12113.16 (12)C21—C20—H20120.1
O3—C11—C10105.95 (12)C20—C21—C22119.98 (18)
C12—C11—C10109.68 (12)C20—C21—H21120
O3—C11—H11109.3C22—C21—H21120
C12—C11—H11109.3C21—C22—C17120.65 (18)
C10—C11—H11109.3C21—C22—H22119.7
O4—C12—C13111.35 (12)C17—C22—H22119.7
O4—C12—C11108.51 (12)C9—O1—C8110.77 (12)
C13—C12—C11106.06 (12)C14—O2—C10115.94 (11)
O4—C12—H12110.3C11—O3—H3A109.5
C13—C12—H12110.3C12—O4—C16111.61 (11)
C7—C1—C2—C30.5 (3)C12—C13—C15—Cl29.9 (2)
C1—C2—C3—C40.9 (3)C14—C13—C15—Cl2109.85 (14)
C2—C3—C4—C60.9 (3)C12—C13—C15—Cl1152.58 (12)
C3—C4—C6—C70.4 (3)C14—C13—C15—Cl1107.49 (13)
C2—C1—C7—C61.7 (3)O2—C14—C15—C13104.74 (15)
C2—C1—C7—C8174.77 (17)O2—C14—C15—Cl26.00 (19)
C4—C6—C7—C11.7 (3)C13—C14—C15—Cl2110.74 (14)
C4—C6—C7—C8174.85 (16)O2—C14—C15—Cl1147.88 (11)
C1—C7—C8—O134.7 (2)C13—C14—C15—Cl1107.39 (13)
C6—C7—C8—O1148.89 (15)O4—C16—C17—C1812.7 (2)
O1—C9—C10—O268.30 (16)O4—C16—C17—C22168.31 (14)
O1—C9—C10—C1160.10 (17)C22—C17—C18—C190.9 (2)
O2—C10—C11—O3149.38 (12)C16—C17—C18—C19178.06 (16)
C9—C10—C11—O384.13 (15)C17—C18—C19—C200.4 (3)
O2—C10—C11—C1226.92 (18)C18—C19—C20—C210.1 (3)
C9—C10—C11—C12153.42 (13)C19—C20—C21—C220.1 (3)
O3—C11—C12—O457.46 (16)C20—C21—C22—C170.4 (3)
C10—C11—C12—O4175.51 (12)C18—C17—C22—C210.9 (3)
O3—C11—C12—C13177.19 (12)C16—C17—C22—C21178.06 (16)
C10—C11—C12—C1364.76 (16)C10—C9—O1—C8178.08 (13)
O4—C12—C13—C15126.95 (15)C7—C8—O1—C9173.42 (14)
C11—C12—C13—C15115.19 (16)C15—C14—O2—C10117.76 (14)
O4—C12—C13—C14165.12 (12)C13—C14—O2—C1051.05 (17)
C11—C12—C13—C1447.26 (17)C9—C10—O2—C1496.56 (15)
C15—C13—C14—O2106.67 (15)C11—C10—O2—C1431.80 (18)
C12—C13—C14—O28.71 (19)C13—C12—O4—C1675.51 (15)
C12—C13—C14—C15115.39 (15)C11—C12—O4—C16168.12 (12)
C12—C13—C15—C1499.94 (16)C17—C16—O4—C12178.33 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C7 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3i0.842.182.9905 (10)163
C11—H11···O11.002.512.9433 (19)106
C12—H12···Cl21.002.683.2266 (15)114
C13—H13···O2ii1.002.453.4005 (19)158
C18—H18···O40.952.372.725 (2)102
C18—H18···O3i0.952.583.521 (2)171
C20—H20···Cl1iii0.952.753.6268 (19)154
C8—H8B···Cg1iv0.992.763.7480 (18)175
C16—H16B···Cg2iv0.992.793.7195 (17)156
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y, z; (iii) x+2, y1/2, z+3/2; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H22Cl2O4
Mr409.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.2985 (1), 18.8511 (3), 19.5973 (4)
V3)1957.43 (6)
Z4
Radiation typeCu Kα
µ (mm1)3.19
Crystal size (mm)0.16 × 0.06 × 0.05
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.630, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
14434, 3241, 3108
Rint0.038
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.05
No. of reflections3241
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureFlack (1983), 1327 Friedel Pairs
Absolute structure parameter0.009 (9)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C7 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O3i0.842.182.9905 (10)162.7
C13—H13···O2ii1.002.453.4005 (19)158.4
C18—H18···O3i0.952.583.521 (2)170.7
C20—H20···Cl1iii0.952.753.6268 (19)154.2
C8—H8B···Cg1iv0.992.763.7480 (18)175
C16—H16B···Cg2iv0.992.793.7195 (17)156
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x+1, y, z; (iii) x+2, y1/2, z+3/2; (iv) x1, y, z.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mr C. Ncube is thanked for the data collection of the title compound.

References

First citationAkiyama, T., Hirofuji, H. & Ozaki, S. (1991). Tetrahedron Lett. 32, 1321–1324.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShanmugasundaram, B., Varghese, B. & Balasubramanian, K. K. (2002). Carbohydr. Res. 337, 1523–1527.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds