metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[di­aqua­(cis-cyclo­hexane-1,2-di­carboxyl­ato)cadmium]

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: hgzhuxh@yeah.net

(Received 2 October 2011; accepted 24 October 2011; online 29 October 2011)

In the title polymer, [Cd(C8H10O4)(H2O)2]n, the CdII cation is coordinated by five carboxyl­ate O atoms from three different cyclo­hexane-1,2-dicarboxyl­ate anions and two O atoms from two water mol­ecules, displaying a distorted CdO7 pentagonal–bipyramidal geometry. Each anion acts as a μ3-bridge, linking symmetry-related CdII ions into a layer parallel to (010). In the crystal, numerous O—H⋯O and C—H⋯O hydrogen bonds occur. The coordinated water mol­ecules and carboxyl­ate O atoms act as donors or acceptors in the formation of these hydrogen-bonding inter­actions.

Related literature

For related structures, see: Thirumurugan et al. (2006[Thirumurugan, A., Avinash, M. B. & Rao, C. N. R. (2006). Dalton Trans. pp. 221-228.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H10O4)(H2O)2]

  • Mr = 318.59

  • Monoclinic, P 21 /c

  • a = 6.0585 (9) Å

  • b = 23.544 (3) Å

  • c = 8.3308 (9) Å

  • β = 118.787 (8)°

  • V = 1041.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.678, Tmax = 0.703

  • 5908 measured reflections

  • 2250 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.132

  • S = 1.51

  • 2250 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 1.31 e Å−3

  • Δρmin = −2.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H11⋯O6i 0.85 2.01 2.828 (8) 164
O5—H12⋯O4ii 0.85 1.89 2.725 (8) 169
O6—H13⋯O3iii 0.85 1.85 2.694 (8) 175
O6—H14⋯O2iv 0.84 2.49 3.147 (8) 136
O6—H14⋯O4iv 0.84 2.57 3.016 (8) 115
C3—H3⋯O2 0.97 2.59 3.120 (10) 115
C6—H9⋯O4v 0.97 2.30 3.257 (10) 169
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

cyclohexane-1,2-dicarboxylic acid is often used as organic ligand to synthesize complexes for its variable conformation and coordination modes. Herein, we report the crystal structure of the title polymer. In contrast to the reported cadmium complex with cyclohexane-1,2-dicarboxylate (Thirumurugan et al., 2006), the title complex crystallizes in a different space group, besides different carboxylate coordination modes and different crystal structure. The asymmetric unit of the title complex (Fig. 1) consists of a cadmium ion, a cyclohexane-1,2-dicarboxylate anion, and two coordinated water molecules. The Cd ion is coordinated by five carboxylate O atoms from three different cyclohexane-1,2-dicarboxylate anions, two O atoms from two coordinated water molecules, displaying a distorted CdO7 decahedral geometry. Each anion acts as a µ3-bridge, linking different cadmium ions to form a two-dimensional layer. In the crystal structure, there exist abundant O—H···O and C—H···O hydrogen bonds (Table 1, Fig. 1). Coordinated water molecules and carboxylate oxygen atoms act as donors or acceptors in the formation of these hydrogen bonding interactions.

Related literature top

For related structures, see: Thirumurugan et al. (2006).

Experimental top

Reaction mixture of cadmium perchlorate hexahydrate (49.4 mg, 0.1 mmol), cyclohexane-1,2-dicarboxylic acid (17.2 mg, 0.1 mmol) and potassium hydroxide (11.2 mg, 0.2 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling to room temperature, colorless block crystals of the title complex were obtained.

Refinement top

The hydrogen atomsbonded to C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 or 0.98 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms bonded to O5 and O6 were found from difference Fourier maps and fixed at those positions with [Uiso(H) = 1.2Ueq(O)]. The final difference map showed residual electron density in the close proximity of Cd-atom and was meaningless.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The coordination environment of Cd ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms are omitted for clarity. Symmetry code: A = 1 + x, 3/2 - y, 1/2 + z; B = x, 3/2 - y, 1/2 + z.
[Figure 2] Fig. 2. : The packing diagram of the title complex. Hydrogen bonds are shown in dashed lines.
catena-Poly[diaqua(cis-cyclohexane-1,2-dicarboxylato)cadmium] top
Crystal data top
[Cd(C8H10O4)(H2O)2]F(000) = 632
Mr = 318.59Dx = 2.032 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3464 reflections
a = 6.0585 (9) Åθ = 2.9–28.3°
b = 23.544 (3) ŵ = 2.10 mm1
c = 8.3308 (9) ÅT = 293 K
β = 118.787 (8)°Block, colorless
V = 1041.5 (2) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2250 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.678, Tmax = 0.703k = 3022
5908 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.51 w = 1/[σ2(Fo2) + (0.0226P)2 + 8.9495P]
where P = (Fo2 + 2Fc2)/3
2250 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 1.31 e Å3
0 restraintsΔρmin = 2.11 e Å3
Crystal data top
[Cd(C8H10O4)(H2O)2]V = 1041.5 (2) Å3
Mr = 318.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0585 (9) ŵ = 2.10 mm1
b = 23.544 (3) ÅT = 293 K
c = 8.3308 (9) Å0.20 × 0.20 × 0.18 mm
β = 118.787 (8)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2214 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.703Rint = 0.021
5908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.51Δρmax = 1.31 e Å3
2250 reflectionsΔρmin = 2.11 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2430 (14)0.8769 (3)0.3235 (9)0.0215 (15)
H10.12390.87310.37100.026*
C20.0977 (14)0.9021 (3)0.1294 (9)0.0217 (15)
H20.01170.93600.14020.026*
C30.2681 (16)0.9226 (4)0.0541 (11)0.0306 (18)
H40.16770.94300.05950.037*
H30.34230.89000.02680.037*
C40.4788 (18)0.9615 (4)0.1884 (13)0.040 (2)
H60.59250.97020.14050.048*
H50.40670.99690.20110.048*
C50.6240 (16)0.9336 (4)0.3738 (12)0.038 (2)
H70.75270.95940.45740.046*
H80.70710.89980.36250.046*
C60.4523 (17)0.9175 (3)0.4512 (11)0.0324 (19)
H100.37720.95160.46940.039*
H90.55060.89940.56940.039*
C110.3489 (12)0.8179 (3)0.3255 (9)0.0172 (13)
C210.1078 (14)0.8624 (3)0.0000 (10)0.0233 (15)
Cd10.52611 (10)0.71211 (2)0.27582 (7)0.02114 (18)
O10.4616 (10)0.7907 (2)0.4755 (7)0.0292 (12)
O20.3166 (11)0.7961 (2)0.1782 (7)0.0286 (12)
O30.2409 (10)0.8354 (2)0.0540 (7)0.0276 (12)
O40.1527 (11)0.8576 (3)0.1638 (7)0.0306 (13)
O50.1442 (11)0.6699 (3)0.1849 (8)0.0420 (16)
H110.03960.68640.08730.050*
H120.06550.65800.23900.050*
O60.8811 (10)0.7702 (2)0.3509 (7)0.0291 (12)
H130.85290.79140.26100.035*
H140.99680.74610.38320.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (4)0.018 (4)0.018 (3)0.002 (3)0.009 (3)0.000 (3)
C20.024 (4)0.019 (3)0.016 (3)0.003 (3)0.005 (3)0.000 (3)
C30.034 (4)0.029 (4)0.026 (4)0.009 (3)0.012 (3)0.003 (3)
C40.042 (5)0.034 (5)0.047 (5)0.014 (4)0.023 (5)0.002 (4)
C50.021 (4)0.034 (5)0.041 (5)0.001 (3)0.001 (4)0.000 (4)
C60.039 (5)0.022 (4)0.024 (4)0.002 (3)0.006 (4)0.005 (3)
C110.015 (3)0.016 (3)0.020 (3)0.001 (3)0.007 (3)0.002 (3)
C210.020 (3)0.022 (4)0.019 (3)0.004 (3)0.003 (3)0.001 (3)
Cd10.0190 (3)0.0229 (3)0.0189 (3)0.0022 (2)0.0070 (2)0.0012 (2)
O10.031 (3)0.031 (3)0.022 (3)0.006 (2)0.011 (2)0.005 (2)
O20.031 (3)0.030 (3)0.021 (3)0.006 (2)0.010 (2)0.003 (2)
O30.026 (3)0.030 (3)0.030 (3)0.007 (2)0.017 (2)0.003 (2)
O40.029 (3)0.039 (3)0.019 (3)0.000 (3)0.007 (2)0.001 (2)
O50.030 (3)0.064 (4)0.027 (3)0.006 (3)0.010 (3)0.014 (3)
O60.023 (3)0.034 (3)0.028 (3)0.000 (2)0.010 (2)0.007 (2)
Geometric parameters (Å, º) top
C1—C111.528 (9)C11—O11.271 (9)
C1—C61.534 (11)C21—O41.262 (9)
C1—C21.540 (10)C21—O31.266 (9)
C1—H10.9800C21—Cd1i2.737 (7)
C2—C211.515 (10)Cd1—O22.278 (5)
C2—C31.522 (11)Cd1—O52.286 (6)
C2—H20.9800Cd1—O3ii2.337 (5)
C3—C41.531 (11)Cd1—O1iii2.340 (5)
C3—H40.9700Cd1—O62.365 (5)
C3—H30.9700Cd1—O4ii2.407 (6)
C4—C51.512 (12)Cd1—O12.639 (6)
C4—H60.9700Cd1—C21ii2.737 (7)
C4—H50.9700O1—Cd1iv2.340 (5)
C5—C61.512 (13)O3—Cd1i2.337 (5)
C5—H70.9700O4—Cd1i2.407 (6)
C5—H80.9700O5—H110.8466
C6—H100.9700O5—H120.8458
C6—H90.9700O6—H130.8460
C11—O21.256 (9)O6—H140.8404
C11—C1—C6110.9 (6)O3—C21—Cd1i58.4 (4)
C11—C1—C2112.8 (6)C2—C21—Cd1i178.1 (5)
C6—C1—C2110.6 (6)O2—Cd1—O587.6 (2)
C11—C1—H1107.4O2—Cd1—O3ii137.40 (19)
C6—C1—H1107.4O5—Cd1—O3ii98.8 (2)
C2—C1—H1107.4O2—Cd1—O1iii82.2 (2)
C21—C2—C3113.0 (6)O5—Cd1—O1iii90.7 (2)
C21—C2—C1111.5 (6)O3ii—Cd1—O1iii139.2 (2)
C3—C2—C1113.4 (6)O2—Cd1—O682.6 (2)
C21—C2—H2106.1O5—Cd1—O6170.2 (2)
C3—C2—H2106.1O3ii—Cd1—O688.65 (19)
C1—C2—H2106.1O1iii—Cd1—O687.78 (19)
C2—C3—C4112.4 (7)O2—Cd1—O4ii157.3 (2)
C2—C3—H4109.1O5—Cd1—O4ii111.1 (2)
C4—C3—H4109.1O3ii—Cd1—O4ii54.90 (18)
C2—C3—H3109.1O1iii—Cd1—O4ii84.63 (19)
C4—C3—H3109.1O6—Cd1—O4ii78.4 (2)
H4—C3—H3107.9O2—Cd1—O152.46 (17)
C5—C4—C3110.9 (7)O5—Cd1—O194.6 (2)
C5—C4—H6109.5O3ii—Cd1—O184.97 (17)
C3—C4—H6109.5O1iii—Cd1—O1133.97 (13)
C5—C4—H5109.5O6—Cd1—O179.61 (19)
C3—C4—H5109.5O4ii—Cd1—O1134.15 (17)
H6—C4—H5108.0O2—Cd1—C21ii158.3 (2)
C4—C5—C6111.3 (7)O5—Cd1—C21ii107.8 (2)
C4—C5—H7109.4O3ii—Cd1—C21ii27.5 (2)
C6—C5—H7109.4O1iii—Cd1—C21ii112.0 (2)
C4—C5—H8109.4O6—Cd1—C21ii81.7 (2)
C6—C5—H8109.4O4ii—Cd1—C21ii27.4 (2)
H7—C5—H8108.0O1—Cd1—C21ii109.6 (2)
C5—C6—C1111.7 (7)C11—O1—Cd1iv143.0 (5)
C5—C6—H10109.3C11—O1—Cd184.6 (4)
C1—C6—H10109.3Cd1iv—O1—Cd1130.9 (2)
C5—C6—H9109.3C11—O2—Cd1102.0 (4)
C1—C6—H9109.3C21—O3—Cd1i94.1 (4)
H10—C6—H9107.9C21—O4—Cd1i91.0 (5)
O2—C11—O1120.8 (6)Cd1—O5—H11106.8
O2—C11—C1119.6 (6)Cd1—O5—H12135.0
O1—C11—C1119.6 (6)H11—O5—H12108.1
O4—C21—O3119.8 (7)Cd1—O6—H13109.7
O4—C21—C2119.9 (7)Cd1—O6—H14101.8
O3—C21—C2120.2 (7)H13—O6—H14117.6
O4—C21—Cd1i61.6 (4)
C11—C1—C2—C2154.4 (8)O3ii—Cd1—O1—C11176.1 (4)
C6—C1—C2—C21179.2 (6)O1iii—Cd1—O1—C119.9 (6)
C11—C1—C2—C374.6 (8)O6—Cd1—O1—C1186.6 (4)
C6—C1—C2—C350.2 (9)O4ii—Cd1—O1—C11149.0 (4)
C21—C2—C3—C4178.5 (7)C21ii—Cd1—O1—C11163.8 (4)
C1—C2—C3—C450.3 (9)O2—Cd1—O1—Cd1iv166.6 (4)
C2—C3—C4—C553.1 (11)O5—Cd1—O1—Cd1iv83.2 (3)
C3—C4—C5—C657.3 (11)O3ii—Cd1—O1—Cd1iv15.2 (3)
C4—C5—C6—C158.5 (10)O1iii—Cd1—O1—Cd1iv178.65 (11)
C11—C1—C6—C571.9 (8)O6—Cd1—O1—Cd1iv104.7 (3)
C2—C1—C6—C554.0 (9)O4ii—Cd1—O1—Cd1iv42.3 (4)
C6—C1—C11—O2123.1 (7)C21ii—Cd1—O1—Cd1iv27.5 (4)
C2—C1—C11—O21.5 (10)O1—C11—O2—Cd14.1 (8)
C6—C1—C11—O159.1 (9)C1—C11—O2—Cd1178.1 (5)
C2—C1—C11—O1176.2 (6)O5—Cd1—O2—C1199.8 (5)
C3—C2—C21—O412.9 (10)O3ii—Cd1—O2—C110.5 (6)
C1—C2—C21—O4142.0 (7)O1iii—Cd1—O2—C11169.1 (5)
C3—C2—C21—O3169.7 (7)O6—Cd1—O2—C1180.4 (5)
C1—C2—C21—O340.5 (9)O4ii—Cd1—O2—C11113.9 (6)
O2—C11—O1—Cd1iv162.3 (6)O1—Cd1—O2—C112.1 (4)
C1—C11—O1—Cd1iv15.5 (12)C21ii—Cd1—O2—C1136.3 (9)
O2—C11—O1—Cd13.5 (7)O4—C21—O3—Cd1i4.1 (7)
C1—C11—O1—Cd1178.8 (6)C2—C21—O3—Cd1i178.4 (6)
O2—Cd1—O1—C112.1 (4)O3—C21—O4—Cd1i4.0 (7)
O5—Cd1—O1—C1185.5 (4)C2—C21—O4—Cd1i178.6 (6)
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H11···O6i0.852.012.828 (8)164
O5—H12···O4iv0.851.892.725 (8)169
O6—H13···O3v0.851.852.694 (8)175
O6—H14···O2ii0.842.493.147 (8)136
O6—H14···O4ii0.842.573.016 (8)115
C3—H3···O20.972.593.120 (10)115
C6—H9···O4vi0.972.303.257 (10)169
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y, z; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C8H10O4)(H2O)2]
Mr318.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.0585 (9), 23.544 (3), 8.3308 (9)
β (°) 118.787 (8)
V3)1041.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.678, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
5908, 2250, 2214
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.132, 1.51
No. of reflections2250
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.31, 2.11

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H11···O6i0.852.012.828 (8)163.6
O5—H12···O4ii0.851.892.725 (8)169.4
O6—H13···O3iii0.851.852.694 (8)174.5
O6—H14···O2iv0.842.493.147 (8)136.0
O6—H14···O4iv0.842.573.016 (8)114.6
C3—H3···O20.972.593.120 (10)115.0
C6—H9···O4v0.972.303.257 (10)169.00
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+3/2, z+1/2; (v) x+1, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of Jiangsu Province of China (BK2008195) for financial support of this work.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A., Avinash, M. B. & Rao, C. N. R. (2006). Dalton Trans. pp. 221–228.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds