organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-(Piperazin-4-ium-1-yl)ethyl­iminio]meth­yl}phenolate 0.06-chloride 0.94-perchlorate

aChemistry Department, Isfahan University 81646-73441, Isfahan, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 10 October 2011; accepted 13 October 2011; online 22 October 2011)

The structure of the title salt, C13H20N3O+·0.94ClO4·0.06Cl, contains a zwitterionic Schiff base with a net positive charge and a perchlorate anion having substitutional disorder with Cl. In the cation, the azomethine N atom is protonated and donates hydrogen bonds to the phenolate O atom and to the tertiary N atom of the piperazine ring. In the crystal, two Schiff base mol­ecules are linked about a center of inversion by a pair of N—H⋯O hydrogen bonds. The resulting dimers are N—H⋯O and C—H⋯O hydrogen bonded to the perchlorate anions, forming a three-dimensional structure. The network is further consolidated by C—H⋯π inter­actions.

Related literature

For the structure of a nickel(II) complex of the ligand, see: Mukhopadhyay et al. (2003[Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439-8445.]). For the structure of a cadmium(II) complex of the ligand, see: Saleh Salga et al. (2010[Saleh Salga, M., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1131.]).

[Scheme 1]

Experimental

Crystal data
  • C13H20N3O+·0.94ClO4·0.06Cl

  • Mr = 329.74

  • Monoclinic, P 21 /c

  • a = 11.2322 (2) Å

  • b = 6.5240 (1) Å

  • c = 21.0087 (4) Å

  • β = 90.597 (1)°

  • V = 1539.41 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.28 × 0.22 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.952

  • 11909 measured reflections

  • 2860 independent reflections

  • 2393 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.04

  • 2860 reflections

  • 213 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 (3) 1.92 (3) 2.622 (2) 136 (2)
N1—H1⋯N2 0.88 (3) 2.59 (3) 2.893 (3) 100.9 (19)
N3—H3A⋯O4i 0.86 (3) 2.23 (3) 3.020 (3) 153 (2)
N3—H3A⋯O5i 0.86 (3) 2.55 (3) 3.325 (3) 149 (2)
N3—H3B⋯O1ii 0.96 (3) 1.64 (3) 2.589 (2) 176 (2)
C5—H5⋯O5iii 0.95 2.43 3.217 (3) 140
C7—H7⋯O3iv 0.95 2.49 3.295 (3) 142
C9—H9B⋯O2v 0.99 2.47 3.271 (4) 138
C13—H13A⋯O5i 0.99 2.59 3.423 (4) 142
C13—H13B⋯O4vi 0.99 2.57 3.263 (3) 127
C3—H3⋯Cg1vii 0.95 2.70 3.500 (3) 142
C8—H8ACg1v 0.99 2.99 3.849 (3) 145
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+2, -y, -z+2; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) x, y-1, z; (vi) -x+1, -y+1, -z+2; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.])'.

Supporting information


Comment top

The Schiff base, 1-(2-salicylaldiminoethyl)piperazine, has been shown to exhibit different ligation behavior towards metal ions, mainly depending on the conformation adopted by the piperazine ring (Mukhopadhyay et al., 2003; Saleh Salga et al., 2010). In an attempt to prepare a tin(IV) complex of the Schiff base, the crystals of the title ion-pair were obtained unexpectedly. The Schiff base component is doubly proptonated at its azomethine nitrogen, N1, and its secondary N atoms, N3, while being deprotonated at its oxygen atom, O1. The phenolate O1 atom is hydrogen bond acceptor from the protonated N1 and also from the N3 of a symmetry related molecule, forming a centrosymmetric dimer. The dimers are N—H···O and C—H···O bonded to the perchlorate anions to construct a three-dimensional polymeric structure. The network is further stabilized by C—H···π interactions (Table 1). The anionic part is mainly perchlorate ion which displays small substitutional disorder with Cl [the site-occupancy factor of the perchlorate = 0.937 (2)].

Related literature top

For the structure of a nickel(II) complex of the ligand, see: Mukhopadhyay et al. (2003). For the structure of a cadmium(II) complex of the ligand, see: Saleh Salga et al. (2010).

Experimental top

A mixture of salicylaldehyde (0.24 g, 2 mmol) and 4-(2-aminoethyl)piperazine (0.26 g, 2 mmol) in ethanol was refluxed for 2 h. Bu2SnCl2 (0.6 g, 2 mmol) was then added and reflux was continued for another 2 h. The solution was cooled to room temperature and NaClO4 (0.14 g, 1 mmol) was added to the mixture. The precipitaed NaCl was separated out and the filtrate was evaporated under vacumm. The residue was dissolved in dicloromethane and left at room temperature for a day whereupon the brown crystals of the title compound were formed.

Refinement top

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with H—Csp2 = 0.95 Å and HCmethylene = 0.99 Å. The N-bound H atoms were located in a difference Fourier map. For all H atoms, Uiso(H) was set to 1.2Ueq(carrier atom). An ISOR restraint (Sheldrick, 2008) was applied to a perchlorate oxygen atom, O3.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010)'.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The partially occupying choride ion is not depicted.
2-{[2-(Piperazin-4-ium-1-yl)ethyliminio]methyl}phenolate 0.06-chloride 0.94-perchlorate top
Crystal data top
C13H20N3O+·0.94ClO4·0.06ClF(000) = 696
Mr = 329.74Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3417 reflections
a = 11.2322 (2) Åθ = 2.7–29.0°
b = 6.5240 (1) ŵ = 0.27 mm1
c = 21.0087 (4) ÅT = 100 K
β = 90.597 (1)°Block, brown
V = 1539.41 (5) Å30.28 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2860 independent reflections
Radiation source: fine-focus sealed tube2393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.927, Tmax = 0.952k = 77
11909 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0613P)2 + 1.4958P]
where P = (Fo2 + 2Fc2)/3
2860 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.58 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H20N3O+·0.94ClO4·0.06ClV = 1539.41 (5) Å3
Mr = 329.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2322 (2) ŵ = 0.27 mm1
b = 6.5240 (1) ÅT = 100 K
c = 21.0087 (4) Å0.28 × 0.22 × 0.18 mm
β = 90.597 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2860 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2393 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.952Rint = 0.031
11909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.58 e Å3
2860 reflectionsΔρmin = 0.27 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.92876 (14)0.3289 (3)0.88619 (8)0.0288 (4)
N10.72796 (16)0.1530 (3)0.85235 (9)0.0241 (4)
H10.793 (2)0.153 (4)0.8761 (12)0.029*
N20.72451 (16)0.0667 (3)0.97192 (9)0.0227 (4)
N30.85668 (19)0.2651 (3)1.07210 (10)0.0279 (5)
H3A0.802 (3)0.323 (4)1.0941 (13)0.033*
H3B0.934 (2)0.290 (4)1.0894 (12)0.033*
C10.90467 (19)0.4724 (4)0.84465 (10)0.0232 (5)
C20.9791 (2)0.6457 (4)0.83660 (11)0.0258 (5)
H21.04910.65840.86200.031*
C30.9523 (2)0.7957 (4)0.79292 (11)0.0265 (5)
H31.00410.90990.78880.032*
C40.8498 (2)0.7835 (4)0.75421 (11)0.0285 (5)
H40.83250.88770.72390.034*
C50.7754 (2)0.6190 (4)0.76094 (11)0.0258 (5)
H50.70570.61000.73510.031*
C60.80000 (19)0.4627 (3)0.80549 (10)0.0224 (5)
C70.71557 (19)0.3007 (4)0.81201 (10)0.0233 (5)
H70.64680.30170.78530.028*
C80.6394 (2)0.0046 (4)0.86529 (11)0.0267 (5)
H8A0.66910.14010.85140.032*
H8B0.56480.02550.84160.032*
C90.61617 (19)0.0068 (4)0.93633 (11)0.0253 (5)
H9A0.59040.13110.95020.030*
H9B0.55130.10470.94560.030*
C100.7358 (2)0.2908 (4)0.97354 (12)0.0279 (5)
H10A0.73460.34560.92960.034*
H10B0.66780.35070.99670.034*
C110.8518 (2)0.3499 (4)1.00654 (12)0.0317 (6)
H11A0.85840.50111.00830.038*
H11B0.91970.29680.98180.038*
C120.8353 (2)0.0404 (4)1.07244 (12)0.0284 (5)
H12A0.90280.03041.05200.034*
H12B0.83030.00851.11690.034*
C130.7209 (2)0.0115 (4)1.03721 (11)0.0274 (5)
H13A0.65250.04991.05970.033*
H13B0.70990.16201.03650.033*
Cl10.40865 (5)0.51801 (10)0.85512 (4)0.0300 (2)0.937 (3)
O20.4847 (3)0.5543 (5)0.90856 (15)0.0754 (9)0.937 (3)
O30.4569 (2)0.6021 (6)0.79982 (15)0.0915 (11)0.937 (3)
O40.29220 (18)0.5955 (4)0.86711 (11)0.0508 (6)0.937 (3)
O50.3970 (2)0.3003 (3)0.84855 (11)0.0556 (7)0.937 (3)
Cl20.4427 (11)0.4812 (19)0.8918 (7)0.035 (4)*0.063 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0230 (8)0.0290 (9)0.0341 (9)0.0034 (7)0.0090 (7)0.0078 (7)
N10.0182 (9)0.0287 (11)0.0252 (10)0.0029 (8)0.0033 (8)0.0015 (8)
N20.0191 (9)0.0236 (10)0.0254 (10)0.0013 (8)0.0021 (7)0.0009 (8)
N30.0203 (10)0.0295 (11)0.0337 (11)0.0054 (8)0.0065 (8)0.0061 (9)
C10.0221 (11)0.0261 (12)0.0214 (11)0.0016 (9)0.0008 (9)0.0008 (9)
C20.0220 (11)0.0283 (12)0.0272 (12)0.0016 (9)0.0020 (9)0.0022 (10)
C30.0262 (12)0.0237 (12)0.0298 (12)0.0021 (9)0.0064 (9)0.0006 (10)
C40.0308 (12)0.0282 (13)0.0266 (12)0.0055 (10)0.0044 (10)0.0048 (10)
C50.0215 (11)0.0314 (13)0.0244 (12)0.0042 (9)0.0012 (9)0.0009 (10)
C60.0205 (11)0.0247 (12)0.0222 (11)0.0018 (9)0.0008 (9)0.0022 (9)
C70.0184 (10)0.0292 (12)0.0223 (11)0.0021 (9)0.0021 (8)0.0012 (9)
C80.0220 (11)0.0292 (13)0.0289 (12)0.0053 (9)0.0034 (9)0.0027 (10)
C90.0187 (11)0.0267 (12)0.0305 (13)0.0009 (9)0.0003 (9)0.0025 (10)
C100.0253 (12)0.0249 (12)0.0334 (13)0.0015 (9)0.0079 (10)0.0040 (10)
C110.0291 (12)0.0253 (13)0.0406 (14)0.0053 (10)0.0108 (11)0.0044 (11)
C120.0259 (12)0.0278 (13)0.0315 (13)0.0027 (10)0.0035 (10)0.0037 (10)
C130.0260 (12)0.0270 (12)0.0293 (13)0.0024 (9)0.0014 (10)0.0039 (10)
Cl10.0209 (3)0.0334 (4)0.0357 (5)0.0080 (2)0.0022 (3)0.0010 (3)
O20.0628 (17)0.0668 (17)0.095 (2)0.0180 (14)0.0517 (16)0.0201 (16)
O30.0471 (15)0.134 (3)0.094 (2)0.0135 (16)0.0184 (14)0.080 (2)
O40.0304 (11)0.0582 (14)0.0639 (15)0.0050 (10)0.0055 (10)0.0243 (12)
O50.0702 (16)0.0310 (12)0.0651 (15)0.0043 (11)0.0238 (12)0.0091 (10)
Geometric parameters (Å, º) top
O1—C11.306 (3)C6—C71.427 (3)
N1—C71.290 (3)C7—H70.9500
N1—C81.458 (3)C8—C91.518 (3)
N1—H10.88 (3)C8—H8A0.9900
N2—C131.464 (3)C8—H8B0.9900
N2—C101.468 (3)C9—H9A0.9900
N2—C91.474 (3)C9—H9B0.9900
N3—C111.485 (3)C10—C111.519 (3)
N3—C121.485 (3)C10—H10A0.9900
N3—H3A0.86 (3)C10—H10B0.9900
N3—H3B0.96 (3)C11—H11A0.9900
C1—C21.417 (3)C11—H11B0.9900
C1—C61.429 (3)C12—C131.514 (3)
C2—C31.373 (3)C12—H12A0.9900
C2—H20.9500C12—H12B0.9900
C3—C41.405 (3)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.369 (3)Cl1—O31.399 (3)
C4—H40.9500Cl1—O21.424 (3)
C5—C61.410 (3)Cl1—O41.427 (2)
C5—H50.9500Cl1—O51.433 (2)
C7—N1—C8125.5 (2)H8A—C8—H8B108.4
C7—N1—H1117.1 (17)N2—C9—C8110.59 (18)
C8—N1—H1117.3 (17)N2—C9—H9A109.5
C13—N2—C10109.16 (18)C8—C9—H9A109.5
C13—N2—C9110.63 (17)N2—C9—H9B109.5
C10—N2—C9110.26 (17)C8—C9—H9B109.5
C11—N3—C12111.59 (19)H9A—C9—H9B108.1
C11—N3—H3A108.3 (19)N2—C10—C11109.68 (19)
C12—N3—H3A108.3 (18)N2—C10—H10A109.7
C11—N3—H3B108.3 (16)C11—C10—H10A109.7
C12—N3—H3B108.3 (16)N2—C10—H10B109.7
H3A—N3—H3B112 (2)C11—C10—H10B109.7
O1—C1—C2122.2 (2)H10A—C10—H10B108.2
O1—C1—C6121.1 (2)N3—C11—C10110.6 (2)
C2—C1—C6116.7 (2)N3—C11—H11A109.5
C3—C2—C1121.5 (2)C10—C11—H11A109.5
C3—C2—H2119.2N3—C11—H11B109.5
C1—C2—H2119.2C10—C11—H11B109.5
C2—C3—C4121.3 (2)H11A—C11—H11B108.1
C2—C3—H3119.3N3—C12—C13110.77 (19)
C4—C3—H3119.3N3—C12—H12A109.5
C5—C4—C3118.8 (2)C13—C12—H12A109.5
C5—C4—H4120.6N3—C12—H12B109.5
C3—C4—H4120.6C13—C12—H12B109.5
C4—C5—C6121.3 (2)H12A—C12—H12B108.1
C4—C5—H5119.3N2—C13—C12110.40 (19)
C6—C5—H5119.3N2—C13—H13A109.6
C5—C6—C7118.2 (2)C12—C13—H13A109.6
C5—C6—C1120.3 (2)N2—C13—H13B109.6
C7—C6—C1121.4 (2)C12—C13—H13B109.6
N1—C7—C6123.3 (2)H13A—C13—H13B108.1
N1—C7—H7118.4O3—Cl1—O2110.8 (2)
C6—C7—H7118.4O3—Cl1—O4111.81 (16)
N1—C8—C9108.35 (19)O2—Cl1—O4110.21 (16)
N1—C8—H8A110.0O3—Cl1—O5110.2 (2)
C9—C8—H8A110.0O2—Cl1—O5107.10 (16)
N1—C8—H8B110.0O4—Cl1—O5106.59 (15)
C9—C8—H8B110.0
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (3)1.92 (3)2.622 (2)136 (2)
N1—H1···N20.88 (3)2.59 (3)2.893 (3)100.9 (19)
N3—H3A···O4i0.86 (3)2.23 (3)3.020 (3)153 (2)
N3—H3A···O5i0.86 (3)2.55 (3)3.325 (3)149 (2)
N3—H3B···O1ii0.96 (3)1.64 (3)2.589 (2)176 (2)
C5—H5···O5iii0.952.433.217 (3)140
C7—H7···O3iv0.952.493.295 (3)142
C9—H9B···O2v0.992.473.271 (4)138
C13—H13A···O5i0.992.593.423 (4)142
C13—H13B···O4vi0.992.573.263 (3)127
C3—H3···Cg1vii0.952.703.500 (3)142
C8—H8A···Cg1v0.992.993.849 (3)145
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y1, z; (vi) x+1, y+1, z+2; (vii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H20N3O+·0.94ClO4·0.06Cl
Mr329.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.2322 (2), 6.5240 (1), 21.0087 (4)
β (°) 90.597 (1)
V3)1539.41 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.28 × 0.22 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11909, 2860, 2393
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.04
No. of reflections2860
No. of parameters213
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), 'SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010)'.

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.88 (3)1.92 (3)2.622 (2)136 (2)
N1—H1···N20.88 (3)2.59 (3)2.893 (3)100.9 (19)
N3—H3A···O4i0.86 (3)2.23 (3)3.020 (3)153 (2)
N3—H3A···O5i0.86 (3)2.55 (3)3.325 (3)149 (2)
N3—H3B···O1ii0.96 (3)1.64 (3)2.589 (2)176 (2)
C5—H5···O5iii0.952.433.217 (3)139.8
C7—H7···O3iv0.952.493.295 (3)142.4
C9—H9B···O2v0.992.473.271 (4)137.8
C13—H13A···O5i0.992.593.423 (4)141.5
C13—H13B···O4vi0.992.573.263 (3)126.9
C3—H3···Cg1vii0.952.703.500 (3)142
C8—H8A···Cg1v0.992.993.849 (3)145
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y1, z; (vi) x+1, y+1, z+2; (vii) x+2, y+1/2, z+3/2.
 

Acknowledgements

Financial support from the University of Malaya is highly appreciated (ERGS grant No. ER009–2011 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaleh Salga, M., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds