organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl (2S)-2-{3-[(R)-bis­­(tert-but­­oxy­carbon­yl)amino]-2-oxopiperidin-1-yl}-3-methyl­butano­ate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 13 October 2011; accepted 18 October 2011; online 29 October 2011)

The title compound, C24H42N2O7, is a chiral lactam-constrained amino acid with a six-membered ring backbone and isopropyl and tert-butyl ester side chains. The conformation of the six-membered ring can be described as a half chair, with two CH2 C atoms lying 0.443 (1) and −0.310 (1) Å out of the best plane of the other four atoms (mean deviation = 0.042 Å). Both N atoms are sp2 hybridized, lying 0.0413 (9) and 0.067 (1) Å out of the planes defined by the three C atoms bonded to them. The absolute configuration was determined, based on resonant scattering of light atoms in Cu Kα radiation.

Related literature

For synthesis and chemical inter­est, see: Oguz (2003[Oguz, U. (2003). PhD dissertation, Louisiana State University, Baton Rouge, LA, USA.]); Oguz et al. (2001[Oguz, U., Gauthier, T. J. & McLaughlin, M. L. (2001). Peptides: the Wave of the Future. Proceedings of the 2nd International and the 17th American Peptide Symposium, San Diego, CA, USA, June 9-14, 2001, pp. 46-47. San Diego: The American Peptide Society]). For a similar structure, see: Valle et al. (1989[Valle, G., Crisma, M., Toniolo, C., Yu, K.-L. & Johnson, R. L. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 83-87.]). For absolute configuration parameters, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C24H42N2O7

  • Mr = 470.6

  • Monoclinic, C 2

  • a = 27.282 (3) Å

  • b = 9.4315 (10) Å

  • c = 11.5884 (10) Å

  • β = 110.729 (1)°

  • V = 2788.7 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 86 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.800, Tmax = 0.878

  • 10823 measured reflections

  • 4844 independent reflections

  • 4782 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.071

  • S = 1.01

  • 4844 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2174 Friedel pairs

  • Flack parameter: −0.02 (10)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Title compound is a conformationally constrained amino acid analog which was designed as part of a study to understand the factors promoting β-sheet formation in brain-degenerative diseases such as Alzheimer's disease, Creutzfeldt-Jacob disease and bovine spongiform encephalopathy (Oguz et al., 2001).

In the title molecule (Fig. 1), the central six-membered ring adopts a conformation close to the C2 half chair, with the diad axis bisecting the N1–C1 and C3–C4 bonds. Atoms C1, C2, C5 and N1 are coplanar to within a mean deviation 0.042 Å (maximum 0.0588 (10) Å for N1), the other two atoms lying alternately above and below this plane, C3 by -0.310 (1) and C4 by 0.443 (1) Å. The C5—N1—C1—C2 torsion angle, which would be zero for an ideal half chair, is -13.36 (18)°. This conformation is similar to that seen in a similar lactam-restricted analog of Boc-L-Pro-L-Leu-Gly-NH2, which has torsion angle somewhat closer to zero, 5.6 (11)° and smaller mean deviation for these four atoms, 0.014 Å (Valle et al., 1989).

Both N atoms are sp2 hybrids, with N1 lying only 0.067 (1) Å from the plane defined by C1, C5 and C16, and N2 lying 0.0413 (9) Å from the plane defined by C2, C6 and C11.

The absolute configuration based on the Flack (1983) parameter x = -0.02 (10), the Hooft parameter y = -0.05 (5), and the Hooft P2(true) value of 1.000 (Hooft et al., 2008) agrees with that of the starting materials.

Related literature top

For synthesis and chemical interest, see: Oguz (2003); Oguz et al. (2001). For a similar structure, see: Valle et al. (1989). For absolute configuration parameters, see: Hooft et al. (2008).

Experimental top

The synthesis of the title compound is detailed by Oguz (2003), who prepared a suitable single-crystal by recrystallization from hexanes.

Refinement top

Hydrogen atoms were located from difference maps and included in the refinement in riding mode with C—H distances = 0.98 - 1.00 Å and Uiso(H) = 1.5 Ueq(methyl C) or 1.2 Ueq(non-methyl C). Refinement of the Flack (1983) parameter was used to determine the absolute configurations of the two asymmetric centers in the molecule.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule (50% probability displacement ellipsoids); H atoms are not shown for clarity.
tert-Butyl (2S)-2-{3-[(R)-bis(tert- butoxycarbonyl)amino]-2-oxopiperidin-1-yl}-3-methylbutanoate top
Crystal data top
C24H42N2O7F(000) = 1024
Mr = 470.6Dx = 1.121 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54178 Å
Hall symbol: C 2yCell parameters from 8306 reflections
a = 27.282 (3) Åθ = 3.5–67.8°
b = 9.4315 (10) ŵ = 0.67 mm1
c = 11.5884 (10) ÅT = 86 K
β = 110.729 (1)°Fragment, colourless
V = 2788.7 (5) Å30.35 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4844 independent reflections
Radiation source: fine-focus sealed tube4782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 68.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3232
Tmin = 0.800, Tmax = 0.878k = 1011
10823 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.6036P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.19 e Å3
4844 reflectionsΔρmin = 0.12 e Å3
310 parametersExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00066 (8)
0 constraintsAbsolute structure: Flack (1983), 2174 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (10)
Secondary atom site location: difference Fourier map
Crystal data top
C24H42N2O7V = 2788.7 (5) Å3
Mr = 470.6Z = 4
Monoclinic, C2Cu Kα radiation
a = 27.282 (3) ŵ = 0.67 mm1
b = 9.4315 (10) ÅT = 86 K
c = 11.5884 (10) Å0.35 × 0.25 × 0.20 mm
β = 110.729 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4782 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.878Rint = 0.023
10823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.19 e Å3
S = 1.01Δρmin = 0.12 e Å3
4844 reflectionsAbsolute structure: Flack (1983), 2174 Friedel pairs
310 parametersAbsolute structure parameter: 0.02 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29466 (4)0.36747 (13)0.72598 (11)0.0195 (2)
C20.24099 (4)0.41656 (13)0.63587 (11)0.0194 (2)
H20.24380.52140.62670.023*
C30.22473 (5)0.35489 (14)0.50640 (11)0.0224 (3)
H3A0.1940.40690.45040.027*
H3B0.21490.2540.50750.027*
C40.27044 (5)0.36775 (14)0.46077 (11)0.0225 (3)
H4A0.260.33210.37510.027*
H4B0.28090.46840.46160.027*
C50.31600 (5)0.28143 (14)0.54486 (11)0.0221 (3)
H5A0.3070.17940.53350.026*
H5B0.34710.29730.52120.026*
C60.20105 (4)0.26219 (13)0.74681 (11)0.0191 (2)
C70.18475 (5)0.14657 (13)0.91793 (11)0.0236 (3)
C80.24179 (5)0.11115 (18)0.98719 (13)0.0343 (3)
H8A0.2580.07840.92880.051*
H8B0.24420.03631.04760.051*
H8C0.26010.19591.030.051*
C90.15900 (7)0.20383 (18)1.00423 (15)0.0412 (4)
H9A0.17890.28571.0490.062*
H9B0.15840.12991.06320.062*
H9C0.1230.2330.95640.062*
C100.15454 (6)0.02203 (16)0.84575 (14)0.0359 (3)
H10A0.11910.05260.7950.054*
H10B0.15240.05220.90290.054*
H10C0.17250.01530.79230.054*
C110.16978 (5)0.51181 (13)0.69474 (10)0.0183 (2)
C120.08595 (4)0.57415 (14)0.71249 (11)0.0208 (2)
C130.10986 (6)0.63856 (16)0.83951 (13)0.0310 (3)
H13A0.12010.56290.90140.046*
H13B0.08410.70040.85560.046*
H13C0.14080.69420.84390.046*
C140.03931 (5)0.48195 (15)0.70301 (14)0.0295 (3)
H14A0.02690.43420.62270.044*
H14B0.01120.54110.71120.044*
H14C0.04970.41090.7690.044*
C150.07098 (5)0.68538 (16)0.61068 (13)0.0294 (3)
H15A0.10050.75010.62320.044*
H15B0.04060.73910.61290.044*
H15C0.06220.63850.53040.044*
C160.38183 (5)0.27894 (15)0.75821 (11)0.0241 (3)
H160.38630.31660.8420.029*
C170.39093 (5)0.11852 (15)0.77060 (11)0.0243 (3)
H170.39350.08120.69220.029*
C180.44260 (5)0.08832 (18)0.87695 (12)0.0339 (3)
H18A0.44040.12430.95430.051*
H18B0.47150.13550.86060.051*
H18C0.44890.01420.88380.051*
C190.34592 (5)0.04375 (15)0.79477 (12)0.0273 (3)
H19A0.35310.05820.80440.041*
H19B0.31320.060.72510.041*
H19C0.34250.08150.87040.041*
C200.42136 (5)0.35571 (15)0.71361 (13)0.0266 (3)
C210.44367 (6)0.59566 (17)0.66729 (18)0.0416 (4)
C220.42311 (7)0.73765 (19)0.6920 (3)0.0610 (6)
H22A0.38510.74180.64870.091*
H22B0.43990.81410.66230.091*
H22C0.4310.74870.78080.091*
C230.42947 (9)0.5699 (2)0.5302 (2)0.0585 (5)
H23A0.44460.47980.51730.088*
H23B0.44330.64730.49420.088*
H23C0.39130.56620.49050.088*
C240.50190 (6)0.5826 (2)0.7382 (2)0.0567 (5)
H24A0.50860.59040.82680.085*
H24B0.52050.65860.7130.085*
H24C0.51430.49040.72070.085*
N10.32921 (4)0.31854 (11)0.67548 (9)0.0202 (2)
N20.20095 (4)0.39526 (11)0.69179 (9)0.0193 (2)
O10.30559 (3)0.38315 (10)0.83680 (8)0.0241 (2)
O20.21970 (3)0.15970 (9)0.71609 (8)0.02276 (19)
O30.18130 (4)0.27044 (9)0.83558 (8)0.02354 (19)
O40.18374 (3)0.63235 (9)0.69062 (8)0.02172 (18)
O50.12315 (3)0.46991 (9)0.69416 (8)0.02019 (18)
O60.45332 (4)0.29793 (11)0.68025 (10)0.0334 (2)
O70.41427 (4)0.49542 (10)0.71647 (10)0.0339 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (5)0.0172 (6)0.0226 (6)0.0022 (5)0.0079 (5)0.0031 (5)
C20.0191 (5)0.0204 (6)0.0220 (6)0.0017 (5)0.0114 (5)0.0025 (5)
C30.0210 (6)0.0251 (6)0.0202 (6)0.0024 (5)0.0062 (5)0.0028 (5)
C40.0256 (6)0.0246 (6)0.0189 (6)0.0019 (5)0.0099 (5)0.0014 (5)
C50.0238 (6)0.0250 (6)0.0201 (6)0.0014 (5)0.0112 (5)0.0030 (5)
C60.0170 (5)0.0195 (6)0.0201 (6)0.0002 (4)0.0059 (4)0.0016 (5)
C70.0273 (6)0.0211 (6)0.0252 (6)0.0021 (5)0.0130 (5)0.0082 (5)
C80.0304 (7)0.0421 (8)0.0278 (7)0.0013 (6)0.0072 (6)0.0126 (6)
C90.0626 (10)0.0347 (8)0.0419 (8)0.0146 (7)0.0380 (8)0.0147 (7)
C100.0350 (7)0.0340 (8)0.0393 (8)0.0104 (6)0.0140 (6)0.0054 (6)
C110.0189 (5)0.0210 (6)0.0154 (5)0.0016 (5)0.0066 (4)0.0016 (4)
C120.0190 (6)0.0217 (6)0.0242 (6)0.0050 (5)0.0107 (5)0.0023 (5)
C130.0322 (7)0.0346 (7)0.0312 (7)0.0003 (6)0.0175 (6)0.0046 (6)
C140.0232 (6)0.0280 (7)0.0417 (8)0.0010 (6)0.0171 (5)0.0017 (6)
C150.0244 (6)0.0317 (7)0.0348 (7)0.0088 (6)0.0139 (5)0.0106 (6)
C160.0176 (6)0.0314 (7)0.0226 (6)0.0003 (5)0.0064 (5)0.0077 (5)
C170.0219 (6)0.0315 (7)0.0194 (6)0.0051 (5)0.0071 (5)0.0030 (5)
C180.0242 (6)0.0494 (9)0.0255 (7)0.0091 (6)0.0055 (5)0.0005 (6)
C190.0268 (6)0.0316 (7)0.0237 (6)0.0050 (5)0.0093 (5)0.0027 (5)
C200.0177 (6)0.0295 (7)0.0300 (6)0.0012 (5)0.0055 (5)0.0103 (5)
C210.0267 (7)0.0263 (8)0.0749 (11)0.0062 (6)0.0220 (7)0.0076 (7)
C220.0371 (9)0.0299 (9)0.1201 (19)0.0021 (7)0.0331 (11)0.0089 (10)
C230.0633 (11)0.0450 (10)0.0737 (13)0.0162 (9)0.0321 (10)0.0036 (10)
C240.0276 (8)0.0362 (9)0.1048 (16)0.0080 (7)0.0215 (9)0.0115 (10)
N10.0176 (5)0.0245 (5)0.0188 (5)0.0002 (4)0.0067 (4)0.0046 (4)
N20.0185 (5)0.0181 (5)0.0239 (5)0.0023 (4)0.0109 (4)0.0029 (4)
O10.0227 (4)0.0302 (5)0.0204 (4)0.0020 (4)0.0088 (3)0.0057 (4)
O20.0266 (4)0.0188 (4)0.0252 (4)0.0030 (3)0.0122 (3)0.0011 (3)
O30.0299 (4)0.0195 (4)0.0266 (4)0.0046 (4)0.0167 (4)0.0051 (4)
O40.0231 (4)0.0181 (4)0.0272 (4)0.0004 (3)0.0129 (3)0.0020 (3)
O50.0181 (4)0.0183 (4)0.0266 (4)0.0021 (3)0.0110 (3)0.0010 (3)
O60.0260 (5)0.0315 (5)0.0491 (6)0.0011 (4)0.0210 (4)0.0096 (4)
O70.0236 (5)0.0268 (5)0.0550 (6)0.0036 (4)0.0184 (4)0.0112 (5)
Geometric parameters (Å, º) top
C1—O11.2202 (15)C13—H13A0.98
C1—N11.3545 (16)C13—H13B0.98
C1—C21.5382 (15)C13—H13C0.98
C2—N21.4679 (15)C14—H14A0.98
C2—C31.5215 (17)C14—H14B0.98
C2—H21C14—H14C0.98
C3—C41.5220 (16)C15—H15A0.98
C3—H3A0.99C15—H15B0.98
C3—H3B0.99C15—H15C0.98
C4—C51.5165 (17)C16—N11.4646 (15)
C4—H4A0.99C16—C171.5317 (19)
C4—H4B0.99C16—C201.5327 (19)
C5—N11.4688 (15)C16—H161
C5—H5A0.99C17—C191.5254 (18)
C5—H5B0.99C17—C181.5353 (17)
C6—O21.2035 (15)C17—H171
C6—O31.3217 (15)C18—H18A0.98
C6—N21.4074 (16)C18—H18B0.98
C7—O31.4902 (14)C18—H18C0.98
C7—C101.507 (2)C19—H19A0.98
C7—C91.5107 (19)C19—H19B0.98
C7—C81.5145 (18)C19—H19C0.98
C8—H8A0.98C20—O61.2021 (17)
C8—H8B0.98C20—O71.3339 (18)
C8—H8C0.98C21—O71.4785 (19)
C9—H9A0.98C21—C241.513 (2)
C9—H9B0.98C21—C231.515 (3)
C9—H9C0.98C21—C221.518 (2)
C10—H10A0.98C22—H22A0.98
C10—H10B0.98C22—H22B0.98
C10—H10C0.98C22—H22C0.98
C11—O41.2052 (15)C23—H23A0.98
C11—O51.3298 (15)C23—H23B0.98
C11—N21.3976 (16)C23—H23C0.98
C12—O51.4813 (14)C24—H24A0.98
C12—C131.5105 (18)C24—H24B0.98
C12—C141.5127 (17)C24—H24C0.98
C12—C151.5224 (17)
O1—C1—N1123.21 (11)H14A—C14—H14B109.5
O1—C1—C2119.83 (11)C12—C14—H14C109.5
N1—C1—C2116.74 (10)H14A—C14—H14C109.5
N2—C2—C3112.35 (10)H14B—C14—H14C109.5
N2—C2—C1109.72 (9)C12—C15—H15A109.5
C3—C2—C1115.44 (10)C12—C15—H15B109.5
N2—C2—H2106.2H15A—C15—H15B109.5
C3—C2—H2106.2C12—C15—H15C109.5
C1—C2—H2106.2H15A—C15—H15C109.5
C2—C3—C4108.87 (10)H15B—C15—H15C109.5
C2—C3—H3A109.9N1—C16—C17113.71 (10)
C4—C3—H3A109.9N1—C16—C20107.61 (11)
C2—C3—H3B109.9C17—C16—C20112.84 (10)
C4—C3—H3B109.9N1—C16—H16107.5
H3A—C3—H3B108.3C17—C16—H16107.5
C5—C4—C3108.66 (10)C20—C16—H16107.5
C5—C4—H4A110C19—C17—C16111.07 (10)
C3—C4—H4A110C19—C17—C18109.69 (11)
C5—C4—H4B110C16—C17—C18109.32 (11)
C3—C4—H4B110C19—C17—H17108.9
H4A—C4—H4B108.3C16—C17—H17108.9
N1—C5—C4112.37 (10)C18—C17—H17108.9
N1—C5—H5A109.1C17—C18—H18A109.5
C4—C5—H5A109.1C17—C18—H18B109.5
N1—C5—H5B109.1H18A—C18—H18B109.5
C4—C5—H5B109.1C17—C18—H18C109.5
H5A—C5—H5B107.9H18A—C18—H18C109.5
O2—C6—O3127.53 (11)H18B—C18—H18C109.5
O2—C6—N2121.03 (11)C17—C19—H19A109.5
O3—C6—N2111.35 (10)C17—C19—H19B109.5
O3—C7—C10110.94 (10)H19A—C19—H19B109.5
O3—C7—C9101.83 (10)C17—C19—H19C109.5
C10—C7—C9110.80 (12)H19A—C19—H19C109.5
O3—C7—C8109.41 (10)H19B—C19—H19C109.5
C10—C7—C8112.32 (12)O6—C20—O7125.73 (14)
C9—C7—C8111.06 (12)O6—C20—C16124.84 (13)
C7—C8—H8A109.5O7—C20—C16109.43 (11)
C7—C8—H8B109.5O7—C21—C24110.31 (15)
H8A—C8—H8B109.5O7—C21—C23109.23 (13)
C7—C8—H8C109.5C24—C21—C23112.71 (16)
H8A—C8—H8C109.5O7—C21—C22101.79 (13)
H8B—C8—H8C109.5C24—C21—C22110.88 (14)
C7—C9—H9A109.5C23—C21—C22111.37 (18)
C7—C9—H9B109.5C21—C22—H22A109.5
H9A—C9—H9B109.5C21—C22—H22B109.5
C7—C9—H9C109.5H22A—C22—H22B109.5
H9A—C9—H9C109.5C21—C22—H22C109.5
H9B—C9—H9C109.5H22A—C22—H22C109.5
C7—C10—H10A109.5H22B—C22—H22C109.5
C7—C10—H10B109.5C21—C23—H23A109.5
H10A—C10—H10B109.5C21—C23—H23B109.5
C7—C10—H10C109.5H23A—C23—H23B109.5
H10A—C10—H10C109.5C21—C23—H23C109.5
H10B—C10—H10C109.5H23A—C23—H23C109.5
O4—C11—O5126.53 (11)H23B—C23—H23C109.5
O4—C11—N2122.50 (11)C21—C24—H24A109.5
O5—C11—N2110.82 (10)C21—C24—H24B109.5
O5—C12—C13108.98 (10)H24A—C24—H24B109.5
O5—C12—C14102.08 (10)C21—C24—H24C109.5
C13—C12—C14111.34 (11)H24A—C24—H24C109.5
O5—C12—C15110.83 (10)H24B—C24—H24C109.5
C13—C12—C15112.52 (12)C1—N1—C16118.35 (10)
C14—C12—C15110.60 (11)C1—N1—C5124.89 (10)
C12—C13—H13A109.5C16—N1—C5116.10 (10)
C12—C13—H13B109.5C11—N2—C6126.44 (10)
H13A—C13—H13B109.5C11—N2—C2117.23 (10)
C12—C13—H13C109.5C6—N2—C2116.08 (10)
H13A—C13—H13C109.5C6—O3—C7120.10 (10)
H13B—C13—H13C109.5C11—O5—C12120.31 (9)
C12—C14—H14A109.5C20—O7—C21121.25 (11)
C12—C14—H14B109.5
O1—C1—C2—N234.52 (15)O5—C11—N2—C633.73 (15)
N1—C1—C2—N2150.65 (10)O4—C11—N2—C223.56 (16)
O1—C1—C2—C3162.67 (11)O5—C11—N2—C2152.30 (10)
N1—C1—C2—C322.50 (16)O2—C6—N2—C11162.50 (11)
N2—C2—C3—C4174.17 (10)O3—C6—N2—C1120.70 (16)
C1—C2—C3—C447.33 (14)O2—C6—N2—C223.47 (16)
C2—C3—C4—C562.18 (13)O3—C6—N2—C2153.33 (10)
C3—C4—C5—N152.90 (14)C3—C2—N2—C11102.88 (12)
N1—C16—C17—C1947.91 (14)C1—C2—N2—C11127.27 (11)
C20—C16—C17—C19170.83 (10)C3—C2—N2—C682.52 (13)
N1—C16—C17—C18169.09 (10)C1—C2—N2—C647.33 (14)
C20—C16—C17—C1867.99 (14)O2—C6—O3—C75.36 (18)
N1—C16—C20—O6119.62 (14)N2—C6—O3—C7171.17 (9)
C17—C16—C20—O66.64 (18)C10—C7—O3—C663.25 (15)
N1—C16—C20—O759.70 (13)C9—C7—O3—C6178.81 (12)
C17—C16—C20—O7174.04 (10)C8—C7—O3—C661.23 (15)
O1—C1—N1—C161.70 (18)O4—C11—O5—C1211.94 (17)
C2—C1—N1—C16176.34 (11)N2—C11—O5—C12172.41 (9)
O1—C1—N1—C5172.01 (12)C13—C12—O5—C1162.98 (14)
C2—C1—N1—C513.36 (18)C14—C12—O5—C11179.17 (10)
C17—C16—N1—C1105.82 (13)C15—C12—O5—C1161.37 (13)
C20—C16—N1—C1128.44 (12)O6—C20—O7—C215.1 (2)
C17—C16—N1—C565.34 (14)C16—C20—O7—C21174.19 (12)
C20—C16—N1—C560.40 (14)C24—C21—O7—C2061.66 (19)
C4—C5—N1—C129.46 (17)C23—C21—O7—C2062.76 (18)
C4—C5—N1—C16160.04 (11)C22—C21—O7—C20179.40 (14)
O4—C11—N2—C6150.41 (12)

Experimental details

Crystal data
Chemical formulaC24H42N2O7
Mr470.6
Crystal system, space groupMonoclinic, C2
Temperature (K)86
a, b, c (Å)27.282 (3), 9.4315 (10), 11.5884 (10)
β (°) 110.729 (1)
V3)2788.7 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.800, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
10823, 4844, 4782
Rint0.023
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.071, 1.01
No. of reflections4844
No. of parameters310
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.12
Absolute structureFlack (1983), 2174 Friedel pairs
Absolute structure parameter0.02 (10)

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

CAS Registry Number 500222-63-9.

Acknowledgements

We are grateful to Dr Umut Oguz for providing the crystalline sample.

References

First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOguz, U. (2003). PhD dissertation, Louisiana State University, Baton Rouge, LA, USA.  Google Scholar
First citationOguz, U., Gauthier, T. J. & McLaughlin, M. L. (2001). Peptides: the Wave of the Future. Proceedings of the 2nd International and the 17th American Peptide Symposium, San Diego, CA, USA, June 9-14, 2001, pp. 46–47. San Diego: The American Peptide Society  Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Crisma, M., Toniolo, C., Yu, K.-L. & Johnson, R. L. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 83–87.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds