metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methano­lato-κO)[N′-(3-meth­­oxy-2-oxido­benzyl­­idene-κO2)-4-nitro­benzo­hydrazidato-κ2N′,O]oxidovanadium(V)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 28 September 2011; accepted 29 September 2011; online 5 October 2011)

The title oxidovanadium(V) complex, [V(C15H11N3O5)(CH3O)O], was obtained by the reaction of 2-hy­droxy-3-meth­oxy­benzaldehyde, 4-nitro­benzohydrazide and vanadyl sulfate in methanol. The VV atom is five-coordinated by the two O and one N donor atoms of the Schiff base ligand, one methano­late O atom and one oxido O atom, forming a distorted square-pyramidal geometry.

Related literature

For Schiff base complexes, see: Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]); Wang & Ye (2011[Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.]). For similar oxidovanadium complexes, see: Deng et al. (2005[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214-m2216.]); Gao et al. (2005[Gao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978-m980.]); Huo et al. (2004[Huo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606-m608.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C15H11N3O5)(CH3O)O]

  • Mr = 411.24

  • Triclinic, [P \overline 1]

  • a = 6.410 (3) Å

  • b = 10.253 (3) Å

  • c = 13.490 (3) Å

  • α = 71.111 (2)°

  • β = 87.998 (2)°

  • γ = 86.473 (2)°

  • V = 837.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.883

  • 6739 measured reflections

  • 3538 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.115

  • S = 1.15

  • 3538 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

V1—O6 1.566 (2)
V1—O7 1.743 (2)
V1—O1 1.816 (2)
V1—O3 1.922 (2)
V1—N1 2.095 (3)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into new Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear oxovanadium(V) complex, Fig. 1. The V atom in the complex is five-coordinated by the NNO donor atoms of the Schiff base ligand, one methoxy O atom, and one oxo O atom, forming a square pyramidal geometry. The V–O and V–N bond lengths (Table 1) are typical and are comparable with those observed in other similar vanadium complexes (Deng et al., 2005; Gao et al., 2005; Huo et al., 2004).

Related literature top

For Schiff base complexes, see: Wang (2009); Wang & Ye (2011). For similar oxidovanadium complexes, see: Deng et al. (2005); Gao et al. (2005); Huo et al. (2004).

Experimental top

2-Hydroxy-3-methoxybenzaldehyde (1.0 mmol, 0.15 g), 4-nitrobenzohydrazide (1.0 mmol, 0.18 g), and vanadyl sulfate (1.0 mmol, 0.16 g) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 10 min to give a clear brown solution. After keeping the solution in air for a week, brown block-shaped crystals were formed at the bottom of the vessel.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with Uiso(H) set at 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(Methanolato-κO)[N'-(3-methoxy-2-oxidobenzylidene-κO2)-4-nitrobenzohydrazidato-κ2N',O]oxidovanadium(V) top
Crystal data top
[V(C15H11N3O5)(CH3O)O]Z = 2
Mr = 411.24F(000) = 420
Triclinic, P1Dx = 1.631 Mg m3
a = 6.410 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.253 (3) ÅCell parameters from 2551 reflections
c = 13.490 (3) Åθ = 3.0–28.2°
α = 71.111 (2)°µ = 0.64 mm1
β = 87.998 (2)°T = 298 K
γ = 86.473 (2)°Block, brown
V = 837.2 (5) Å30.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3538 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.883, Tmax = 0.883k = 1313
6739 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.6271P]
where P = (Fo2 + 2Fc2)/3
3538 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[V(C15H11N3O5)(CH3O)O]γ = 86.473 (2)°
Mr = 411.24V = 837.2 (5) Å3
Triclinic, P1Z = 2
a = 6.410 (3) ÅMo Kα radiation
b = 10.253 (3) ŵ = 0.64 mm1
c = 13.490 (3) ÅT = 298 K
α = 71.111 (2)°0.20 × 0.20 × 0.20 mm
β = 87.998 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2686 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.883Rint = 0.029
6739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.15Δρmax = 0.47 e Å3
3538 reflectionsΔρmin = 0.37 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.33384 (8)0.75890 (6)0.64666 (4)0.03741 (18)
N10.2573 (4)0.7590 (2)0.7989 (2)0.0367 (6)
N20.3794 (4)0.8370 (3)0.8399 (2)0.0400 (6)
N31.1433 (5)1.2126 (3)0.8496 (3)0.0533 (8)
O10.1727 (3)0.6105 (2)0.68310 (17)0.0450 (6)
O20.0923 (4)0.4642 (3)0.62674 (19)0.0571 (7)
O30.5567 (3)0.8465 (2)0.68799 (17)0.0438 (6)
O41.1239 (4)1.2504 (3)0.9257 (2)0.0785 (9)
O51.2866 (4)1.2421 (3)0.7875 (3)0.0847 (10)
O60.1922 (4)0.8862 (2)0.58276 (19)0.0564 (6)
O70.5102 (3)0.7131 (2)0.56069 (17)0.0469 (6)
C10.0354 (5)0.6150 (3)0.8311 (2)0.0376 (7)
C20.0009 (5)0.5759 (3)0.7423 (2)0.0372 (7)
C30.1420 (5)0.4947 (3)0.7153 (3)0.0413 (8)
C40.3148 (5)0.4535 (3)0.7785 (3)0.0497 (9)
H40.41030.40010.76100.060*
C50.3481 (5)0.4906 (4)0.8679 (3)0.0541 (9)
H50.46490.46100.91020.065*
C60.2115 (5)0.5703 (3)0.8950 (3)0.0480 (9)
H60.23530.59470.95520.058*
C70.2465 (6)0.4031 (4)0.5845 (3)0.0626 (11)
H7A0.26550.31070.63010.094*
H7B0.20130.40080.51650.094*
H7C0.37640.45660.57870.094*
C80.1051 (5)0.7005 (3)0.8586 (2)0.0388 (7)
H80.08560.71460.92310.047*
C90.5315 (5)0.8793 (3)0.7736 (2)0.0370 (7)
C100.6881 (4)0.9669 (3)0.7941 (2)0.0364 (7)
C110.8536 (5)1.0068 (3)0.7247 (3)0.0452 (8)
H110.86440.97990.66510.054*
C121.0030 (5)1.0865 (3)0.7439 (3)0.0482 (9)
H121.11671.11190.69840.058*
C130.9818 (5)1.1275 (3)0.8302 (3)0.0400 (8)
C140.8183 (5)1.0912 (4)0.8996 (3)0.0532 (9)
H140.80621.12090.95790.064*
C150.6721 (5)1.0095 (4)0.8809 (3)0.0522 (9)
H150.56070.98270.92780.063*
C160.6484 (6)0.7807 (4)0.4806 (3)0.0659 (11)
H16A0.57450.85600.43010.099*
H16B0.70690.71700.44710.099*
H16C0.75860.81560.50970.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0382 (3)0.0428 (3)0.0366 (3)0.0148 (2)0.0045 (2)0.0186 (2)
N10.0344 (14)0.0391 (14)0.0411 (16)0.0128 (11)0.0014 (12)0.0175 (12)
N20.0377 (14)0.0468 (15)0.0426 (16)0.0183 (12)0.0045 (12)0.0219 (13)
N30.0438 (18)0.0463 (17)0.071 (2)0.0160 (14)0.0103 (16)0.0175 (16)
O10.0440 (13)0.0521 (13)0.0486 (14)0.0239 (10)0.0104 (11)0.0271 (11)
O20.0540 (15)0.0696 (16)0.0620 (17)0.0260 (12)0.0003 (12)0.0370 (14)
O30.0393 (12)0.0557 (14)0.0466 (14)0.0223 (10)0.0103 (10)0.0280 (11)
O40.079 (2)0.095 (2)0.080 (2)0.0395 (17)0.0057 (16)0.0476 (18)
O50.0576 (17)0.104 (2)0.107 (2)0.0502 (17)0.0142 (17)0.048 (2)
O60.0608 (15)0.0550 (15)0.0543 (16)0.0038 (12)0.0042 (12)0.0183 (12)
O70.0485 (13)0.0544 (14)0.0464 (14)0.0212 (11)0.0156 (11)0.0264 (11)
C10.0349 (17)0.0403 (17)0.0357 (18)0.0124 (13)0.0003 (14)0.0077 (14)
C20.0336 (17)0.0352 (16)0.0416 (19)0.0111 (13)0.0011 (14)0.0092 (14)
C30.0410 (18)0.0393 (17)0.044 (2)0.0108 (14)0.0085 (15)0.0113 (15)
C40.0394 (19)0.049 (2)0.060 (2)0.0207 (15)0.0070 (17)0.0134 (18)
C50.0399 (19)0.064 (2)0.057 (2)0.0249 (17)0.0075 (17)0.0141 (19)
C60.047 (2)0.057 (2)0.041 (2)0.0201 (16)0.0067 (16)0.0144 (17)
C70.066 (2)0.060 (2)0.074 (3)0.0171 (19)0.020 (2)0.034 (2)
C80.0394 (18)0.0453 (18)0.0340 (18)0.0129 (14)0.0038 (14)0.0145 (15)
C90.0347 (17)0.0406 (17)0.0398 (19)0.0091 (13)0.0008 (14)0.0174 (15)
C100.0338 (16)0.0357 (16)0.0429 (19)0.0095 (13)0.0006 (14)0.0159 (14)
C110.0415 (18)0.052 (2)0.050 (2)0.0153 (15)0.0088 (16)0.0269 (17)
C120.0362 (18)0.052 (2)0.058 (2)0.0175 (15)0.0131 (16)0.0183 (18)
C130.0322 (17)0.0385 (17)0.051 (2)0.0094 (13)0.0069 (15)0.0151 (15)
C140.054 (2)0.069 (2)0.051 (2)0.0239 (18)0.0049 (17)0.0351 (19)
C150.045 (2)0.072 (2)0.051 (2)0.0265 (17)0.0119 (17)0.0320 (19)
C160.069 (3)0.069 (3)0.063 (3)0.025 (2)0.028 (2)0.023 (2)
Geometric parameters (Å, º) top
V1—O61.566 (2)C4—H40.9300
V1—O71.743 (2)C5—C61.368 (4)
V1—O11.816 (2)C5—H50.9300
V1—O31.922 (2)C6—H60.9300
V1—N12.095 (3)C7—H7A0.9600
N1—C81.290 (4)C7—H7B0.9600
N1—N21.397 (3)C7—H7C0.9600
N2—C91.295 (4)C8—H80.9300
N3—O51.206 (4)C9—C101.477 (4)
N3—O41.209 (4)C10—C151.375 (4)
N3—C131.476 (4)C10—C111.380 (4)
O1—C21.334 (3)C11—C121.380 (4)
O2—C31.353 (4)C11—H110.9300
O2—C71.428 (4)C12—C131.360 (4)
O3—C91.306 (3)C12—H120.9300
O7—C161.398 (4)C13—C141.367 (4)
C1—C21.390 (4)C14—C151.376 (4)
C1—C61.402 (4)C14—H140.9300
C1—C81.431 (4)C15—H150.9300
C2—C31.406 (4)C16—H16A0.9600
C3—C41.375 (4)C16—H16B0.9600
C4—C51.383 (5)C16—H16C0.9600
O6—V1—O7108.77 (12)C1—C6—H6120.3
O6—V1—O1106.79 (12)O2—C7—H7A109.5
O7—V1—O199.86 (10)O2—C7—H7B109.5
O6—V1—O3101.83 (11)H7A—C7—H7B109.5
O7—V1—O388.11 (10)O2—C7—H7C109.5
O1—V1—O3145.77 (10)H7A—C7—H7C109.5
O6—V1—N199.57 (12)H7B—C7—H7C109.5
O7—V1—N1149.12 (11)N1—C8—C1123.6 (3)
O1—V1—N182.96 (9)N1—C8—H8118.2
O3—V1—N174.03 (9)C1—C8—H8118.2
C8—N1—N2115.3 (2)N2—C9—O3122.9 (3)
C8—N1—V1128.1 (2)N2—C9—C10120.1 (3)
N2—N1—V1116.50 (18)O3—C9—C10117.0 (3)
C9—N2—N1106.9 (2)C15—C10—C11119.4 (3)
O5—N3—O4123.5 (3)C15—C10—C9121.3 (3)
O5—N3—C13117.9 (3)C11—C10—C9119.3 (3)
O4—N3—C13118.6 (3)C12—C11—C10119.9 (3)
C2—O1—V1134.51 (19)C12—C11—H11120.1
C3—O2—C7117.9 (3)C10—C11—H11120.1
C9—O3—V1118.25 (18)C13—C12—C11119.2 (3)
C16—O7—V1136.8 (2)C13—C12—H12120.4
C2—C1—C6119.8 (3)C11—C12—H12120.4
C2—C1—C8120.8 (3)C12—C13—C14122.2 (3)
C6—C1—C8119.3 (3)C12—C13—N3118.4 (3)
O1—C2—C1121.3 (2)C14—C13—N3119.3 (3)
O1—C2—C3118.9 (3)C13—C14—C15118.2 (3)
C1—C2—C3119.8 (3)C13—C14—H14120.9
O2—C3—C4126.0 (3)C15—C14—H14120.9
O2—C3—C2114.8 (3)C10—C15—C14121.0 (3)
C4—C3—C2119.2 (3)C10—C15—H15119.5
C3—C4—C5120.7 (3)C14—C15—H15119.5
C3—C4—H4119.7O7—C16—H16A109.5
C5—C4—H4119.7O7—C16—H16B109.5
C6—C5—C4120.9 (3)H16A—C16—H16B109.5
C6—C5—H5119.5O7—C16—H16C109.5
C4—C5—H5119.5H16A—C16—H16C109.5
C5—C6—C1119.5 (3)H16B—C16—H16C109.5
C5—C6—H6120.3

Experimental details

Crystal data
Chemical formula[V(C15H11N3O5)(CH3O)O]
Mr411.24
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.410 (3), 10.253 (3), 13.490 (3)
α, β, γ (°)71.111 (2), 87.998 (2), 86.473 (2)
V3)837.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.883, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
6739, 3538, 2686
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.115, 1.15
No. of reflections3538
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.37

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O61.566 (2)V1—O31.922 (2)
V1—O71.743 (2)V1—N12.095 (3)
V1—O11.816 (2)
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060), the Zhejiang Provincial Natural Science Foundation of China (No. Y407318), and the Technological Innovation Project (sinfonietta talent plan) of college students in Zhejiang Province (Nos. 2010R42525 and 2011R425027).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2214–m2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, S., Huo, L.-H., Deng, Z.-P. & Zhao, H. (2005). Acta Cryst. E61, m978–m980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuo, L.-H., Gao, S., Liu, J.-W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235–241.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds